

Linear Regression

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Regression

Given:

- Data $\boldsymbol{X}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$
- Corresponding labels $\boldsymbol{y}=\left\{y^{(1)}, \ldots, y^{(n)}\right\}$ where $y^{(i)} \in \mathbb{R}$

Prostate Cancer Dataset

- 97 samples, partitioned into 67 train / 30 test
- Eight predictors (features):
- 6 continuous (4 log transforms), 1 binary, 1 ordinal
- Continuous outcome variable:
- Ipsa: \log (prostate specific antigen level)

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the coefficient divided by its standard error (3.12). Roughly a Z score larger than two in absolute value is significantly nonzero at the $p=0.05$ level.

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Linear Regression

- Hypothesis:

$$
y=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{d} x_{d}=\sum_{j=0}^{a} \theta_{j} x_{j}
$$

- Fit model by minimizing sum of squared errors

Least Squares Linear Regression

- Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

- Fit by solving $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Intuition Behind Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

Intuition Behind Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

Intuition Behind Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

(for fixed θ_{1}, this is a function of x)

(function of the parameter θ_{1})

$$
J([0,0.5])=\frac{1}{2 \times 3}\left[(0.5-1)^{2}+(1-2)^{2}+(1.5-3)^{2}\right] \approx 0.58
$$

Intuition Behind Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

(for fixed θ_{1}, this is a function of x)

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

Intuition Behind Cost Function

Intuition Behind Cost Function

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Intuition Behind Cost Function

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Intuition Behind Cost Function

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$J\left(\theta_{0}, \theta_{1}\right)$
(function of the parameters θ_{0}, θ_{1})

Intuition Behind Cost Function

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Basic Search Procedure

- Choose initial value for $\boldsymbol{\theta}$
- Until we reach a minimum:
- Choose a new value for $\boldsymbol{\theta}$ to reduce $J(\boldsymbol{\theta})$

Basic Search Procedure

- Choose initial value for $\boldsymbol{\theta}$
- Until we reach a minimum:
- Choose a new value for $\boldsymbol{\theta}$ to reduce $J(\boldsymbol{\theta})$

Basic Search Procedure

- Choose initial value for $\boldsymbol{\theta}$
- Until we reach a minimum:
- Choose a new value for $\boldsymbol{\theta}$ to reduce $J(\boldsymbol{\theta})$

Since the least squares objective function is convex (concave), we don't need to worry about local minima

Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}) \quad \begin{aligned}
& \text { simultaneous update } \\
& \text { for } j=0 \ldots \mathrm{~d}
\end{aligned}
$$

$$
\begin{gathered}
\text { learning rate (small) } \\
\text { e.g., } \alpha=0.05
\end{gathered}
$$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}) \quad \begin{aligned}
& \text { simultaneous update } \\
& \text { for } j=0 \ldots \mathrm{~d}
\end{aligned}
$$

For Linear Regression: $\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})=\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}) \quad \begin{aligned}
& \text { simultaneous update } \\
& \text { for } j=0 \ldots \mathrm{~d}
\end{aligned}
$$

For Linear Regression: $\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})=\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}$

$$
=\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right)^{2}
$$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})
$$

simultaneous update
for $j=0 \ldots \mathrm{~d}$

For Linear Regression: $\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})=\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}$

$$
\begin{aligned}
& =\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) \times \frac{\partial}{\partial \theta_{j}}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right)
\end{aligned}
$$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$
\theta_{j} \leftarrow \theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})
$$

simultaneous update
for $j=0 \ldots \mathrm{~d}$

For Linear Regression: $\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta})=\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}$

$$
\begin{aligned}
& =\frac{\partial}{\partial \theta_{j}} \frac{1}{2 n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) \times \frac{\partial}{\partial \theta_{j}}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{k=0}^{d} \theta_{k} x_{k}^{(i)}-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

Gradient Descent for Linear Regression

- Initialize θ
- Repeat until convergence

$$
\left.\theta_{j} \leftarrow \theta_{j}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} \begin{array}{l}
\text { simultaneous } \\
\text { update } \\
\text { for } j=0 \ldots d
\end{array}\right]
$$

- To achieve simultaneous update
- At the start of each GD iteration, compute $h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)$
- Use this stored value in the update step loop
- Assume convergence when $\left\|\boldsymbol{\theta}_{\text {new }}-\boldsymbol{\theta}_{\text {old }}\right\|_{2}<\epsilon$
L_{2} norm: $\quad\|\boldsymbol{v}\|_{2}=\sqrt{\sum_{i} v_{i}^{2}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{|v|}^{2}}$

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of \mathbf{x})

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Gradient Descent

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of \mathbf{x})

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Choosing α

α too large

Increasing value for $J(\boldsymbol{\theta})$

- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\boldsymbol{\theta})$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Extending Linear Regression to More Complex Models

- The inputs \mathbf{X} for linear regression can be:
- Original quantitative inputs
- Transformation of quantitative inputs
- e.g. log, exp, square root, square, etc.
- Polynomial transformation
- example: $y=?_{0}+?_{1}$? $x+?_{2}$? $x^{2}+?_{3}$? x^{3}
- Basis expansions
- Dummy coding of categorical inputs
- Interactions between variables
- example: $x_{3}=x_{1}$? x_{2}

This allows use of linear regression techniques
to fit non-linear datasets.

Linear Basis Function Models

- Generally,

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} \underbrace{\phi_{j}(\boldsymbol{x})}_{\text {basis function }}
$$

- Typically, $\phi_{0}(\boldsymbol{x})=1$ so that θ_{0} acts as a bias
- In the simplest case, we use linear basis functions :

$$
\phi_{j}(\boldsymbol{x})=x_{j}
$$

Linear Basis Function Models

- Polynomial basis functions:

$$
\phi_{j}(x)=x^{j}
$$

- These are global; a small change in x affects all basis functions

- Gaussian basis functions:

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

Linear Basis Function Models

- Sigmoidal basis functions:

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

where

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

- These are also local; a small change in x only affects nearby basis functions. μ_{j} and s control location and scale (slope).

Example of Fitting a Polynomial Curve with a Linear Model

Linear Basis Function Models

- Basic Linear Model:

$$
\begin{aligned}
& h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} x_{j} \\
& h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} \phi_{j}(\boldsymbol{x})
\end{aligned}
$$

- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
- Unless we use the kernel trick - more on that when we cover support vector machines
- Therefore, there is no point in cluttering the math with basis functions

Linear Algebra Concepts

- Vector in \mathbb{R}^{d} is an ordered set of d real numbers
- e.g., $v=[1,6,3,4]$ is in \mathbb{R}^{4}
- " $[1,6,3,4]$ " is a column vector:
- as opposed to a row vector:

$$
\underbrace{}_{\left(\begin{array}{llll}
1 & 6 & 3 & 4
\end{array}\right)}\left(\begin{array}{l}
1 \\
6 \\
3 \\
4
\end{array}\right)
$$

- An m-by- n matrix is an object with m rows and n columns, where each entry is a real number:

$$
\left(\begin{array}{ccc}
1 & 2 & 8 \\
4 & 78 & 6 \\
9 & 3 & 2
\end{array}\right)
$$

Linear Algebra Concepts

- Transpose: reflect vector/matrix on line:

$$
\binom{a}{b}^{T}=\left(\begin{array}{ll}
a & b
\end{array}\right) \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

- Note: $(A x)^{\top}=x^{\top} A^{\top} \quad$ (We'll define multiplication soon...)
- Vector norms:
- L_{p} norm of $v=\left(v_{1}, \ldots, v_{\mathrm{k}}\right)$ is $\left(\sum_{i}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}}$
- Common norms: L_{1}, L_{2}
$-\mathrm{L}_{\text {infinity }}=\max _{\mathrm{i}}\left|v_{\mathrm{i}}\right|$
- Length of a vector v is $\mathrm{L}_{2}(v)$

Linear Algebra Concepts

- Vector dot product: $u \bullet v=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right) \bullet\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)=u_{1} v_{1}+u_{2} v_{2}$
- Note: dot product of u with itself $=$ length $(u)^{2}=\|\boldsymbol{u}\|_{2}^{2}$
- Matrix product:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
& A B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)
\end{aligned}
$$

Linear Algebra Concepts

- Vector products:
- Dot product: $u \bullet v=u^{T} v=\left(\begin{array}{ll}u_{1} & u_{2}\end{array}\right)\binom{v_{1}}{v_{2}}=u_{1} v_{1}+u_{2} v_{2}$
- Outer product:

$$
u v^{T}=\binom{u_{1}}{u_{2}}\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} v_{1} & u_{1} v_{2} \\
u_{2} v_{1} & u_{2} v_{2}
\end{array}\right)
$$

Vectorization

- Benefits of vectorization
- More compact equations
- Faster code (using optimized matrix libraries)
- Consider our model:
- Let

$$
h(\boldsymbol{x})=\sum_{j=0}^{d} \theta_{j} x_{j}
$$

$$
\boldsymbol{\theta}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right] \quad \boldsymbol{x}^{\boldsymbol{\top}}=\left[\begin{array}{llll}
1 & x_{1} & \ldots & x_{d}
\end{array}\right]
$$

- Can write the model in vectorized form as $h(\boldsymbol{x})=\boldsymbol{\theta}^{\top} \boldsymbol{x}$

Vectorization

- Consider our model for n instances:

$$
h\left(\boldsymbol{x}^{(i)}\right)=\sum_{j=0}^{d} \theta_{j} x_{j}^{(i)}
$$

- Let

$$
\begin{gathered}
\boldsymbol{\theta}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right] \quad \boldsymbol{X}=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(x)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(i)} & \cdots & x_{d}^{(i)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(n)} & \ldots & x_{d}^{(n)}
\end{array}\right] \\
\mathbb{R}^{(d+1) \times 1} \\
\mathbb{R}^{n \times(d+1)}
\end{gathered}
$$

- Can write the model in vectorized form as $h_{\boldsymbol{\theta}}(\boldsymbol{x})=\boldsymbol{X} \boldsymbol{\theta}$

Vectorization

- For the linear regression cost function:

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\frac{1}{2 n} \sum_{i=1}^{n}\left(\boldsymbol{\theta}^{\boldsymbol{\top}} \boldsymbol{x}^{(i)}-y^{(i)}\right)^{2}
\end{aligned}
$$

Let:

$\boldsymbol{y}=\left[\begin{array}{c}y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)}\end{array}\right]$

Closed Form Solution

- Instead of using GD, solve for optimal $\boldsymbol{\theta}$ analytically
- Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta})=0$
- Derivation:

$$
\begin{aligned}
\mathcal{J}(\boldsymbol{\theta}) & =\frac{1}{2 n}(\boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{y})^{\top}(\boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{y}) \\
& \propto \boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{y}^{\top} \boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y}+\boldsymbol{y}^{\top} \boldsymbol{y} \\
& \propto \boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\theta}-2 \boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y}+\boldsymbol{y}^{\top} \boldsymbol{y}
\end{aligned}
$$

Take derivative and set equal to 0 , then solve for $\boldsymbol{\theta}$:

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\theta}}\left(\boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\theta}-2 \boldsymbol{\theta}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y}+\boldsymbol{y}^{\top} \mathbb{Q}\right) & =0 \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) \boldsymbol{\theta}-\boldsymbol{X}^{\top} \boldsymbol{y} & =0 \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right) \boldsymbol{\theta} & =\boldsymbol{X}^{\top} \boldsymbol{y}
\end{aligned}
$$

Closed Form Solution:

$$
\boldsymbol{\theta}=\left(\boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{y}
$$

Closed Form Solution

- Can obtain $\boldsymbol{\theta}$ by simply plugging \boldsymbol{X} and \boldsymbol{y} into

$$
\begin{aligned}
\boldsymbol{\theta} & =\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{\top}} \boldsymbol{y} \\
\boldsymbol{X} & =\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(n)} & \cdots & x_{d}^{(n)}
\end{array}\right] \quad y=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(n)}
\end{array}\right]
\end{aligned}
$$

- If $\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible (i.e., singular), may need to:
- Use pseudo-inverse instead of the inverse
- In python, numpy.linalg.pinv(a)
- Remove redundant (not linearly independent) features
- Remove extra features to ensure that $d \leq n$

Gradient Descent vs Closed Form

Gradient Descent

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

Closed Form Solution

- Non-iterative
- No need for α
- Slow if n is large
- Computing $\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$ is roughly $\mathrm{O}\left(n^{3}\right)$

Improving Learning: Feature Scaling

- Idea: Ensure that feature have similar scales

- Makes gradient descent converge much faster

Feature Standardization

- Rescales features to have zero mean and unit variance
- Let μ_{j} be the mean of feature $j: \quad \mu_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{j}^{(i)}$
- Replace each value with:

$$
x_{j}^{(i)} \leftarrow \frac{x_{j}^{(i)}-\mu_{j}}{s_{j}} \quad \begin{aligned}
& \text { for } j=1 \ldots . . d \\
& \left(\operatorname{not} x_{0}!\right)
\end{aligned}
$$

- s_{j} is the standard deviation of feature j
- Could also use the range of feature $j\left(\max _{j}-\min _{j}\right)$ for s_{j}
- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Quality of Fit

Overfitting:

- The learned hypothesis may fit the training set very well ($J(\boldsymbol{\theta}) \approx 0$)
- ...but fails to generalize to new examples

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_{j}
- Can incorporate into the cost function
- Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Regularization

- Linear regression objective function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

model fit to data

regularization
$-\lambda$ is the regularization parameter $(\lambda \geq 0)$

- No regularization on θ_{0} !

Understanding Regularization

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

- Note that $\sum_{j=1}^{d} \theta_{j}^{2}=\left\|\boldsymbol{\theta}_{1: d}\right\|_{2}^{2}$
- This is the magnitude of the feature coefficient vector!
- We can also think of this as:

$$
\sum_{j=1}^{d}\left(\theta_{j}-0\right)^{2}=\left\|\boldsymbol{\theta}_{1: d}-\overrightarrow{\mathbf{0}}\right\|_{2}^{2}
$$

- L_{2} regularization pulls coefficients toward 0

Understanding Regularization

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

- What happens if we set λ to be huge (e.g., 10^{10})?

Understanding Regularization

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

- What happens if we set λ to be huge (e.g., 10^{10})?

Regularized Linear Regression

- Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

- Fit by solving $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- Gradient update:

$$
\begin{array}{ll}
\frac{\partial}{\partial \theta_{0}} J(\theta) & \theta_{0} \leftarrow \theta_{0}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) \\
\frac{\partial}{\partial \theta_{j}} J(\theta) & \theta_{j} \leftarrow \theta_{j}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} \underbrace{-\alpha \lambda \theta_{j}}_{\text {regularization }}
\end{array}
$$

Regularized Linear Regression

$$
J(\boldsymbol{\theta})=\frac{1}{2 n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}
$$

$$
\begin{aligned}
& \theta_{0} \leftarrow \theta_{0}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) \\
& \theta_{j} \leftarrow \theta_{j}-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}-\alpha \lambda \theta_{j}
\end{aligned}
$$

- We can rewrite the gradient step as:

$$
\theta_{j} \leftarrow \theta_{j}(1-\alpha \lambda)-\alpha \frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Regularized Linear Regression

- To incorporate regularization into the closed form solution:

Regularized Linear Regression

- To incorporate regularization into the closed form solution:

$$
\boldsymbol{\theta}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda\left[\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

- Can derive this the same way, by solving $\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta})=0$
- Can prove that for $\lambda>0$, inverse exists in the equation above

