Logistic Regression




Classification Based on Probability

* Instead of just predicting the class, give the probability
of the instance being that class

— i.e., learn p(y | )

 Comparison to perceptron:
— Perceptron doesn’t produce probability estimate

— Perceptron (and other discriminative classifiers) are only
interested in producing a discriminative model

* Recall that:
0 < p(event) < 1

p(event) + p(—event) = 1




Logistic Regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

. hg(.’l)) should give p(y =1 ‘ I; 9) Can’t just use linear
regression with a
~ Want 0 < hg(z) < 1 threshold

e Logistic regression model:

heo(z) =g (0Tx) Logistic / Sigmoid Function
1 g(2)
9(z) = 1+e?

1
he(®) = -~ 52 | )/




Interpretation of Hypothesis Output

he(x) = estimated p(y = 1| x;0)

Example: Cancer diagnhosis from tumor size

. L0 L 1
L= r1 | | tumorSize

hg(il)) = 0.7
- Tell patient that 70% chance of tumor being malignant

Note that: p(y =0 | x;0)+ply=1|x;0) =1

Therefore, p(y =0 \ 3539) =1 —p(y =1 | 51339)




Another Interpretation

* Equivalently, logistic regression assumes that

ply=1|x;0)
| = v, ..+ 6
Og{p(y:() ‘ w;H) o+ 0111+ + 0,414

oddsof y=1

Side Note: the odds in favor of an event is the quantity
p/ (1 -p), where p is the probability of the event

E.g., If | toss a fair dice, what are the odds that | will have a 6?

* |In other words, logistic regression assumes that the
log odds is a linear function of @

Based on slide by Xiaoli Fern



Logistic Regression

1+

he(x) = g (0Tx) 9(%)
1
g(z) = 0.5
(2) 1+e %
| ] ot | |
OTx should be large negative OTx should be large positive
values for negative instances values for positive instances

e Assume a threshold and...
— Predicty=1if hg(x) > 0.5
— Predict y =0 if hg(x) < 0.5

Based on slide by Andrew Ng



Non-Linear Decision Boundary

e Can apply basis function expansion to features, same
as with linear regression




Logistic Regression

. Given {(:B(l),y(l)) | (m<2>7y<2>> (mm),y(n))}

where (9 ¢ R, 49 ¢ {0,1}

* Model: hg(x) =g (0Tx)

1
9(2) = T =
F 9,
0 — O a:T:[l r1 ... azd]




Logistic Regression Objective Function

e Can’tjust use squared loss as in linear regression:

03 1))

i=1
— Using the logistic regression model

1
h@(CE’) — 1+ 6—9TZB

results in a non-convex optimization




Deriving the Cost Function via
Maximum Likelihood Estimation

* Likelihood of data is given by: [(0) = Hp(y(i) | x(V); 9)
i=1

* So, looking for the 8 that maximizes the likelihood

_ _ (i) | ().
Orie = argmax[(6) = arg mgxgp(y | z7); 6)

* Can take the log without changing the solution:

_ () | (3.
OMLE argmgxlog}:[lp(y |z 0)

_ () | (0). g
argmgxi;logp(y |z 6)



Deriving the Cost Function via
Maximum Likelihood Estimation

 Expand as follows:

_ (i) | 0.
Onir i argmgX;Ing(y | z(); 6)

= arg mgle {y(i) logp(y' =11 x®;0) + (1 — y(i)> log (1 —p(yW=1] 2@, 0))}
e Substitute in model, and take negative to yield

Logistic regression objective:

min J(0)

n

J(0) = — Z {y(i) log ho (') + (1 — y(i)) log (1 — hg(w(i)))}

1=1



Intuition Behind the Objective
J(0) = — z”: {y(i) log hg () + (1 — y(i)) log (1 — hg(a:@)))}

1=1

* Cost of a single instance:

—lo (he(aj)) ify=1
cost (ho(x),y) = { —log(1 % he(x)) if z =0

e Can re-write objective function as

n

J(0) = Zcost (hg(a:(i)), y(i))

1=1

. O\ 2
Compare to linear regression: J(O) = — Z (hg (az(”) — y(z))




Intuition Behind the Objective

—log(hg(x)) ify=1
cost (he(x),y) = { —log(1 % hZ(a;)) if z =0

Aside: Recall the plot of log(z)
/

05 1

-0.5+




Intuition Behind the Objective

—log(hg(x)) ify=1
cost (he(x),y) = { —log(1 % hZ(a;)) if z =0

Ify=1
 Cost =0 if prediction is correct
fy=1 * As hg(x) — 0, cost — oo

e Captures intuition that larger
mistakes should get larger
penalties

cost

! o (%) 1 — e.g., predict hg(x) =0, buty=1

Based on example by Andrew Ng 14



Intuition Behind the Objective

—lo (h (m)) ify=1
cost (he(x),y) = { —log(1 % hZ(a;)) if z =0

Ify=0

 Cost =0 if prediction is correct
Ify=1 e As (1 —hg(x)) — 0,cost — oo
Ify=0

e Captures intuition that larger

cost mistakes should get larger
penalties
0 he(x) 1

Based on example by Andrew Ng
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Regularized Logistic Regression

J(0) = — z”: {y(i) log he (V) + (1 — y(i)) log (1 — hg(w(i)))}

1=1

 We can regularize logistic regression exactly as before:
d
Jregularized(g) — J(H) + A Z 9]2
j=1

= J(0) + A[0)1.q)ll3



Gradient Descent for Logistic Regression

n

Jees(8) = = > |y 0g ho(@ ) + (1= y) log (1 — hg(2D)| + A|6p.q3

1=1

Want mgin J(0)

* |nitialize 0
* Repeat until convergence

. aij(e) simultaneous update

Hj % Hj 893‘ forj=0...d

Use the natural logarithm (In = log,) to cancel with the exp() in hg (a:)



Gradient Descent for Logistic Regression

n

Jees(8) = = > |y 0g ho(@ ) + (1= y) log (1 — hg(2D)| + A|6p.q3

1=1

Want mgin J(0)

* Initialize 6
* Repeat until convergence (simultaneous update for j=0 ... d)

o 80— a’>" (ho () = )
1=1

- . N A
Hj < 9]’ — X Z (]’LQ (ZB(Z)) — y(z)> CIJE) — EHJ

1=1




Gradient Descent for Logistic Regression

* |nitialize 0
* Repeat until convergence (simultaneous update for =0 ... d)

o 00— a’>" (ho () = )
1=1

b 0;—a |3 (ko (a) — ) 2 — 2o,

L 1=1

This looks IDENTICAL to linear regression!!!
e Ignoring the 1/n constant
* However, the form of the model is very different:

1
h@(m) — 1+ e_ng




Multi-Class Classification

Binary classification: Multi-class classification:
o @
- =
® ©
T, - ®
@e O

-

L

Disease diagnosis:  healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase
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Multi-Class Logistic Regression

* For 2 classes:

1 exp(0' x
o (1) — - p( T)

1 4+exp(—0'x) 1+ exp(@'x)

\ \
weight assigned weight assigned
toy=0 toy=1
e For C'classes{], ..., C}:
exp(0, )

ply=c|x;041,...,0c) =

— Called the softmax function

25:1 exp(0!x)
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Multi-Class Logistic Regression

Split into One vs Rest:

* Train a logistic regression classifier for each class ¢
to predict the probability that y =7 with

exp(0, )
S exp(6]x)

he(x) =

22



Implementing Multi-Class
Logistic Regression

exp(6, )

= as the model for class ¢
Zc:l eXp(eg_w)

* Use h.(x) =

* Gradient descent simultaneously updates all parameters
for all models
— Same derivative as before, just with the above h ()

* Predict class label as the most probable label

max h.(x)



