
Linear	Regression	

Robot	Image	Credit:	Viktoriya	Sukhanova	©	123RF.com	

These	slides	were	assembled	by	Eric	Eaton,	with	grateful	acknowledgement	of	the	many	others	who	made	
their	course	materials	freely	available	online.	Feel	free	to	reuse	or	adapt	these	slides	for	your	own	academic	
purposes,	provided	that	you	include	proper	aHribuIon.	Please	send	comments	and	correcIons	to	Eric.		

Regression	
Given:	
–  Data																																														where	

–  Corresponding	labels																																											where			

2	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1975	 1980	 1985	 1990	 1995	 2000	 2005	 2010	 2015	

Se
pt
em

be
r	A

rc
+c
	S
ea
	Ic
e	
Ex
te
nt
	

(1
,0
00
,0
00
	sq

	k
m
)	

Year	

Data	from	G.	WiH.	Journal	of	StaIsIcs	EducaIon,	Volume	21,	Number	1	(2013)	

Linear	Regression	
QuadraIc	Regression	

X =
n

x

(1), . . . ,x(n)
o

x

(i) 2 Rd

y =
n

y(1), . . . , y(n)
o

y(i) 2 R

•  97	samples,	parIIoned	into	67	train	/	30	test	
•  Eight	predictors	(features):	

–  6	conInuous	(4	log	transforms),	1	binary,	1	ordinal	
•  ConInuous	outcome	variable:	

–  lpsa:	log(prostate	specific	anIgen	level)	

Prostate	Cancer	Dataset	

Based	on	slide	by	Jeff	Howbert	

Linear	Regression	
•  Hypothesis:		

•  Fit	model	by	minimizing	sum	of	squared	errors		

5	

x x

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Assume	x0	=	1

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Figures	are	courtesy	of	Greg	Shakhnarovich	

Least	Squares	Linear	Regression	

6	

•  Cost	FuncIon	

•  Fit	by	solving		

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

min
✓

J(✓)

IntuiIon	Behind	Cost	FuncIon	

7	

For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

Based	on	example	
by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

8	

0	

1	

2	

3	

0	 1	 2	 3	

y	

x	

(for	fixed					,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameter)	

0	

1	

2	

3	

-0.5	 0	 0.5	 1	 1.5	 2	 2.5	

For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

Based	on	example	
by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

9	

0	

1	

2	

3	

0	 1	 2	 3	

y	

x	

(for	fixed					,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameter)	

0	

1	

2	

3	

-0.5	 0	 0.5	 1	 1.5	 2	 2.5	

For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

J([0, 0.5]) =
1

2⇥ 3

⇥
(0.5� 1)2 + (1� 2)2 + (1.5� 3)2

⇤
⇡ 0.58Based	on	example	

by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

10	

0	

1	

2	

3	

0	 1	 2	 3	

y	

x	

(for	fixed					,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameter)	

0	

1	

2	

3	

-0.5	 0	 0.5	 1	 1.5	 2	 2.5	

For	insight	on	J(),	let’s	assume															so			x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

J([0, 0]) ⇡ 2.333

Based	on	example	
by	Andrew	Ng	

J()	is	concave	

IntuiIon	Behind	Cost	FuncIon	

11	Slide	by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

12	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

13	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

14	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

IntuiIon	Behind	Cost	FuncIon	

15	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		

16	

✓

✓ J(✓)

�1
�0

J(�0,�1)

Figure	by	Andrew	Ng	

Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		

17	

✓

✓

J(✓)

�1
�0

J(�0,�1)

✓

Figure	by	Andrew	Ng	

Basic	Search	Procedure	
•  Choose	iniIal	value	for		
•  UnIl	we	reach	a	minimum:	
–  Choose	a	new	value	for						to	reduce		

18	

✓

✓

J(✓)

�1
�0

J(�0,�1)

✓

Figure	by	Andrew	Ng	

Since	the	least	squares	objecIve	funcIon	is	convex	(concave),	
we	don’t	need	to	worry	about	local	minima	

Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	

19	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

learning	rate	(small)	
	e.g.,	α	=	0.05	

J(✓)

✓

0	

1	

2	

3	

-0.5	 0	 0.5	 1	 1.5	 2	 2.5	

↵

Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	

20	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

For	Linear	Regression:	
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y

(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
x

(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	

21	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

For	Linear	Regression:	
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y

(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
x

(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	

22	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

For	Linear	Regression:	
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y

(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
x

(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

Gradient	Descent	
•  IniIalize		
•  Repeat	unIl	convergence	

23	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

For	Linear	Regression:	
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y

(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y

(i)

!
x

(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

Gradient	Descent	for	Linear	Regression	

•  IniIalize		
•  Repeat	unIl	convergence	

24	

✓

simultaneous	
update		
for	j	=	0	...	d

✓j ✓j � ↵

1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

•  To	achieve	simultaneous	update	
•  At	the	start	of	each	GD	iteraIon,	compute	
•  Use	this	stored	value	in	the	update	step	loop	

h✓

⇣
x

(i)
⌘

kvk2 =

sX

i

v2i =
q

v21 + v22 + . . .+ v2|v|L2	norm:	

k✓
new

� ✓
old

k2 < ✏•  Assume	convergence	when		

Gradient	Descent	

25	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

h(x)	=	-900	–	0.1	x

Slide	by	Andrew	Ng	

Gradient	Descent	

26	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

27	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

28	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

29	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

30	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

31	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

32	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Gradient	Descent	

33	

(for	fixed											,	this	is	a	funcIon	of	x)	 (funcIon	of	the	parameters)	

Slide	by	Andrew	Ng	

Choosing	α	

34	

α	too	small	

slow	convergence	

α	too	large	

Increasing	value	for	J(✓)

•  May	overshoot	the	minimum	
•  May	fail	to	converge	
•  May	even	diverge	

To	see	if	gradient	descent	is	working,	print	out											each	iteraIon	
•  The	value	should	decrease	at	each	iteraIon	
•  If	it	doesn’t,	adjust	α	

J(✓)

Extending	Linear	Regression	to		
More	Complex	Models	

•  The	inputs	X	for	linear	regression	can	be:	
–  Original	quanItaIve	inputs	
–  TransformaIon	of	quanItaIve	inputs	

•  e.g.	log,	exp,	square	root,	square,	etc.	
–  Polynomial	transformaIon	

•  	example:		y	=	�0	+	�1�x	+	�2�x2	+	�3�x3	
–  Basis	expansions	
–  Dummy	coding	of	categorical	inputs	
–  InteracIons	between	variables	

•  	example:	x3	=	x1	�	x2	

This	allows	use	of	linear	regression	techniques		
to	fit	non-linear	datasets.	

Linear	Basis	FuncIon	Models	

•  Generally,	

•  Typically,																						so	that									acts	as	a	bias	
•  In	the	simplest	case,	we	use	linear	basis	funcIons	:	

h✓(x) =
dX

j=0

✓j�j(x)

�0(x) = 1 ✓0

�j(x) = xj

basis	funcIon	

Based	on	slide	by	Christopher	Bishop	(PRML)	

Linear	Basis	FuncIon	Models	

–  These	are	global;	a	small	
change	in	x	affects	all	
basis	funcIons	

•  Polynomial	basis	funcIons:	

•  Gaussian	basis	funcIons:	

–  These	are	local;	a	small	change	
in	x	only	affect	nearby	basis	
funcIons.	μj	and	s	control	
locaIon	and	scale	(width).	

Based	on	slide	by	Christopher	Bishop	(PRML)	

Linear	Basis	FuncIon	Models	
•  Sigmoidal	basis	funcIons:	

	where	

–  These	are	also	local;	a	small	
change	in	x	only	affects	
nearby	basis	funcIons.		μj	
and	s	control	locaIon	and	
scale	(slope).	

Based	on	slide	by	Christopher	Bishop	(PRML)	

Example	of	Finng	a	Polynomial	Curve		
with	a	Linear	Model	

y = ✓0 + ✓1x+ ✓2x
2 + . . .+ ✓px

p =
pX

j=0

✓jx
j

Linear	Basis	FuncIon	Models	

•  Basic	Linear	Model:		

•  Generalized	Linear	Model:	
	
•  Once	we	have	replaced	the	data	by	the	outputs	of	
the	basis	funcIons,	finng	the	generalized	model	is	
exactly	the	same	problem	as	finng	the	basic	model	
–  Unless	we	use	the	kernel	trick	–	more	on	that	when	we	
cover	support	vector	machines	

–  Therefore,	there	is	no	point	in	cluHering	the	math	with	
basis	funcIons	

40	

h✓(x) =
dX

j=0

✓j�j(x)

h✓(x) =
dX

j=0

✓jxj

Based	on	slide	by	Geoff	Hinton	

Linear	Algebra	Concepts	
•  Vector	in									is	an	ordered	set	of	d	real	numbers	

–  e.g.,	v	=	[1,6,3,4]	is	in		
–  “[1,6,3,4]” is	a	column	vector:	
–  as	opposed	to	a	row	vector:	

•  An	m-by-n	matrix	is	an	object	with	m	rows	and	n	columns,	
where	each	entry	is	a	real	number:	

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

4
3
6
1

()4361

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

239
6784
821

Rd

R4

Based	on	slides	by	Joseph	Bradley	

•  Transpose:	reflect	vector/matrix	on	line:	

()ba
b
a T

=⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=⎟⎟⎠

⎞
⎜⎜⎝

⎛
db
ca

dc
ba T

–  Note:	(Ax)T=xTAT						(We’ll	define	mulIplicaIon	soon…)	

•  Vector	norms:	
–  Lp	norm	of	v	=	(v1,…,vk)	is		
–  Common	norms:	L1,	L2	
–  Linfinity	=	maxi	|vi|	

•  Length	of	a	vector	v	is	L2(v)	

X

i

|vi|p
! 1

p

Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	

•  Vector	dot	product:	

–  Note:	dot	product	of	u	with	itself		=	length(u)2	=		

•  Matrix	product:	

() () 22112121 vuvuvvuuvu +=•=•

⎟⎟⎠

⎞
⎜⎜⎝

⎛
++
++

=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

2222122121221121

2212121121121111

2221

1211

2221

1211 ,

babababa
babababa

AB

bb
bb

B
aa
aa

A

kuk22

Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	

•  Vector	products:	
–  Dot	product:	

–  Outer	product:	

() 2211
2

1
21 vuvu
v
v

uuvuvu T +=⎟⎟⎠

⎞
⎜⎜⎝

⎛
==•

() ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

2212

2111
21

2

1

vuvu
vuvu

vv
u
u

uvT

Based	on	slides	by	Joseph	Bradley	

Linear	Algebra	Concepts	

h(x) = ✓

|
x

x

| =
⇥
1 x1 . . . xd

⇤

VectorizaIon	
•  Benefits	of	vectorizaIon	
– More	compact	equaIons	
–  Faster	code	(using	opImized	matrix	libraries)	

•  Consider	our	model:	
	
•  Let	

•  Can	write	the	model	in	vectorized	form	as	
45	

h(x) =
dX

j=0

✓jxj

✓ =

2

6664

✓0
✓1
...
✓d

3

7775

VectorizaIon	
•  Consider	our	model	for	n	instances:	
	
	
•  Let	

•  Can	write	the	model	in	vectorized	form	as	
46	

h✓(x) = X✓

X =

2

66666664

1 x

(1)
1 . . . x

(1)
d

...
...

. . .
...

1 x

(i)
1 . . . x

(i)
d

...
...

. . .
...

1 x

(n)
1 . . . x

(n)
d

3

77777775

✓ =

2

6664

✓0
✓1
...
✓d

3

7775

h

⇣
x

(i)
⌘
=

dX

j=0

✓jx
(i)
j

R(d+1)⇥1 Rn⇥(d+1)

J(✓) =
1

2n

nX

i=1

⇣
✓

|
x

(i) � y(i)
⌘2

VectorizaIon	
•  For	the	linear	regression	cost	funcIon:	

47	

J(✓) =
1

2n
(X✓ � y)| (X✓ � y)

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

Rn⇥(d+1)

R(d+1)⇥1

Rn⇥1R1⇥n

Let:	

y =

2

6664

y(1)

y(2)

...
y(n)

3

7775

						Closed	Form	SoluIon:	

Closed	Form	SoluIon	
•  Instead	of	using	GD,	solve	for	opImal	 analyIcally	
–  NoIce	that	the	soluIon	is	when	
	

•  DerivaIon:	

Take	derivaIve	and	set	equal	to	0,	then	solve	for					:		

48	

✓
@

@✓
J(✓) = 0

J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

1	x	1	J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

J (✓) =
1

2n
(X✓ � y)| (X✓ � y)

/ ✓|X|X✓ � y|X✓ � ✓|X|y + y|y
/ ✓|X|X✓ � 2✓|X|y + y|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

✓
@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

Closed	Form	SoluIon	
•  Can	obtain						by	simply	plugging	X	and	 into	

	
•  If	X	T	X	is	not	inverIble	(i.e.,	singular),	may	need	to:	
–  Use	pseudo-inverse	instead	of	the	inverse	

•  In	python,		numpy.linalg.pinv(a)
–  Remove	redundant	(not	linearly	independent)	features	
–  Remove	extra	features	to	ensure	that	d	≤	n

49	

@

@✓
(✓|X|X✓ � 2✓|X|y + y|y) = 0

(X|X)✓ �X|y = 0

(X|X)✓ = X|y

✓ = (X|X)�1X|y

y =

2

6664

y(1)

y(2)

...
y(n)

3

7775X =

2

66666664

1 x

(1)
1 . . . x

(1)
d

...
...

. . .
...

1 x

(i)
1 . . . x

(i)
d

...
...

. . .
...

1 x

(n)
1 . . . x

(n)
d

3

77777775

✓ y

Gradient	Descent	vs	Closed	Form	

												Gradient	Descent											Closed	Form	Solu+on	

50	

•  Requires	mulIple	iteraIons	
•  Need	to	choose	α	
•  Works	well	when	n	is	large	
•  Can	support	incremental	

learning	

•  Non-iteraIve	
•  No	need	for	α	
•  Slow	if	n	is	large	

–	CompuIng	(X	T	X)-1	is	
roughly	O(n3)	

Improving	Learning:			
Feature	Scaling	

•  Idea:	Ensure	that	feature	have	similar	scales	

	

•  Makes	gradient	descent	converge	much	faster	

51	

0	

5	

10	

15	

20	

0	 5	 10	 15	 20	
✓1

✓2

Before	Feature	Scaling	

0	

5	

10	

15	

20	

0	 5	 10	 15	 20	
✓1

✓2

Aver	Feature	Scaling	

Feature	StandardizaIon	
•  Rescales	features	to	have	zero	mean	and	unit	variance	

– Let	μj		be	the	mean	of	feature	j:	

– Replace	each	value	with:	

•  sj	is	the	standard	deviaIon	of	feature	j
•  Could	also	use	the	range	of	feature	j 	(maxj	–	minj)	for	sj	

•  Must	apply	the	same	transformaIon	to	instances	for	
both	training	and	predicIon	

•  Outliers	can	cause	problems	

	

52	

µj =
1

n

nX

i=1

x

(i)
j

x

(i)
j

x

(i)
j � µj

sj

for	j	=	1...d	
(not	x0!)	

Quality	of	Fit	

OverfiHng:		
•  The	learned	hypothesis	may	fit	the	training	set	very	
well	()	

•  ...but	fails	to	generalize	to	new	examples	

53	

Pr
ic
e	

Size	

Pr
ic
e	

Size	

Pr
ic
e	

Size	

Underfinng	
(high	bias)	

Overfinng	
(high	variance)	

Correct	fit	

J(✓) ⇡ 0

Based	on	example	by	Andrew	Ng	

RegularizaIon	
•  A	method	for	automaIcally	controlling	the	
complexity	of	the	learned	hypothesis	

•  Idea:		penalize	for	large	values	of	
–  Can	incorporate	into	the	cost	funcIon	
– Works	well	when	we	have	a	lot	of	features,	each	that	
contributes	a	bit	to	predicIng	the	label		

•  Can	also	address	overfinng	by	eliminaIng	features	
(either	manually	or	via	model	selecIon)	

54	

✓j

RegularizaIon	
•  Linear	regression	objecIve	funcIon	

–  	is	the	regularizaIon	parameter	()	
– No	regularizaIon	on						!		

55	

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+ �

dX

j=1

✓2j

model	fit	to	data	 regularizaIon	

✓0

� � � 0

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

Understanding	RegularizaIon	

•  Note	that																																		

–  This	is	the	magnitude	of	the	feature	coefficient	vector!	

•  We	can	also	think	of	this	as:	

•  L2	regularizaIon	pulls	coefficients	toward	0	

	 56	

dX

j=1

✓2j = k✓1:dk22

dX

j=1

(✓j � 0)2 = k✓1:d � ~0k22

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

Understanding	RegularizaIon	

•  What	happens	if	we	set						to	be	huge	(e.g.,	1010)?	

57	

�
Pr
ic
e	

Size	

Based	on	example	by	Andrew	Ng	

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

Understanding	RegularizaIon	

•  What	happens	if	we	set						to	be	huge	(e.g.,	1010)?	

58	

�
Pr
ic
e	

Size	0	 0	 0	 0	

Based	on	example	by	Andrew	Ng	

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

Regularized	Linear	Regression	

59	

•  Cost	FuncIon	

•  Fit	by	solving	

•  Gradient	update:		

min
✓

J(✓)

✓j ✓j � ↵

1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

✓0 ✓0 � ↵
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘

regularizaIon	

@

@✓j
J(✓)

@

@✓0
J(✓)

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

� ↵�✓j

Regularized	Linear	Regression	

60	

✓0 ✓0 � ↵
1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘

•  We	can	rewrite	the	gradient	step	as:	

		

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2
+

�

2

dX

j=1

✓2j

✓j ✓j (1� ↵�)� ↵

1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j

✓j ✓j � ↵

1

n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j � ↵�✓j

Regularized	Linear	Regression	

61	

✓ =

0

BBBBB@
X|X + �

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

1

CCCCCA

�1

X|y

•  To	incorporate	regularizaIon	into	the	closed	form	
soluIon:	

Regularized	Linear	Regression	

62	

•  To	incorporate	regularizaIon	into	the	closed	form	
soluIon:	

•  Can	derive	this	the	same	way,	by	solving	

•  Can	prove	that	for	λ		>	0,	inverse	exists	in	the	
equaIon	above	

✓ =

0

BBBBB@
X|X + �

2

666664

0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

3

777775

1

CCCCCA

�1

X|y

@

@✓
J(✓) = 0

