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What are networks?

Networks are collections of
entities joined by relationships

“Network” = “Graph”
\ / - Node (entity)
/ — Edge (relationship)
points lines
vertices | edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations | sociology




Example Relational Networks
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(from Moody 2001)
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Terrorist Network
(by Valdis Krebs, Orgnet.com)
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Flikr Social Network
(from http://www.flickr.com/photos/
gustavog/sets/164006/)
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Genomic Associations
(from Snel et al., 2002)

More Relational Networks
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Campaign.Contributions
from Oil Companies
(from http://oilmoney.priceofoil.org/)
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Seagrass Food Web
(generated at http://drjoe.biology.ecu.edu) 8



Creating a network from a surface

Sample points from the surface

Connect each point to the k closest points as measured
by Euclidean distance

dist(x;, %) = [|x; — X;]|2

2% s o




Creating a network from data

Medical Patients

Name |Age|Weight{Height| HR |SBP DBP|SpO,| ...
D. Johnson| 32 | 153 70 (82134 | 72 | 98% | ...
S. Knell 47 | 169 65 (130|169 | 93 | 99% | ...
P. Bryne 42 | 128 61 [102]| 129 | 77 | 98% | ...
A. Amit 39 | 191 68 [121| 143 | 92 | 96% | ...

\

.) Measure the distance S.Vega M. Sa
between pairs 0.92

D. Johnson

S. Knell

dist(x;,%;) = ||xi — X2

0.1
2.) Connect each patient to

: : P. Bryne
its k nearest neighbors g

N. Patters



Creating a network from data

Medical Patients

Name |Age|Weight{Height| HR |SBP DBP|SpO,| ...
D. Johnson| 32 | 153 70 (82134 | 72 | 98% | ...
S. Knell 47 | 169 65 (130|169 | 93 | 99% | ...
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Graph partitioning

Goal: Partition the graph into multiple groups (clusters)

Find the two clusters

|dentify the
different parts
of the rabbit

Social network of 62 dolphins
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Spectral Clustering

Based on materials by Rebecca Nugent and Larissa Stanberry
(University of Washington)



Spectral Clustering

e Algorithms that cluster points using
eigenvectors of matrices derived from the data

* Obtain data representation in the low-
dimensional space that can be easily clustered

e Variety of methods that use the eigenvectors
differently



Spectral Clustering

* Empirically very successful

e Authors disagree:
— Which eigenvectors to use
— How to derive clusters from these eigenvectors

* Two general methods



Definitions
n x n Adjacency matrix A.

— A(i,j) = weight on edge fromitoj
— If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

n X n Transition matrix P.

— P is row stochastic

— P(i,j) = probability of stepping on node j from node i
= A(i,j)/2A(i,))

n X n Laplacian Matrix L.
— Symmetric positive semi-definite for undirected graphs
— Singular

18



Adjacency Matrix

A=

Definitions
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Spectral Graph Analysis

Graph Laplacian
L=D-A D =diag(d)
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Eigenvectors

* |ntuitive definition: An eigenvector is a
direction for a matrix

* An eigenvector of an n x n matrix A is a vector
such that 4Av =Av, where v is the eigenvector
and A is the corresponding eigenvalue

— Multiplying vector v by the scalar A effectively
stretches or shrinks the vector

* An n x n matrix should have n linearly
independent eigenvectors



Eigenvectors lllustrated

* Consider an elliptical data cloud. The

eigenvectors are then the major and minor

axes of the ellipse
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Spectral Graph Analysis
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Spectral Graph Analysis
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Method #1

* Partition using only one eigenvector at a time
e Use procedure recursively
* Example: Image Segmentation

— Uses 2" (smallest) eigenvector to define optimal cut
— Recursively generates two clusters with each cut



Method #2

* Use keigenvectors (k chosen by user)
* Directly compute k-way partitioning

* Experimentally has been seen to be “better”



Spectral Clustering Algorithm
(by Ng, Jordan, and Weiss)

* Given a set of points X={x, ..., X}
* Form the affinity matrix
B Ixi — %115 o B
Aij—exp — \V/Z#j Azz—O
202

* Define diagonal matrix D;; = >, Ak
e Formthe matrix L = D~ /2AD1/2
e Stack the k£ largest eigenvectors of L to form
the columns of the new matrix: E = |e; ey ... €]
* Normalize each of E’ s rows to have unit length
* Cluster rows of E into £ clusters using K-means



K-means to the original data?

Why?

Q: If we eventually use K-means, why not just apply

A: This method allows us to cluster non-convex regions
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Nature of the Affinity Matrix
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Simple Example

|||||||||

2
...........

e Consider two 2-dimensional slightly overlapping Gaussian

clouds each containing 100 points.



Simple Example cont-d |

Aﬂ’nlty matrix SLD of the Affinity Matrix
& 0.025
0.02
0.015
0.01
0.005
0
: 2nd eigenvector
LT
05 m |
|

05

0.08

0.06

0.04

0.02

Eigenvalues

SLD of ¥ set

1st eigenvector

—

'] ‘ J

YY" matrix




Simple Example cont-d Il

Sparse Affinity Matrix Eigenvalues 1st eigenvector
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Example 2 (not so simple)




Example 2 cont-d |
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Example 2 cont-d Il

Aff. matrix Eigenvalues 1st eigenvector 2nd eigenvector
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Example 2 cont-d Il
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Example 2 cont-d IV

Aff. matrix Eigenvalues 1st eigenvector
1
200 1 05
600 . : -0.5

200 400 60O 0 200 400

¥ matrix

2nd eigenvector

0.2

0.15

0.1

0 200 400 GO0

SLD of ¥ matrix

2nd eigenvector

YY" matrix

F00 & YA s
200 400 G600



User’s Prerogative

* Choice of £, the number of clusters

* Choice of scaling factor

— Realistically, search over O and pick value that
gives the tightest clusters

* Choice of clustering method



Comparison of Methods

Authors Matrix used Procedure/Eigenvectors used
Perona/ Freeman | Affinity A 1st x; Ax = Ax
Recursive procedure
Shi/Malik D-AwithDa | 2nd smallest generalized
degree matrix | eigenvector (D — A)x = ADx
DG, i) = ZA(”]) Also recursive
Scott/ Affinity A, Finds k eigenvectors of A,

Longuet-Higgins

User inputs k

forms V. Normalizes rows of V.
Forms Q = VV'. Segments by
Q. Q(i,j)=1 -> same cluster

Ng, Jordan,
Weiss

Affinity A,
User inputs k

Normalizes A. Finds k
eigenvectors, forms X.
Normalizes X, clusters rows




Advantages/Disadvantages

* Perona/Freeman

— For block diagonal affinity matrices, the first
eigenvector finds points in the “dominant” cluster;
not very consistent

 Shi/Malik

— 2"d generalized eigenvector minimizes affinity
between groups by affinity within each group; no
guarantee, constraints



Advantages/Disadvantages

* Scott/Longuet-Higgins
— Depends largely on choice of k
— Good results

* Ng, Jordan, Weiss
— Again depends on choice of k

— Claim: effectively handles clusters whose overlap
or connectedness varies across clusters



Affinity Matrix

o4
02 *
-k
o + &
02
ot ] oS 1
a
a4
oy
o W t
005
Y
) o5 ]

Affinity Matrix

Affinity Matrix

R I I
i o 3as

22.5900 g :;,:;0000%
e .
Perona/Freeman Shi/Malik

1st eigenv. 2nd gen. eigenv.

0.2

En.ns e s}

En.x:-o

<
B2t P P G
D

secnd genaialiad sigewetor
& s =

.23 O
L = < i a [[] F) 20
Perona/Freeman Shi/Malik
1st eigenv. 2nd gen. eigenv.
:zzkw E I" m
§ Lusso
‘g cp é-n,s
::u 000(&&% o g_:' )
Perona/Freeman Shi/Malik
1st eigenv. 2" gen. eigenv.

Scott/Lon.Higg

Q matrix

Scott/Lon.Higg

Q matrix

Scott/Lon.Higg

Q matrix



Inherent Weakness

* At some point, a clustering method is chosen

e Each clustering method has its strengths and
weaknesses

 Some methods also require a priori
knowledge of £



References

Alpert et al. Spectral partitioning with multiple eigenvectors
Brand&Huang. A unifying theorem for spectral embedding and clustering

Belkin&Niyogi. Laplasian maps for dimensionality reduction and data
representation

Blatt et al. Data clustering using a model granular magnet
Buhmann. Data clustering and learning

Fowlkes et al. Spectral grouping using the Nystrom method
Meila&Shi. A random walks view of spectral segmentation

Ng et al. On Spectral clustering: analysis and algorithm
Shi&Malik. Normalized cuts and image segmentation

Weiss et al. Segmentation using eigenvectors: a unifying view



Community structures

Slides modified from Huan Liu, Lei Tang, Nitin Agarwal



Community Detection

A community is a set of nodes between which the
interactions are (relatively) frequent

a.k.a. group, subgroup, module, cluster

Community detection

a.k.a. grouping, clustering, finding cohesive subgroups
®m Given: a social network
® Output: community membership of (some) actors

Applications
®m Understanding the interactions between people
® Visualizing and navigating huge networks
® Forming the basis for other tasks such as data mining
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Visualization after Grouping
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Classification

User Preference or Behavior can be represented as
class labels

- Whether or not clicking on an ad

- Whether or not interested in certain topics
- Subscribed to certain political views

- Like/Dislike a product

Given

m A social network
m Labels of some actors in the network

Output

®m Labels of remaining actors in the network
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Visualization after Prediction
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: 7 Unknown 9: Non-Smoking

10: Smoking

58



Link Prediction

Given a social network, predict which nodes are likely to
get connected

Output a list of (ranked) pairs of nodes
Example: Friend recommendation in Facebook

, 3)
, 12)
, 1)
, 13)

SIS

59



PRINCIPLES OF
COMMUNITY DETECTION



Communities

Community: “subsets of actors among whom there are

relatively strong, direct, intense, frequent or positive ties.”
-- Wasserman and Faust, Social Network Analysis, Methods and Applications

Community is a set of actors interacting with each other
frequently

A set of people without interaction is NOT a community
B e.g. people waiting for a bus at station but don'’t talk to each other
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Example of Communities

Communities from Communities from
Facebook Flickr

Name: Social Computing f | * Urban LIFE in Metropolis ////
Type: Organizations U 4,286 members | 31 discussions | 89,645 items | Created 46 months ago | Join?

Members: 14 members
UrbanLIFE, People, Parties, Dance, Musik, Life, Love, Culture, Food and Everything what we could
imagine by hearing that word URBANLIFE! Have some FUN! Please add... ( more )

Name: Social Computing
Tv;miba ) Internet ;Technologv Islam Is The Way Of Life (Muslim World)
Memberss 22 members 619 members | 13 discussions | 2,685 items | Created 23 months ago | Join?
The word islam is derived from the Arabic verb aslama, which means to accept, surrender or submit.
- Name Social Computing Magazine Thus, Islam means submission to and acceptance of God, and believers must... ({ more )
Type: Internet & Technology
p ing Members 34 members
Wegaaty * THE CELEBRATION OF ~LIFE~ (Post1~Award1) [only living things]
R WY 4,571 members | 22 discussions | 40,519 items | Created 21 months ago | Join?
WELCOME to THE CELEBRATION OF ~LIFE~ (Post1~Award1) PLEASE INVITE & COMMENT USING
Name: Trustworthy Social Computing only THE CODES FOUND BELOW! +r <+ This group is for sharing BEAUTIFUL, TOP QUALITY
Type: Internet & Technology images... ( more )
Members 28 members
Y "Enjoy Lifel"
2,027 members | 10 discussions | 39,916 items | Created 23 months ago | Join?
S There are lovely moments and adorable scenes in our lives. Some are in front of you, and some are just
Name: Social Computing for Business o j
Type: Internet & Technology waiting to be discovered. A gaze from someone we love, might touch the... ( more )
Members: 421 members

Baby's life
2,047 members | 185 discussions | 30,302 items | Created 32 months ago | Join?

This group is designed to highlight milestones and important events in your baby’s life (ie 1st time

Q
5
o
o
-
o)
9 ?
]
%3
54
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Name UCLA Social Sciences Computing smiling/crawling/sitting in a high chair/reading/playing etc). It can also be... ( more )

Type: Internet & Technology

Members: 22 members Pond Life

Name: Social Media and Computing g 903 members | 20 discussions | 6,877 items | Created 32 months ago | Join?

Type: Organizations Pic of the week: chosen from the poal by the group admins. Nuphar by guus timpers Pond Life is a

Members: 6 members group for all aquatic flora and fauna. Koi ponds, wildiife ponds, garden ponds,... ( more )




Subjectivity of Community Definition

Each component is
A densely-knit a community
community

Definition of a community
can be subjective.
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Taxonomy of Community Criteria

Criteria vary depending on the tasks

Roughly, community detection methods can be divided
iInto 4 categories (not exclusive):

Node-Centric Community
® Each node in a group satisfies certain properties
Group-Centric Community

®m Consider the connections within a group as a whole. The group
has to satisfy-cerainproperies-witheut.zooming into node-level

Network-Centric Community

®m Partition the whole network into several disjoint sets
Hierarchy-Ceitric-Cemmunity

®m Construct a hierarchical structure of communities
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Network-Centric Community Detection

To form a group, we need to consider the connections of
the nodes globally.

Goal: partition the network into disjoint sets

Groups based on

® Node Similarity

m Latent Space Model

®m Block Model Approximation
B Cut Minimization

® Modularity Maximization



Node Similarity

Node similarity is defined by how similar their interaction
patterns are

Two nodes are structurally equivalent if they connect to
the same set of actors
® e.g., hodes 8 and 9 are structurally equivalent

Groups are defined over equivalent nodes
® Too strict
®m Rarely occur in a large-scale
® Relaxed equivalence class is difficult to compute

In practice, use vector similarity
® e.g., cosine similarity, Jaccard similarity
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Vector Similarity Based on Adjacency Matrix

|1 [2 |3 [4 [5 |6 [7 [8 |9 [10 [11]12]13
a vector _’E 1 1
structurally m 1 1 1
equivalent 9 | 1 1
o AB
Cosine Similarity: Similarity = cos(0) = TETETR
sim(5,8) = : _
o2x3 e
N _|AN B
Jaccard Similarity: (A, B) = AUB|

J(5,8) =% _—1/4

41,2,6,13} —
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Clustering based on Node Similarity

For practical use with huge networks:
®m Consider the connections as features
m Use Cosine or Jaccard similarity to compute vertex similarity
®m Apply classical k-means clustering Algorithm

Algorithm 1 Basic K-means Algorithm.

1: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centroid.
4
5

Recompute the centroid of each cluster.

: until The centroids don’t change
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Block-Model Approximation

After
Reordering

| 4

30 4
50 100 150 200 20 30

Network Interaction Matrix Block Structure

»Objective: Minimize the difference between an interaction

matrix and a block structure
min | A - SYST | g

s.t. S € {0,1}"* ¥ € R** is diagonal
»Challenge: S is discrete, difficult to solve
»>Relaxation: Allow S to be continuous satisfying s7S =1,

» Solution: the top eigenvectors of A
»Post-Processing: Apply k-means to S to find the partition

88



Cut-Minimization

Between-group interactions should be infrequent
Cut: number of edges between two sets of nodes

Objective: minimize the cut cut(c1.C.- . =" cut(C:.T)

1

7

® Limitations: often find communities of ,
only one node
® Need to consider the group size

Two commonly-used variants:

k _
Ratio-cut(Cy,Cy,---,Cy) = E LC)
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Graph Laplacian

Cut-minimization can be relaxed into the following
min-trace problem

min Tr(STLS) st . STS=1
ScRnx k

L is the (normalized) Graph Laplacian
di, 0 - 0
L = D-A ( 0 dy --- 0 \
I — D Y2AD—1/2 D= D ; :
N0 0 - d,

Solution: S are the eigenvectors of L with smallest
eigenvalues (except the first one)

normalized- L

Post-Processing: apply k-means to S
®m a.k.a. Spectral Clustering
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Graph Modularity

» Relational network given by G = (V, A)
V. setof nvertices A :nx nadjacency matrix, m total edges

= Newman-Girvan (2006) graph modularity

Original A Null Model P Modularity (A-P)

—Measures the global community structure of G-

1

_ L PASO. C _ did;
Q(C) T 2m Z(Azy P’Lj)ﬁ(C’L)Cj) Pz — 2m

2,] Kronecker delta

—Foundation for a large number of methods (Fortunato, 2010)
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Modularity Maximization

Modularity measures the group interactions compared
with the expected random connections in the group

In a network with m edges, for two nodes with degree d.
and d; expected random connections between them are
did;/2m

The interaction utility in a group:
Z Ai; — did;2m

i€C,jeC

To partition the group into
multiple groups, we maximize

| Expected Number of
Z Z A;; —did; /2m edges between 6 and 9

2m

C ieC,jeC IS
5*3/(2*17) = 15/34
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Modularity Matrix

The modularity maximization can also be formulated in
matrix form

1 NN
Q=—Tr(S'BS)
2m
B is the modularity matrix

B,ﬁj o A,ﬁj — dl (15/2772

Solution: top eigenvectors of the modularity matrix
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Properties of Modularity

Properties of modularity:
®m Between (-1, 1)
® Modularity = 0 If all nodes are clustered into one group
® Can automatically determine optimal number of clusters

Resolution limit of modularity

® Modularity maximization might return a community consisting
multiple small modules
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Graph Laplacian vs Graph Modularity

Mesh Network by Bern et al.
partitioned by the Laplacian

(a) (b)

Laplacian  Modularity

onservative

Liberal Liberal

Political Blogs from 2004 U.S. Election,
data set from Adamic & Glance (2005)




Recap of Network-Centric Community

Network-Centric Community Detection

® Groups based on
Node Similarity
Latent Space Models
Cut Minimization
Block-Model Approximation
Modularity maximization

Goal: Partition network nodes into several disjoint sets

Limitation: Require the user to specify the number of
communities beforehand
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