
Linear	Regression	
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Regression	
Given:	
–  Data																																														where	

–  Corresponding	labels																																											where			
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•  97	samples,	parIIoned	into	67	train	/	30	test	
•  Eight	predictors	(features):	

–  6	conInuous	(4	log	transforms),	1	binary,	1	ordinal	
•  ConInuous	outcome	variable:	

–  lpsa:	log(prostate	specific	anIgen	level)	

Prostate	Cancer	Dataset	

Based	on	slide	by	Jeff	Howbert	



Linear	Regression	
•  Hypothesis:		

•  Fit	model	by	minimizing	sum	of	squared	errors		
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y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Assume	x0	=	1 

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Figures	are	courtesy	of	Greg	Shakhnarovich	



Least	Squares	Linear	Regression	
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•  Cost	FuncIon	

•  Fit	by	solving		
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IntuiIon	Behind	Cost	FuncIon	
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For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]
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Based	on	example	
by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	
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IntuiIon	Behind	Cost	FuncIon	
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For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]
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J([0, 0.5]) =
1

2⇥ 3

⇥
(0.5� 1)2 + (1� 2)2 + (1.5� 3)2

⇤
⇡ 0.58Based	on	example	

by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	
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J([0, 0]) ⇡ 2.333

Based	on	example	
by	Andrew	Ng	

J()	is	concave	



IntuiIon	Behind	Cost	FuncIon	

11	Slide	by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	

13	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



IntuiIon	Behind	Cost	FuncIon	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		
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Figure	by	Andrew	Ng	



Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		
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Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		
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�0

J(�0,�1)

✓

Figure	by	Andrew	Ng	

Since	the	least	squares	objecIve	funcIon	is	convex	(concave),	
we	don’t	need	to	worry	about	local	minima	



Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	
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Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	
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Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	
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Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	
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Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	
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Gradient	Descent	for	Linear	Regression	

•  IniIalize		
•  Repeat	unIl	convergence	

24	

✓

simultaneous	
update		
for	j	=	0	...	d 

✓j  ✓j � ↵

1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

•  To	achieve	simultaneous	update	
•  At	the	start	of	each	GD	iteraIon,	compute	
•  Use	this	stored	value	in	the	update	step	loop	
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Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

h(x)	=	-900	–	0.1	x 

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Gradient	Descent	
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(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters												)	

Slide	by	Andrew	Ng	



Choosing	α	

34	

α	too	small	

slow	convergence	

α	too	large	

Increasing	value	for	J(✓)

•  May	overshoot	the	minimum	
•  May	fail	to	converge	
•  May	even	diverge	

To	see	if	gradient	descent	is	working,	print	out											each	iteraIon	
•  The	value	should	decrease	at	each	iteraIon	
•  If	it	doesn’t,	adjust	α	

J(✓)



Extending	Linear	Regression	to		
More	Complex	Models	

•  The	inputs	X	for	linear	regression	can	be:	
–  Original	quanItaIve	inputs	
–  TransformaIon	of	quanItaIve	inputs	

•  e.g.	log,	exp,	square	root,	square,	etc.	
–  Polynomial	transformaIon	

•  	example:		y	=	�0	+	�1�x	+	�2�x2	+	�3�x3	
–  Basis	expansions	
–  Dummy	coding	of	categorical	inputs	
–  InteracIons	between	variables	

•  	example:	x3	=	x1	�	x2	

This	allows	use	of	linear	regression	techniques		
to	fit	non-linear	datasets.	



Linear	Basis	FuncIon	Models	

•  Generally,	

•  Typically,																						so	that									acts	as	a	bias	
•  In	the	simplest	case,	we	use	linear	basis	funcIons	:	

h✓(x) =
dX

j=0

✓j�j(x)

�0(x) = 1 ✓0

�j(x) = xj

basis	funcIon	

Based	on	slide	by	Christopher	Bishop	(PRML)	



Linear	Basis	FuncIon	Models	

–  These	are	global;	a	small	
change	in	x	affects	all	
basis	funcIons	

•  Polynomial	basis	funcIons:	

•  Gaussian	basis	funcIons:	

–  These	are	local;	a	small	change	
in	x	only	affect	nearby	basis	
funcIons.	μj	and	s	control	
locaIon	and	scale	(width).	

Based	on	slide	by	Christopher	Bishop	(PRML)	



Linear	Basis	FuncIon	Models	
•  Sigmoidal	basis	funcIons:	

	where	

–  These	are	also	local;	a	small	
change	in	x	only	affects	
nearby	basis	funcIons.		μj	
and	s	control	locaIon	and	
scale	(slope).	

Based	on	slide	by	Christopher	Bishop	(PRML)	



Example	of	Finng	a	Polynomial	Curve		
with	a	Linear	Model	

y = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓px

p =
pX

j=0

✓jx
j



Linear	Basis	FuncIon	Models	

•  Basic	Linear	Model:		

•  Generalized	Linear	Model:	
	
•  Once	we	have	replaced	the	data	by	the	outputs	of	
the	basis	funcIons,	finng	the	generalized	model	is	
exactly	the	same	problem	as	finng	the	basic	model	
–  Unless	we	use	the	kernel	trick	–	more	on	that	when	we	
cover	support	vector	machines	

–  Therefore,	there	is	no	point	in	cluHering	the	math	with	
basis	funcIons	

40	

h✓(x) =
dX

j=0

✓j�j(x)

h✓(x) =
dX

j=0

✓jxj

Based	on	slide	by	Geoff	Hinton	



Linear	Algebra	Concepts	
•  Vector	in									is	an	ordered	set	of	d	real	numbers	

–  e.g.,	v	=	[1,6,3,4]	is	in		
–  “[1,6,3,4]” is	a	column	vector:	
–  as	opposed	to	a	row	vector:	

•  An	m-by-n	matrix	is	an	object	with	m	rows	and	n	columns,	
where	each	entry	is	a	real	number:	
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Based	on	slides	by	Joseph	Bradley	



•  Transpose:	reflect	vector/matrix	on	line:	

( )ba
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a T
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ca

dc
ba T

–  Note:	(Ax)T=xTAT						(We’ll	define	mulIplicaIon	soon…)	

•  Vector	norms:	
–  Lp	norm	of	v	=	(v1,…,vk)	is		
–  Common	norms:	L1,	L2	
–  Linfinity	=	maxi	|vi|	

•  Length	of	a	vector	v	is	L2(v)	

 
X

i

|vi|p
! 1

p

Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	



•  Vector	dot	product:	

–  Note:	dot	product	of	u	with	itself		=	length(u)2	=		

•  Matrix	product:	
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Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	



•  Vector	products:	
–  Dot	product:	

–  Outer	product:	
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Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	



h(x) = ✓

|
x

x

| =
⇥
1 x1 . . . xd

⇤

VectorizaIon	
•  Benefits	of	vectorizaIon	
– More	compact	equaIons	
–  Faster	code	(using	opImized	matrix	libraries)	

•  Consider	our	model:	
	
•  Let	

•  Can	write	the	model	in	vectorized	form	as	
45	
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VectorizaIon	
•  Consider	our	model	for	n	instances:	
	
	
•  Let	

•  Can	write	the	model	in	vectorized	form	as	
46	
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VectorizaIon	
•  For	the	linear	regression	cost	funcIon:	
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						Closed	Form	SoluIon:	

Closed	Form	SoluIon	
•  Instead	of	using	GD,	solve	for	opImal	   analyIcally	
–  NoIce	that	the	soluIon	is	when	
	

•  DerivaIon:	

Take	derivaIve	and	set	equal	to	0,	then	solve	for					:		
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Closed	Form	SoluIon	
•  Can	obtain						by	simply	plugging	X	and	   into	

	
•  If	X	T	X	is	not	inverIble	(i.e.,	singular),	may	need	to:	
–  Use	pseudo-inverse	instead	of	the	inverse	

•  In	python,		numpy.linalg.pinv(a) 
–  Remove	redundant	(not	linearly	independent)	features	
–  Remove	extra	features	to	ensure	that	d	≤	n 
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Gradient	Descent	vs	Closed	Form	

												Gradient	Descent											Closed	Form	Solu+on	
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•  Requires	mulIple	iteraIons	
•  Need	to	choose	α	
•  Works	well	when	n	is	large	
•  Can	support	incremental	

learning	

•  Non-iteraIve	
•  No	need	for	α	
•  Slow	if	n	is	large	

–	CompuIng	(X	T	X)-1	is	
roughly	O(n3)	



Improving	Learning:			
Feature	Scaling	

•  Idea:	Ensure	that	feature	have	similar	scales	

	

•  Makes	gradient	descent	converge	much	faster	
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Feature	StandardizaIon	
•  Rescales	features	to	have	zero	mean	and	unit	variance	

– Let	μj		be	the	mean	of	feature	j:	

– Replace	each	value	with:	

•  sj	is	the	standard	deviaIon	of	feature	j 
•  Could	also	use	the	range	of	feature	j 	(maxj	–	minj)	for	sj	

•  Must	apply	the	same	transformaIon	to	instances	for	
both	training	and	predicIon	

•  Outliers	can	cause	problems	

	

52	

µj =
1

n

nX

i=1

x

(i)
j

x

(i)
j  

x

(i)
j � µj

sj

for	j	=	1...d	
(not	x0!)	



Quality	of	Fit	

OverfiHng:		
•  The	learned	hypothesis	may	fit	the	training	set	very	
well	(																			)	

•  ...but	fails	to	generalize	to	new	examples	
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RegularizaIon	
•  A	method	for	automaIcally	controlling	the	
complexity	of	the	learned	hypothesis	

•  Idea:		penalize	for	large	values	of	
–  Can	incorporate	into	the	cost	funcIon	
– Works	well	when	we	have	a	lot	of	features,	each	that	
contributes	a	bit	to	predicIng	the	label		

•  Can	also	address	overfinng	by	eliminaIng	features	
(either	manually	or	via	model	selecIon)	
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RegularizaIon	
•  Linear	regression	objecIve	funcIon	

–     	is	the	regularizaIon	parameter	(											)	
– No	regularizaIon	on						!		
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Understanding	RegularizaIon	

•  Note	that																																		

–  This	is	the	magnitude	of	the	feature	coefficient	vector!	

•  We	can	also	think	of	this	as:	

•  L2	regularizaIon	pulls	coefficients	toward	0	
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Understanding	RegularizaIon	

•  What	happens	if	we	set						to	be	huge	(e.g.,	1010)?	
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Understanding	RegularizaIon	

•  What	happens	if	we	set						to	be	huge	(e.g.,	1010)?	
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Regularized	Linear	Regression	
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•  Cost	FuncIon	

•  Fit	by	solving	

•  Gradient	update:		
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Regularized	Linear	Regression	
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•  We	can	rewrite	the	gradient	step	as:	
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Regularized	Linear	Regression	
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•  To	incorporate	regularizaIon	into	the	closed	form	
soluIon:	



Regularized	Linear	Regression	
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•  To	incorporate	regularizaIon	into	the	closed	form	
soluIon:	

•  Can	derive	this	the	same	way,	by	solving	

•  Can	prove	that	for	λ		>	0,	inverse	exists	in	the	
equaIon	above	
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