Decision Trees &

bl g&‘ _ Overfitting

Summary of Decision Trees (so far)

Outlook
|
Sunny Overcast Rain
— l T~
Humidity Yes Wind
ZAN ZN
High Normal Strong Weak
/ N / N
No Yes No Yes

* Decision tree induction = choose the best attribute
— Choose split via information gain
— Build tree greedily, recursing on children of split

— Stop when we achieve homogeny
* i.e., when all instance in a child have the same class

Summary of Decision Trees (so far)

Information Gain: Mutual information of attribute A and the class
variable of data set X
InfoGain(X,A) =H(X)—-H(X | A)

B {rx € X | x4 = v} B
= H(X) > 5% x H{z € X | x4 =v})
vEwvalues(A)
|) | J
I I
fraction of instances entropy of those
with value v in attribute A instances
Entropy:
{x € X | class(x) = c}| {x € X | class(x) = c}|
HX)=-) 5 log, X]

ce Classes

i J \ J

I
fraction of instances
of class ¢

Restaurant Example

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???

French Y N
9 [talian Y N
I
0
©
>
1 Thar | N Y NY
S
—
Burger N Y NY
Empty Some Full

Patrons variable

Computing information gain

I (X) — 9 French
Italian
I (Pat, X) = 2 o
Burger

I (Type, X) =72

Based on Slide from M. desJardins & T. Finin

Y N
Y N
N Y NY
N Y NY
Empty Some Full

Gain (Pat, X) =?
Gain (Type, X) =?

Computing information gain

I(X) _ French Y N
-(.5log .5+ .51o0g.5)
=2 t.o=1 Italian Y N
I (Pat, X) = 2 ..) .
Burger N Y NY
Empty Some Full
| (Type, X) =9 Gain (Pat, X) =9

Gain (Type, X) =?

Based on Slide from M. desJardins & T. Finin

Computing information gain

I(X) _ French Y N
-(.5log .5+ .51o0g.5)
=2 t.o=1 Italian Y N
I (Pat, X) = i | y -
2/12 (0) +4/12 (0) +
6/12 (- (4/6 log 4/6 +
2/6 log 2/6))
=112 2/3*.6 + Burger ™ Y N Y
1/3*1.6) Empty Some Full
= 47
| (Type, X) =9 Gain (Pat, X) =9

Gain (Type, X) =?

Based on Slide from M. desJardins & T. Finin

Computing information gain

French

I(X) =
-(.5log .5+ .51o0g.5)
=5+.5=1

Italian

I (Pat, X) =
2/12 (0) + 4/12 (0) +
6/12 (- (4/6 log 4/6 +
2/6 log 2/6))
=1/2 (2/3*.6 + Burger
1/3*1.6)
= 47

Thai

I (Type, X) =
2/12 (1) +2/12 (1) +
4/12 (1) +4/12 (1) =1

Based on Slide from M. desJardins & T. Finin

Y N
Y N
N Y NY
N Y NY
Empty Some Full

Gain (Pat, X) =?
Gain (Type, X) =?

Computing information gain

French

I(X) =
-(.5log .5+ .51o0g.5)
=5+.5=1

Italian

I (Pat, X) =
2/12 (0) +4/12 (0) +
6/12 (- (4/6 log 4/6 +
2/6 log 2/6))
=1/2 (2/3*.6 +
1/3*1.6)
= 47

Thai

Burger

I (Type, X) =
2/12 (1) +2/12 (1) +
4/12 (1) +4/12 (1) =1

Based on Slide from M. desJardins & T. Finin

Y N
Y N
N Y NY
N Y NY
Empty Some Full

Gain (Pat, X)=1-.47=.53

Gain (Type, X)=1-1=0

Attributes with Many Values

* Problem
— If attribute has many values, InfoGain() will select it
— e.g., imagine using date = Jan 28 2011 as an attribute

e Alternative approach: use GainRatio() instead

InfoGain(X, A)
SplitInformation(X, A)
X, X

SplitInformation(X,A) = — Z x| log, x|

where X is a subset of X for which A has value v

GainRatio(X, A) =

vevalues(A)

Based on slide by Pedro Domingos

Computing Gain Ratio

Already computed: French Y N

.« IX)=1

* 1(Pat, X) =0.47 Italian Y N

e I (Type, X)=1

* Gain (Pat, X) =0.53

* Gain (Type, X)=0 Thai | N Y NY
Burger N Y NY

Empty Some Full

SplitInfo (Pat, X) =- (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2)
=1/6*2.6 + 1/3*1.6 + 1/2*1 =1.47

Splitnfo (Type, X) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
= 1/6%2.6 + 1/6%2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

Based on Slide from M. desJardins & T. Finin

Computing Gain Ratio

Already computed: French Y N

.« IX)=1

* 1(Pat, X) =0.47 Italian Y N

e I (Type, X)=1

* Gain (Pat, X) =0.53

* Gain (Type, X)=0 Thai | N Y NY
Burger N Y NY

Empty Some Full

SplitInfo (Pat, X) =- (1/6 log 1/6 + 1/3 log 1/3 + 1/2 log 1/2)
=1/6*2.6 + 1/3*1.6 + 1/2*1 =1.47

Splitnfo (Type, X) = 1/6 log 1/6 + 1/6 log 1/6 + 1/3 log 1/3 + 1/3 log 1/3
= 1/6%2.6 + 1/6%2.6 + 1/3*1.6 + 1/3*1.6 = 1.93

GainRatio (Pat, X) = Gain (Pat, X) / SplitInfo(Pat, X) = 0.53 / 1.47 = 0.36
GainRatio (Type, X) = Gain (Type, X) / Splitinfo (Type, X)=0/1.93=0

Based on Slide from M. desJardins & T. Finin

Extensions of ID3

* Using gain ratios

* Real-valued data

* Noisy data and overfitting
* Generation of rules

e Setting parameters

* Cross-validation for experimental validation of
performance

e C4.5is an extension of ID3 that accounts for
unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation,
and so on

Based on Slide from M. desJardins & T. Finin

Real-Valued Features

Outlook

Sunny Overcast Rain
— l T~
Humidity Yes Wind
ZAN
>75% <=75% > 20 <=20
/ N / N
No Yes No Yes

* Change to binary splits by choosing a threshold
* One method:

— Sort instances by value, identify adjacencies with different classes
Temperature: 40 48 |60 72 80|90
PlayTennis: No No |Yes Yes Yes|No

candidate splits

— Choose among splits by InfoGain()

Unknown Attribute Values

What if some examples are missing values of A?

Use training example anyway, sort through tree:

* If node n tests A, assign most common value of A among
other examples sorted to node n

* Assign most common value of A among other examples
with same class label

* Assign probability p, to each possible value v, of A.
Assign fraction p, of example to each descendent of tree

Classify new examples in same fashion

Slide by Pedro Domingos

Noisy Data

e Many kinds of “noise” can occur in the examples:

— Two examples have same attribute/value pairs, but different
classifications

— Some values of attributes are incorrect because of errors in
the data acquisition process or the preprocessing phase

— The instance was labeled incorrectly (+ instead of -)

* Also, some attributes are irrelevant to the decision-
making process

—e.g., color of a die is irrelevant to its outcome

Based on Slide from M. desJardins & T. Finin

Overfitting

* Irrelevant attributes can result in overfitting the
training example data

—If hypothesis space has many dimensions (large

number of attributes), we may find meaningless
regularity in the data that is irrelevant to the true,
important, distinguishing features

* If we have too little training data, even a
reasonable hypothesis space will ‘overfit’

Based on Slide from M. desJardins & T. Finin

Overfitting in Decision Trees

Consider adding a noisy training example to the following tree:

Outlook
Sunny Overcast Rain
Humidity Yes Wind
;igh Normal Strong Weak
No Yes No Yes

What would be the effect of adding:
<outlook=sunny, temperature=hot, humidity=normal, wind=strong, playTennis=No> ?

Based on Slide by Pedro Domingos

Overfitting

Consider error of hypothesis h over
e training data: errory.qin(h)

e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is an
alternative hypothesis h' € H such that

errorirain(h) < errorirqin(h’)

and
errorp(h) > errorp(h’)

Slide by Pedro Domingos

Overfitting in Decision Tree Learning

09 1 1 1 1 1 1 1 1 1

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6 | On training data
On test data -—-—

0.55 -

0.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 30 90 100

Size of tree (number of nodes)

Slide by Pedro Domingos

Avoiding Overfitting

How can we avoid overfitting?
e Stop growing when data split is not statistically significant

* Acquire more training data
e Remove irrelevant attributes (manual process — not always possible)

* Grow full tree, then post-prune

How to select “best” tree:

 Measure performance over training data
* Measure performance over separate validation data set

* Add complexity penalty to performance measure

Based on Slide by Pedro Domingos

Reduced-Error Pruning

Split data into training and validation sets
Grow tree based on training set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each
possible node (plus those below it)

2. Greedily remove the node that most improves
validation set accuracy

Slide by Pedro Domingos

Pruning Decision Trees

* Pruning of the decision tree is done by replacing a whole
subtree by a leaf node.

* The replacement takes place if a decision rule establishes that
the expected error rate in the subtree is greater than in the

single leaf.

* For example,
2 correct

4 incorrect

Training @ VaIidation -

red blue red bluex

If we had simply predicted the
majority class (negative), we
make 2 errors instead of 4.

Pruned!

1 positive 0 positive 1 positive 1 positive
0 negative 2 negative 3 negative 1negative

23

Based on Example from M. desJardins & T. Finin

Effect of Reduced-Error Pruning

0.9 .

0.85

0.55 F

On training data ——
On test data -—-——
On test data (during pruning) -----

0.5 :

Based on Slide by Pedro Domingos

20

30 40 50 60 70 30 90

Size of tree (number of nodes)

100

24

Effect of Reduced-Error Pruning

0.9

On training data it looks great
0.85 F -
08 - /_/—/_/— |

0.75

TR
.....

-~ Sy,
N -
Il IR
-
i
i
il .
S -

0.7

\\\\\

i e G A

Accuracy

0.65

But that’s not the case for the test data |

0.6 | On training data 1
On test data -—--—
0.55 F On test data (during pruning) ----- i
0.5

0 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

The tree is pruned back to the red line where
it gives more accurate results on the test data

Based on Slide by Pedro Domingos

25

Converting a Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Wind
;igh Normal Strong Weak
No Yes No Yes
IF (Outlook = Sunny) AND (Humidity = High)

THEN PlayTennis = No

IF (Outlook = Sunny) AND (Humidity = Normal)
THEN PlayTennis = Yes

26

Converting Decision Trees to Rules

* Itis easy to derive rules from a decision tree: write a
rule for each path from the root to a leaf

(Outlook = Sunny) AND (Humidity = High) = PlayTennis = No

* To simplify the resulting rule set:
— Let LHS be the left-hand side of a rule
— LHS’ obtained from LHS by eliminating some conditions

— Replace LHS by LHS' in this rule if the subsets of the
training set satisfying LHS and LHS' are equal

— A rule may be eliminated by using meta-conditions such as
“if no other rule applies”

Based on Slide from M. desJardins & T. Finin

Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others
3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

Slide by Pedro Domingos

Scaling Up

 |ID3, C4.5, etc.: assumes that data fits in memory
(OK for up to hundreds of thousands of examples)

e SPRINT, SLIQ: multiple sequential scans of data
(OK for up to millions of examples)

 VFDT: at most one sequential scan
(OK for up to billions of examples)

Slide by Pedro Domingos

Comparison of Learning Methods

Characteristic Neural SVM| Trees | MARS k-NN,
Nets Kernels

Natural handling of data v v A A v

of “mixed” type

Handling of missing values v v A A A

Robustness to outliers in v v A v A

input space

Insensitive to monotone v v A v v

transformations of inputs

Computational scalability v v A A v

(large N)

Ability to deal with irrel- v v A A v

evant inputs

Ability to extract linear A A v v

combinations of features

Interpretability v v A v

Predictive power A A v A

[Table 10.3 from Hastie, et al. Elements of Statistical Learning, 2" Edition]

Summary: Decision Tree Learning

* Representation: decision trees

* Bias: prefer small decision trees

e Search algorithm: greedy

e Heuristic function: information gain or information
content or others

e OQOverfitting / pruning

Slide by Pedro Domingos

Summary: Decision Tree Learning

* Widely used in practice

e Strengths include

— Fast and simple to implement
— Can convert to rules
— Handles noisy data

e Weaknesses include

— Univariate splits/partitioning using only one attribute at a
time --- limits types of possible trees

— Large decision trees may be hard to understand
— Requires fixed-length feature vectors

— Non-incremental (i.e., batch method)

— Sacrifices predictive power

