
Introduction to the Theory of Computation
Some Notes for CIS511

Jean Gallier
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

c⃝ Jean Gallier
Please, do not reproduce without permission of the author

December 26, 2017

Contents

1 Introduction 7

2 Basics of Formal Language Theory 9
2.1 Alphabets, Strings, Languages . 9
2.2 Operations on Languages . 15

3 DFA’s, NFA’s, Regular Languages 19
3.1 Deterministic Finite Automata (DFA’s) . 20
3.2 The “Cross-product” Construction . 25
3.3 Nondeteterministic Finite Automata (NFA’s) 27
3.4 ϵ-Closure . 30
3.5 Converting an NFA into a DFA . 32
3.6 Finite State Automata With Output: Transducers 36
3.7 An Application of NFA’s: Text Search . 40

4 Hidden Markov Models (HMMs) 45
4.1 Hidden Markov Models (HMMs) . 45
4.2 The Viterbi Algorithm and the Forward Algorithm 58

5 Regular Languages, Minimization of DFA’s 67
5.1 Morphisms, F -Maps, B-Maps and Homomorphisms of DFA’s 67
5.2 Directed Graphs and Paths . 72
5.3 Labeled Graphs and Automata . 75
5.4 The Closure Definition of the Regular Languages 77
5.5 Regular Expressions . 80
5.6 Regular Expressions and Regular Languages 81
5.7 Regular Expressions and NFA’s . 83
5.8 Right-Invariant Equivalence Relations on Σ∗ 91
5.9 Finding minimal DFA’s . 101
5.10 State Equivalence and Minimal DFA’s . 104
5.11 The Pumping Lemma . 114
5.12 A Fast Algorithm for Checking State Equivalence 118

6 Context-Free Grammars And Languages 131

2

CONTENTS 3

6.1 Context-Free Grammars . 131
6.2 Derivations and Context-Free Languages . 132
6.3 Normal Forms for Context-Free Grammars 138
6.4 Regular Languages are Context-Free . 145
6.5 Useless Productions in Context-Free Grammars 146
6.6 The Greibach Normal Form . 148
6.7 Least Fixed-Points . 149
6.8 Context-Free Languages as Least Fixed-Points 151
6.9 Least Fixed-Points and the Greibach Normal Form 155
6.10 Tree Domains and Gorn Trees . 160
6.11 Derivations Trees . 164
6.12 Ogden’s Lemma . 166
6.13 Pushdown Automata . 172
6.14 From Context-Free Grammars To PDA’s . 176
6.15 From PDA’s To Context-Free Grammars . 177
6.16 The Chomsky-Schutzenberger Theorem . 179

7 A Survey of LR-Parsing Methods 181
7.1 LR(0)-Characteristic Automata . 181
7.2 Shift/Reduce Parsers . 190
7.3 Computation of FIRST . 192
7.4 The Intuition Behind the Shift/Reduce Algorithm 193
7.5 The Graph Method for Computing Fixed Points 194
7.6 Computation of FOLLOW . 196
7.7 Algorithm Traverse . 197
7.8 More on LR(0)-Characteristic Automata . 199
7.9 LALR(1)-Lookahead Sets . 199
7.10 Computing FIRST, FOLLOW, etc. in the Presence of ϵ-Rules 201
7.11 LR(1)-Characteristic Automata . 208

8 RAM Programs, Turing Machines 213
8.1 Partial Functions and RAM Programs . 213
8.2 Definition of a Turing Machine . 219
8.3 Computations of Turing Machines . 221
8.4 RAM-computable functions are Turing-computable 224
8.5 Turing-computable functions are RAM-computable 225
8.6 Computably Enumerable and Computable Languages 226
8.7 The Primitive Recursive Functions . 227
8.8 The Partial Computable Functions . 233

9 Universal RAM Programs and the Halting Problem 239
9.1 Pairing Functions . 239
9.2 Equivalence of Alphabets . 242

4 CONTENTS

9.3 Coding of RAM Programs . 246
9.4 Kleene’s T -Predicate . 254
9.5 A Simple Function Not Known to be Computable 256
9.6 A Non-Computable Function; Busy Beavers 258

10 Elementary Recursive Function Theory 263
10.1 Acceptable Indexings . 263
10.2 Undecidable Problems . 266
10.3 Listable (Recursively Enumerable) Sets . 271
10.4 Reducibility and Complete Sets . 276
10.5 The Recursion Theorem . 280
10.6 Extended Rice Theorem . 284
10.7 Creative and Productive Sets . 287

11 Listable and Diophantine Sets; Hilbert’s Tenth 291
11.1 Diophantine Equations; Hilbert’s Tenth Problem 291
11.2 Diophantine Sets and Listable Sets . 294
11.3 Some Applications of the DPRM Theorem 298

12 The Post Correspondence Problem; Applications 303
12.1 The Post Correspondence Problem . 303
12.2 Some Undecidability Results for CFG’s . 304
12.3 More Undecidable Properties of Languages 307

13 Computational Complexity; P and NP 309
13.1 The Class P . 309
13.2 Directed Graphs, Paths . 311
13.3 Eulerian Cycles . 312
13.4 Hamiltonian Cycles . 313
13.5 Propositional Logic and Satisfiability . 314
13.6 The Class NP, NP-Completeness . 318
13.7 The Cook-Levin Theorem . 323

14 Some NP-Complete Problems 335
14.1 Statements of the Problems . 335
14.2 Proofs of NP-Completeness . 346
14.3 Succinct Certificates, coNP, and EXP . 359

15 Primality Testing is in NP 365
15.1 Prime Numbers and Composite Numbers . 365
15.2 Methods for Primality Testing . 366
15.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)∗ 369
15.4 The Lucas Theorem; Lucas Trees . 378

CONTENTS 5

15.5 Algorithms for Computing Powers Modulo m 383
15.6 PRIMES is in NP . 385

16 Phrase-Structure and Context-Sensitive Grammars 389
16.1 Phrase-Structure Grammars . 389
16.2 Derivations and Type-0 Languages . 390
16.3 Type-0 Grammars and Context-Sensitive Grammars 391

6 CONTENTS

Chapter 1

Introduction

The theory of computation is concerned with algorithms and algorithmic systems: their
design and representation, their completeness, and their complexity.

The purpose of these notes is to introduce some of the basic notions of the theory of
computation, including concepts from formal languages and automata theory, the theory of
computability, some basics of recursive function theory, and an introduction to complexity
theory. Other topics such as correctness of programs will not be treated here (there just
isn’t enough time!).

The notes are divided into three parts. The first part is devoted to formal languages
and automata. The second part deals with models of computation, recursive functions, and
undecidability. The third part deals with computational complexity, in particular the classes
P and NP.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Basics of Formal Language Theory

2.1 Alphabets, Strings, Languages

Our view of languages is that a language is a set of strings. In turn, a string is a finite
sequence of letters from some alphabet. These concepts are defined rigorously as follows.

Definition 2.1. An alphabet Σ is any finite set.

We often write Σ = {a1, . . . , ak}. The ai are called the symbols of the alphabet.

Examples :

Σ = {a}
Σ = {a, b, c}
Σ = {0, 1}
Σ = {α, β, γ, δ, ϵ,λ,ϕ,ψ,ω, µ, ν, ρ, σ, η, ξ, ζ}
A string is a finite sequence of symbols. Technically, it is convenient to define strings as

functions. For any integer n ≥ 1, let

[n] = {1, 2, . . . , n},

and for n = 0, let
[0] = ∅.

Definition 2.2. Given an alphabet Σ, a string over Σ (or simply a string) of length n is
any function

u : [n]→ Σ.

The integer n is the length of the string u, and it is denoted as |u|. When n = 0, the
special string
u : [0]→ Σ of length 0 is called the empty string, or null string , and is denoted as ϵ.

9

10 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Given a string u : [n] → Σ of length n ≥ 1, u(i) is the i-th letter in the string u. For
simplicity of notation, we denote the string u as

u = u1u2 . . . un,

with each ui ∈ Σ.

For example, if Σ = {a, b} and u : [3] → Σ is defined such that u(1) = a, u(2) = b, and
u(3) = a, we write

u = aba.

Other examples of strings are

work, fun, gabuzomeuh

Strings of length 1 are functions u : [1]→ Σ simply picking some element u(1) = ai in Σ.
Thus, we will identify every symbol ai ∈ Σ with the corresponding string of length 1.

The set of all strings over an alphabet Σ, including the empty string, is denoted as Σ∗.

Observe that when Σ = ∅, then
∅∗ = {ϵ}.

When Σ ̸= ∅, the set Σ∗ is countably infinite. Later on, we will see ways of ordering and
enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.3. Given an alphabet Σ, given any two strings u : [m] → Σ and v : [n] → Σ,
the concatenation u · v (also written uv) of u and v is the string
uv : [m+ n]→ Σ, defined such that

uv(i) =

{
u(i) if 1 ≤ i ≤ m,
v(i−m) if m+ 1 ≤ i ≤ m+ n.

In particular, uϵ = ϵu = u. Observe that

|uv| = |u|+ |v|.

For example, if u = ga, and v = buzo, then

uv = gabuzo

It is immediately verified that

u(vw) = (uv)w.

2.1. ALPHABETS, STRINGS, LANGUAGES 11

Thus, concatenation is a binary operation on Σ∗ which is associative and has ϵ as an identity.

Note that generally, uv ̸= vu, for example for u = a and v = b.

Given a string u ∈ Σ∗ and n ≥ 0, we define un recursively as follows:

u0 = ϵ

un+1 = unu (n ≥ 0).

Clearly, u1 = u, and it is an easy exercise to show that

unu = uun, for all n ≥ 0.

For the induction step, we have

un+1u = (unu)u by definition of un+1

= (uun)u by the induction hypothesis

= u(unu) by associativity

= uun+1 by definition of un+1.

Definition 2.4. Given an alphabet Σ, given any two strings u, v ∈ Σ∗ we define the following
notions as follows:

u is a prefix of v iff there is some y ∈ Σ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ∗ such that

v = xu.

u is a substring of v iff there are some x, y ∈ Σ∗ such that

v = xuy.

We say that u is a proper prefix (suffix, substring) of v iff u is a prefix (suffix, substring)
of v and u ̸= v.

For example, ga is a prefix of gabuzo,

zo is a suffix of gabuzo and

buz is a substring of gabuzo.

Recall that a partial ordering ≤ on a set S is a binary relation ≤ ⊆ S × S which is
reflexive, transitive, and antisymmetric.

The concepts of prefix, suffix, and substring, define binary relations on Σ∗ in the obvious
way. It can be shown that these relations are partial orderings.

Another important ordering on strings is the lexicographic (or dictionary) ordering.

12 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Definition 2.5. Given an alphabet Σ = {a1, . . . , ak} assumed totally ordered such that
a1 < a2 < · · · < ak, given any two strings u, v ∈ Σ∗, we define the lexicographic ordering ≼
as follows:

u ≼ v

⎧
⎨

⎩

(1) if v = uy, for some y ∈ Σ∗, or
(2) if u = xaiy, v = xajz, ai < aj,
with ai, aj ∈ Σ, and for some x, y, z ∈ Σ∗.

Note that cases (1) and (2) are mutually exclusive. In case (1) u is a prefix of v. In case
(2) v ̸≼ u and u ̸= v.

For example

ab ≼ b, gallhager ≼ gallier.

It is fairly tedious to prove that the lexicographic ordering is in fact a partial ordering.

In fact, it is a total ordering , which means that for any two strings u, v ∈ Σ∗, either
u ≼ v, or v ≼ u.

The reversal wR of a string w is defined inductively as follows:

ϵR = ϵ,

(ua)R = auR,

where a ∈ Σ and u ∈ Σ∗.

For example

reillag = gallierR.

It can be shown that

(uv)R = vRuR.

Thus,

(u1 . . . un)
R = uR

n . . . uR
1 ,

and when ui ∈ Σ, we have

(u1 . . . un)
R = un . . . u1.

We can now define languages.

Definition 2.6. Given an alphabet Σ, a language over Σ (or simply a language) is any
subset L of Σ∗.

2.1. ALPHABETS, STRINGS, LANGUAGES 13

If Σ ̸= ∅, there are uncountably many languages.

A Quick Review of Finite, Infinite, Countable, and Uncountable Sets

For details and proofs, see Discrete Mathematics, by Gallier.

Let N = {0, 1, 2, . . .} be the set of natural numbers.

Recall that a set X is finite if there is some natural number n ∈ N and a bijection between
X and the set [n] = {1, 2, . . . , n}. (When n = 0, X = ∅, the empty set.)

The number n is uniquely determined. It is called the cardinality (or size) of X and is
denoted by |X|.

A set is infinite iff it is not finite.

Recall that any injection or surjection of a finite set to itself is in fact a bijection.

The above fails for infinite sets.

The pigeonhole principle asserts that there is no bijection between a finite set X and any
proper subset Y of X .

Consequence: If we think of X as a set of n pigeons and if there are only m < n boxes
(corresponding to the elements of Y), then at least two of the pigeons must share the same
box.

As a consequence of the pigeonhole principle, a set X is infinite iff it is in bijection with
a proper subset of itself.

For example, we have a bijection n ,→ 2n between N and the set 2N of even natural
numbers, a proper subset of N, so N is infinite.

A set X is countable (or denumerable) if there is an injection from X into N.

If X is not the empty set, then X is countable iff there is a surjection from N onto X .

It can be shown that a set X is countable if either it is finite or if it is in bijection with
N.

We will see later that N×N is countable. As a consequence, the set Q of rational numbers
is countable.

A set is uncountable if it is not countable.

For example, R (the set of real numbers) is uncountable.

Similarly

(0, 1) = {x ∈ R | 0 < x < 1}

is uncountable. However, there is a bijection between (0, 1) and R (find one!)

The set 2N of all subsets of N is uncountable.

14 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

If Σ ̸= ∅, then the set Σ∗ of all strings over Σ is infinite and countable.

Suppose |Σ| = k with Σ = {a1, . . . , ak}.
If k = 1 write a = a1, and then

{a}∗ = {ϵ, a, aa, aaa, . . . , an, . . .}.

We have the bijection n ,→ an from N to {a}∗.
If k ≥ 2, then we can think of the string

u = ai1 · · · ain

as a representation of the integer ν(u) in base k shifted by (kn − 1)/(k − 1),

ν(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in

=
kn − 1

k − 1
+ (i1 − 1)kn−1 + · · ·+ (in−1 − 1)k + in − 1.

(with ν(ϵ) = 0).

We leave it as an exercise to show that ν : Σ∗ → N is a bijection.

In fact, ν correspond to the enumeration of Σ∗ where u precedes v if |u| < |v|, and u
precedes v in the lexicographic ordering if |u| = |v|.

For example, if k = 2 and if we write Σ = {a, b}, then the enumeration begins with

ϵ, a, b, aa, ab, ba, bb.

On the other hand, if Σ ̸= ∅, the set 2Σ∗

of all subsets of Σ∗ (all languages) is uncountable.

Indeed, we can show that there is no surjection from N onto 2Σ
∗

.

First, we show that there is no surjection from Σ∗ onto 2Σ
∗

.

We claim that if there is no surjection from Σ∗ onto 2Σ
∗

, then there is no surjection from
N onto 2Σ

∗

either.

Assume by contradiction that there is a surjection g : N→ 2Σ
∗

. But, if Σ ̸= ∅, then Σ∗ is
infinite and countable, thus we have the bijection ν : Σ∗ → N. Then the composition

Σ∗ ν !! N
g !! 2Σ

∗

is a surjection, because the bijection ν is a surjection, g is a surjection, and the composition
of surjections is a surjection, contradicting the hypothesis that there is no surjection from
Σ∗ onto 2Σ

∗

.

To prove that that there is no surjection Σ∗ onto 2Σ
∗

. We use a diagonalization argument.
This is an instance of Cantor’s Theorem.

2.2. OPERATIONS ON LANGUAGES 15

Theorem 2.1. (Cantor) There is no surjection from Σ∗ onto 2Σ
∗

.

Proof. Assume there is a surjection h : Σ∗ → 2Σ
∗

, and consider the set

D = {u ∈ Σ∗ | u /∈ h(u)}.

By definition, for any u we have u ∈ D iff u /∈ h(u). Since h is surjective, there is some
w ∈ Σ∗ such that h(w) = D. Then, since by definition of D and since D = h(w), we have

w ∈ D iff w /∈ h(w) = D,

a contradiction. Therefore g is not surjective.

Therefore, if Σ ̸= ∅, then 2Σ
∗

is uncountable.

We will try to single out countable “tractable” families of languages.

We will begin with the family of regular languages, and then proceed to the context-free
languages .

We now turn to operations on languages.

2.2 Operations on Languages

A way of building more complex languages from simpler ones is to combine them using
various operations. First, we review the set-theoretic operations of union, intersection, and
complementation.

Given some alphabet Σ, for any two languages L1, L2 over Σ, the union L1 ∪ L2 of L1

and L2 is the language

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

The intersection L1 ∩ L2 of L1 and L2 is the language

L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}.

The difference L1 − L2 of L1 and L2 is the language

L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

The difference is also called the relative complement .

A special case of the difference is obtained when L1 = Σ∗, in which case we define the
complement L of a language L as

L = {w ∈ Σ∗ | w /∈ L}.

The above operations do not use the structure of strings. The following operations use
concatenation.

16 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Definition 2.7. Given an alphabet Σ, for any two languages L1, L2 over Σ, the concatenation
L1L2 of L1 and L2 is the language

L1L2 = {w ∈ Σ∗ | ∃u ∈ L1, ∃v ∈ L2, w = uv}.

For any language L, we define Ln as follows:

L0 = {ϵ},
Ln+1 = LnL (n ≥ 0).

The following properties are easily verified:

L∅ = ∅,
∅L = ∅,

L{ϵ} = L,

{ϵ}L = L,

(L1 ∪ {ϵ})L2 = L1L2 ∪ L2,

L1(L2 ∪ {ϵ}) = L1L2 ∪ L1,

LnL = LLn.

In general, L1L2 ̸= L2L1.

So far, the operations that we have introduced, except complementation (since L = Σ∗−L
is infinite if L is finite and Σ is nonempty), preserve the finiteness of languages. This is not
the case for the next two operations.

Definition 2.8. Given an alphabet Σ, for any language L over Σ, the Kleene ∗-closure L∗

of L is the language

L∗ =
⋃

n≥0

Ln.

The Kleene +-closure L+ of L is the language

L+ =
⋃

n≥1

Ln.

Thus, L∗ is the infinite union

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . ,

2.2. OPERATIONS ON LANGUAGES 17

and L+ is the infinite union

L+ = L1 ∪ L2 ∪ . . . ∪ Ln ∪

Since L1 = L, both L∗ and L+ contain L.

In fact,

L+ = {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · ·∃un ∈ L, w = u1 · · ·un},

and since L0 = {ϵ},

L∗ = {ϵ} ∪ {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · ·∃un ∈ L, w = u1 · · ·un}.

Thus, the language L∗ always contains ϵ, and we have

L∗ = L+ ∪ {ϵ}.
However, if ϵ /∈ L, then ϵ /∈ L+. The following is easily shown:

∅∗ = {ϵ},
L+ = L∗L,

L∗∗ = L∗,

L∗L∗ = L∗.

The Kleene closures have many other interesting properties.

Homomorphisms are also very useful.

Given two alphabets Σ,∆, a homomorphism
h : Σ∗ → ∆∗ between Σ∗ and ∆∗ is a function
h : Σ∗ → ∆∗ such that

h(uv) = h(u)h(v) for all u, v ∈ Σ∗.

Letting u = v = ϵ, we get

h(ϵ) = h(ϵ)h(ϵ),

which implies that (why?)

18 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

h(ϵ) = ϵ.

If Σ = {a1, . . . , ak}, it is easily seen that h is completely determined by h(a1), . . . , h(ak)
(why?)

Example: Σ = {a, b, c}, ∆ = {0, 1}, and

h(a) = 01, h(b) = 011, h(c) = 0111.

For example

h(abbc) = 010110110111.

Given any language L1 ⊆ Σ∗, we define the image h(L1) of L1 as

h(L1) = {h(u) ∈ ∆∗ | u ∈ L1}.

Given any language L2 ⊆ ∆∗, we define the
inverse image h−1(L2) of L2 as

h−1(L2) = {u ∈ Σ∗ | h(u) ∈ L2}.

We now turn to the first formalism for defining languages, Deterministic Finite Automata
(DFA’s)

Chapter 3

DFA’s, NFA’s, Regular Languages

The family of regular languages is the simplest, yet interesting family of languages.

We give six definitions of the regular languages.

1. Using deterministic finite automata (DFAs).

2. Using nondeterministic finite automata (NFAs).

3. Using a closure definition involving, union, concatenation, and Kleene ∗.

4. Using regular expressions.

5. Using right-invariant equivalence relations of finite index (the Myhill-Nerode charac-
terization).

6. Using right-linear context-free grammars.

We prove the equivalence of these definitions, often by providing an algorithm for con-
verting one formulation into another.

We find that the introduction of NFA’s is motivated by the conversion of regular expres-
sions into DFA’s.

To finish this conversion, we also show that every NFA can be converted into a DFA
(using the subset construction).

So, although NFA’s often allow for more concise descriptions, they do not have more
expressive power than DFA’s.

NFA’s operate according to the paradigm: guess a successful path, and check it in poly-
nomial time.

This is the essence of an important class of hard problems known as NP, which will be
investigated later.

19

20 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

We will also discuss methods for proving that certain languages are not regular (Myhill-
Nerode, pumping lemma).

We present algorithms to convert a DFA to an equivalent one with a minimal number of
states.

3.1 Deterministic Finite Automata (DFA’s)

First we define what DFA’s are, and then we explain how they are used to accept or reject
strings. Roughly speaking, a DFA is a finite transition graph whose edges are labeled with
letters from an alphabet Σ.

The graph also satisfies certain properties that make it deterministic. Basically, this
means that given any string w, starting from any node, there is a unique path in the graph
“parsing” the string w.

Example 1. A DFA for the language

L1 = {ab}+ = {ab}∗{ab},

i.e.,

L1 = {ab, abab, ababab, . . . , (ab)n, . . .}.

Input alphabet: Σ = {a, b}.

State set Q1 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F1 = {2}.

Transition table (function) δ1:

a b

0 1 3
1 3 2
2 1 3
3 3 3

Note that state 3 is a trap state or dead state.

Here is a graph representation of the DFA specified by the transition function shown
above:

3.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 21

0 1 2

3

a

b

b

a
a

b

a, b

Figure 3.1: DFA for {ab}+

Example 2. A DFA for the language

L2 = {ab}∗ = L1 ∪ {ϵ}

i.e.,
L2 = {ϵ, ab, abab, ababab, . . . , (ab)n, . . .}.

Input alphabet: Σ = {a, b}.
State set Q2 = {0, 1, 2}.
Start state: 0.

Set of accepting states: F2 = {0}.
Transition table (function) δ2:

a b

0 1 2
1 2 0
2 2 2

State 2 is a trap state or dead state.

Here is a graph representation of the DFA specified by the transition function shown
above:

0 1

2

b

a

b

a

a, b

Figure 3.2: DFA for {ab}∗

22 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Example 3. A DFA for the language

L3 = {a, b}∗{abb}.

Note that L3 consists of all strings of a’s and b’s ending in abb.

Input alphabet: Σ = {a, b}.

State set Q3 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F3 = {3}.

Transition table (function) δ3:

a b

0 1 0
1 1 2
2 1 3
3 1 0

Here is a graph representation of the DFA specified by the transition function shown
above:

0 1 2 3
a b

a

b

b a

b

a

Figure 3.3: DFA for {a, b}∗{abb}

Is this a minimal DFA?

Definition 3.1. A deterministic finite automaton (or DFA) is a quintuple
D = (Q,Σ, δ, q0, F), where

• Σ is a finite input alphabet ;

• Q is a finite set of states ;

3.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 23

• F is a subset of Q of final (or accepting) states;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ : Q× Σ→ Q.

For any state p ∈ Q and any input a ∈ Σ, the state q = δ(p, a) is uniquely determined.

Thus, it is possible to define the state reached from a given state p ∈ Q on input w ∈ Σ∗,
following the path specified by w.

Technically, this is done by defining the extended transition function δ∗ : Q× Σ∗ → Q.

Definition 3.2. Given a DFA D = (Q,Σ, δ, q0, F), the extended transition function δ∗ : Q×
Σ∗ → Q is defined as follows:

δ∗(p, ϵ) = p,

δ∗(p, ua) = δ(δ∗(p, u), a),

where a ∈ Σ and u ∈ Σ∗.

It is immediate that δ∗(p, a) = δ(p, a) for a ∈ Σ.

The meaning of δ∗(p, w) is that it is the state reached from state p following the path
from p specified by w.

We can show (by induction on the length of v) that

δ∗(p, uv) = δ∗(δ∗(p, u), v) for all p ∈ Q and all u, v ∈ Σ∗

For the induction step, for u ∈ Σ∗, and all v = ya with y ∈ Σ∗ and a ∈ Σ,

δ∗(p, uya) = δ(δ∗(p, uy), a) by definition of δ∗

= δ(δ∗(δ∗(p, u), y), a) by induction

= δ∗(δ∗(p, u), ya) by definition of δ∗.

We can now define how a DFA accepts or rejects a string.

Definition 3.3. Given a DFA D = (Q,Σ, δ, q0, F), the language L(D) accepted (or recog-
nized) by D is the language

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

24 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Thus, a string w ∈ Σ∗ is accepted iff the path from q0 on input w ends in a final state.

The definition of a DFA does not prevent the possibility that a DFA may have states
that are not reachable from the start state q0, which means that there is no path from q0 to
such states.

For example, in the DFA D1 defined by the transition table below and the set of final
states F = {1, 2, 3}, the states in the set {0, 1} are reachable from the start state 0, but
the states in the set {2, 3, 4} are not (even though there are transitions from 2, 3, 4 to 0, but
they go in the wrong direction).

a b

0 1 0
1 0 1
2 3 0
3 4 0
4 2 0

Since there is no path from the start state 0 to any of the states in {2, 3, 4}, the states
2, 3, 4 are useless as far as acceptance of strings, so they should be deleted as well as the
transitions from them.

Given a DFA D = (Q,Σ, δ, q0, F), the above suggests defining the set Qr of reachable (or
accessible) states as

Qr = {p ∈ Q | (∃u ∈ Σ∗)(p = δ∗(q0, u))}.

The set Qr consists of those states p ∈ Q such that there is some path from q0 to p (along
some string u).

Computing the set Qr is a reachability problem in a directed graph. There are various
algorithms to solve this problem, including breadth-first search or depth-first search.

Once the set Qr has been computed, we can clean up the DFAD by deleting all redundant
states in Q−Qr and all transitions from these states.

More precisely, we form the DFA Dr = (Qr,Σ, δr, q0, Qr ∩ F), where δr : Qr ×Σ→ Qr is
the restriction of δ : Q× Σ→ Q to Qr.

If D1 is the DFA of the previous example, then the DFA (D1)r is obtained by deleting
the states 2, 3, 4:

a b

0 1 0
1 0 1

It can be shown that L(Dr) = L(D) (see the homework problems).

3.2. THE “CROSS-PRODUCT” CONSTRUCTION 25

A DFA D such that Q = Qr is said to be trim (or reduced).

Observe that the DFA Dr is trim. A minimal DFA must be trim.

Computing Qr gives us a method to test whether a DFA D accepts a nonempty language.
Indeed

L(D) ̸= ∅ iff Qr ∩ F ̸= ∅

We now come to the first of several equivalent definitions of the regular languages.

Regular Languages, Version 1

Definition 3.4. A language L is a regular language if it is accepted by some DFA.

Note that a regular language may be accepted by many different DFAs. Later on, we
will investigate how to find minimal DFA’s.

For a given regular language L, a minimal DFA for L is a DFA with the smallest number of
states among all DFA’s accepting L. A minimal DFA for L must exist since every nonempty
subset of natural numbers has a smallest element.

In order to understand how complex the regular languages are, we will investigate the
closure properties of the regular languages under union, intersection, complementation, con-
catenation, and Kleene ∗.

It turns out that the family of regular languages is closed under all these operations. For
union, intersection, and complementation, we can use the cross-product construction which
preserves determinism.

However, for concatenation and Kleene ∗, there does not appear to be any method
involving DFA’s only. The way to do it is to introduce nondeterministic finite automata
(NFA’s), which we do a little later.

3.2 The “Cross-product” Construction

Let Σ = {a1, . . . , am} be an alphabet.

Given any two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and
D2 = (Q2,Σ, δ2, q0,2, F2), there is a very useful construction for showing that the union, the
intersection, or the relative complement of regular languages, is a regular language.

Given any two languages L1, L2 over Σ, recall that

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2},
L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2},
L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

26 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Let us first explain how to constuct a DFA accepting the intersection L1 ∩ L2. Let D1

and D2 be DFA’s such that L1 = L(D1) and L2 = L(D2).

The idea is to construct a DFA simulating D1 and D2 in parallel. This can be done by
using states which are pairs (p1, p2) ∈ Q1 ×Q2.

Thus, we define the DFA D as follows:

D = (Q1 ×Q2,Σ, δ, (q0,1, q0,2), F1 × F2),

where the transition function δ : (Q1 ×Q2)× Σ→ Q1 ×Q2 is defined as follows:

δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)),

for all p1 ∈ Q1, p2 ∈ Q2, and a ∈ Σ.

Clearly, D is a DFA, since D1 and D2 are. Also, by the definition of δ, we have

δ∗((p1, p2), w) = (δ∗1(p1, w), δ
∗
2(p2, w)),

for all p1 ∈ Q1, p2 ∈ Q2, and w ∈ Σ∗.

Now, we have w ∈ L(D1) ∩ L(D2)

iff w ∈ L(D1) and w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ F1 × F2,

iff δ∗((q0,1, q0,2), w) ∈ F1 × F2,

iff w ∈ L(D).

Thus, L(D) = L(D1) ∩ L(D2).

We can now modify D very easily to accept L(D1) ∪ L(D2).

We change the set of final states so that it becomes (F1 ×Q2) ∪ (Q1 × F2).

Indeed, w ∈ L(D1) ∪ L(D2)

iff w ∈ L(D1) or w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 or δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ (F1 ×Q2) ∪ (Q1 × F2),

iff δ∗((q0,1, q0,2), w) ∈ (F1 ×Q2) ∪ (Q1 × F2),

iff w ∈ L(D).

Thus, L(D) = L(D1) ∪ L(D2).

We can also modify D very easily to accept L(D1)− L(D2).

3.3. NONDETETERMINISTIC FINITE AUTOMATA (NFA’S) 27

We change the set of final states so that it becomes F1 × (Q2 − F2).

Indeed, w ∈ L(D1)− L(D2)

iff w ∈ L(D1) and w /∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) /∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ F1 × (Q2 − F2),

iff δ∗((q0,1, q0,2), w) ∈ F1 × (Q2 − F2),

iff w ∈ L(D).

Thus, L(D) = L(D1)− L(D2).

In all cases, if D1 has n1 states and D2 has n2 states, the DFA D has n1n2 states.

3.3 Nondeteterministic Finite Automata (NFA’s)

NFA’s are obtained from DFA’s by allowing multiple transitions from a given state on a
given input. This can be done by defining δ(p, a) as a subset of Q rather than a single state.
It will also be convenient to allow transitions on input ϵ.

We let 2Q denote the set of all subsets of Q, including the empty set. The set 2Q is the
power set of Q.

Example 4. A NFA for the language

L3 = {a, b}∗{abb}.

Input alphabet: Σ = {a, b}.
State set Q4 = {0, 1, 2, 3}.
Start state: 0.

Set of accepting states: F4 = {3}.
Transition table δ4:

a b

0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

0 1 2 3
a b b

a, b

Figure 3.4: NFA for {a, b}∗{abb}

28 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Example 5. Let Σ = {a1, . . . , an}, let

Li
n = {w ∈ Σ∗ | w contains an odd number of ai’s},

and let
Ln = L1

n ∪ L2
n ∪ · · · ∪ Ln

n.

The language Ln consists of those strings in Σ∗ that contain an odd number of some
letter ai ∈ Σ.

Equivalently Σ∗ −Ln consists of those strings in Σ∗ with an even number of every letter
ai ∈ Σ.

It can be shown that every DFA accepting Ln has at least 2n states.

However, there is an NFA with 2n+ 1 states accepting Ln.

We define NFA’s as follows.

Definition 3.5. A nondeterministic finite automaton (or NFA) is a quintuple
N = (Q,Σ, δ, q0, F), where

• Σ is a finite input alphabet ;

• Q is a finite set of states ;

• F is a subset of Q of final (or accepting) states;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ : Q× (Σ ∪ {ϵ})→ 2Q.

For any state p ∈ Q and any input a ∈ Σ ∪ {ϵ}, the set of states δ(p, a) is uniquely
determined. We write q ∈ δ(p, a).

Given an NFA N = (Q,Σ, δ, q0, F), we would like to define the language accepted by N .

However, given an NFA N , unlike the situation for DFA’s, given a state p ∈ Q and some
input w ∈ Σ∗, in general there is no unique path from p on input w, but instead a tree of
computation paths .

For example, given the NFA shown below,

0 1 2 3
a b b

a, b

Figure 3.5: NFA for {a, b}∗{abb}

3.3. NONDETETERMINISTIC FINITE AUTOMATA (NFA’S) 29

from state 0 on input w = ababb we obtain the following tree of computation paths:

0

0

0

3

2

1

0

0

2

1

0
a a

b
b

a

b

b

a

b

b

Figure 3.6: A tree of computation paths on input ababb

Observe that there are three kinds of computation paths:

1. A path on input w ending in a rejecting state (for example, the lefmost path).

2. A path on some proper prefix of w, along which the computation gets stuck (for
example, the rightmost path).

3. A path on input w ending in an accepting state (such as the path ending in state 3).

The acceptance criterion for NFA is very lenient : a string w is accepted iff the tree of
computation paths contains some accepting path (of type (3)).

Thus, all failed paths of type (1) and (2) are ignored. Furthermore, there is no charge
for failed paths.

A string w is rejected iff all computation paths are failed paths of type (1) or (2).

The “philosophy” of nondeterminism is that an NFA
“guesses” an accepting path and then checks it in polynomial time by following this path.
We are only charged for one accepting path (even if there are several accepting paths).

A way to capture this acceptance policy if to extend the transition function δ : Q× (Σ∪
{ϵ})→ 2Q to a function

30 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

δ∗ : Q× Σ∗ → 2Q.

The presence of ϵ-transitions (i.e., when q ∈ δ(p, ϵ)) causes technical problems, and to
overcome these problems, we introduce the notion of ϵ-closure.

3.4 ϵ-Closure

Definition 3.6. Given an NFA N = (Q,Σ, δ, q0, F) (with ϵ-transitions) for every state
p ∈ Q, the ϵ-closure of p is set ϵ-closure(p) consisting of all states q such that there is a path
from p to q whose spelling is ϵ (an ϵ-path).

This means that either q = p, or that all the edges on the path from p to q have the label
ϵ.

We can compute ϵ-closure(p) using a sequence of approximations as follows. Define the
sequence of sets of states (ϵ-cloi(p))i≥0 as follows:

ϵ-clo0(p) = {p},
ϵ-cloi+1(p) = ϵ-cloi(p) ∪

{q ∈ Q | ∃s ∈ ϵ-cloi(p), q ∈ δ(s, ϵ)}.

Since ϵ-cloi(p) ⊆ ϵ-cloi+1(p), ϵ-cloi(p) ⊆ Q, for all i ≥ 0, and Q is finite, it can be shown
that there is a smallest i, say i0, such that

ϵ-cloi0(p) = ϵ-cloi0+1(p).

It suffices to show that there is some i ≥ 0 such that ϵ-cloi(p) = ϵ-cloi+1(p), because then
there is a smallest such i (since every nonempty subset of N has a smallest element).

Assume by contradiction that

ϵ-cloi(p) ⊂ ϵ-cloi+1(p) for all i ≥ 0.

Then, I claim that |ϵ-cloi(p)| ≥ i+ 1 for all i ≥ 0.

This is true for i = 0 since ϵ-clo0(p) = {p}.
Since ϵ-cloi(p) ⊂ ϵ-cloi+1(p), there is some q ∈ ϵ-cloi+1(p) that does not belong to ϵ-cloi(p),

and since by induction |ϵ-cloi(p)| ≥ i+ 1, we get

|ϵ-cloi+1(p)| ≥ |ϵ-cloi(p)|+ 1 ≥ i+ 1 + 1 = i+ 2,

establishing the induction hypothesis.

3.4. ϵ-CLOSURE 31

If n = |Q|, then |ϵ-clon(p)| ≥ n+ 1, a contradiction.

Therefore, there is indeed some i ≥ 0 such that
ϵ-cloi(p) = ϵ-cloi+1(p), and for the least such i = i0, we have i0 ≤ n− 1.

It can also be shown that

ϵ-closure(p) = ϵ-cloi0(p),

by proving that

1. ϵ-cloi(p) ⊆ ϵ-closure(p), for all i ≥ 0.

2. ϵ-closure(p)i ⊆ ϵ-cloi0(p), for all i ≥ 0.

where ϵ-closure(p)i is the set of states reachable from p by an ϵ-path of length ≤ i.

When N has no ϵ-transitions, i.e., when δ(p, ϵ) = ∅ for all p ∈ Q (which means that δ
can be viewed as a function δ : Q× Σ→ 2Q), we have

ϵ-closure(p) = {p}.

It should be noted that there are more efficient ways of computing ϵ-closure(p), for
example, using a stack (basically, a kind of depth-first search).

We present such an algorithm below. It is assumed that the types NFA and stack are
defined. If n is the number of states of an NFA N , we let

eclotype = array[1..n] of boolean

function eclosure[N : NFA, p : integer] : eclotype;

begin

var eclo : eclotype, q, s : integer, st : stack;

for each q ∈ setstates(N) do

eclo[q] := false;

endfor

eclo[p] := true; st := empty;

trans := deltatable(N);

st := push(st, p);

while st ̸= emptystack do

q = pop(st);

for each s ∈ trans(q, ϵ) do

if eclo[s] = false then

eclo[s] := true; st := push(st, s)

32 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

endif

endfor

endwhile;

eclosure := eclo

end

This algorithm can be easily adapted to compute the set of states reachable from a given
state p (in a DFA or an NFA).

Given a subset S of Q, we define ϵ-closure(S) as

ϵ-closure(S) =
⋃

s∈S

ϵ-closure(s),

with

ϵ-closure(∅) = ∅.

When N has no ϵ-transitions, we have

ϵ-closure(S) = S.

We are now ready to define the extension δ∗ : Q × Σ∗ → 2Q of the transition function
δ : Q× (Σ ∪ {ϵ})→ 2Q.

3.5 Converting an NFA into a DFA

The intuition behind the definition of the extended transition function is that δ∗(p, w) is the
set of all states reachable from p by a path whose spelling is w.

Definition 3.7. Given an NFA N = (Q,Σ, δ, q0, F) (with ϵ-transitions), the extended tran-
sition function δ∗ : Q × Σ∗ → 2Q is defined as follows: for every p ∈ Q, every u ∈ Σ∗, and
every a ∈ Σ,

δ∗(p, ϵ) = ϵ-closure({p}),

δ∗(p, ua) = ϵ-closure

(⋃

s∈δ∗(p,u)

δ(s, a)

)
.

In the second equation, if δ∗(p, u) = ∅ then

δ∗(p, ua) = ∅.

The language L(N) accepted by an NFA N is the set

L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F ̸= ∅}.

3.5. CONVERTING AN NFA INTO A DFA 33

Observe that the definition of L(N) conforms to the lenient acceptance policy: a string
w is accepted iff δ∗(q0, w) contains some final state.

We can also extend δ∗ : Q× Σ∗ → 2Q to a function

δ̂ : 2Q × Σ∗ → 2Q

defined as follows: for every subset S of Q, for every w ∈ Σ∗,

δ̂(S,w) =
⋃

s∈S

δ∗(s, w),

with
δ̂(∅, w) = ∅.

Let Q be the subset of 2Q consisting of those subsets S of Q that are ϵ-closed, i.e., such
that

S = ϵ-closure(S).

If we consider the restriction

∆ : Q× Σ→ Q

of δ̂ : 2Q × Σ∗ → 2Q to Q and Σ, we observe that ∆ is the transition function of a DFA.

Indeed, this is the transition function of a DFA accepting L(N). It is easy to show that
∆ is defined directly as follows (on subsets S in Q):

∆(S, a) = ϵ-closure

(⋃

s∈S

δ(s, a)

)
,

with
∆(∅, a) = ∅.

Then, the DFA D is defined as follows:

D = (Q,Σ,∆, ϵ-closure({q0}),F),

where F = {S ∈ Q | S ∩ F ̸= ∅}.
It is not difficult to show that L(D) = L(N), that is, D is a DFA accepting L(N). For

this, we show that

∆∗(S,w) = δ̂(S,w).

Thus, we have converted the NFA N into a DFA D (and gotten rid of ϵ-transitions).

34 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Since DFA’s are special NFA’s, the subset construction shows that DFA’s and NFA’s
accept the same family of languages, the regular languages, version 1 (although not with
the same complexity).

The states of the DFA D equivalent to N are ϵ-closed subsets of Q. For this reason, the
above construction is often called the subset construction.

This construction is due to Rabin and Scott.

Although theoretically fine, the method may construct useless sets S that are not reach-
able from the start state ϵ-closure({q0}). A more economical construction is given next.

An Algorithm to convert an NFA into a DFA:
The “subset construction”

Given an input NFA N = (Q,Σ, δ, q0, F), a DFA D = (K,Σ,∆, S0,F) is constructed. It is
assumed that K is a linear array of sets of states S ⊆ Q, and ∆ is a 2-dimensional array,
where ∆[i, a] is the index of the target state of the transition from K[i] = S on input a, with
S ∈ K, and a ∈ Σ.

S0 := ϵ-closure({q0}); total := 1; K[1] := S0;

marked := 0;

while marked < total do;

marked := marked + 1; S := K[marked];

for each a ∈ Σ do

U :=
⋃

s∈S δ(s, a); T := ϵ-closure(U);

if T /∈ K then

total := total + 1; K[total] := T

endif;

∆[marked, a] := index(T)

endfor

endwhile;

F := {S ∈ K | S ∩ F ̸= ∅}

Let us illustrate the subset construction on the NFA of Example 4.

A NFA for the language

L3 = {a, b}∗{abb}.

Transition table δ4:

3.5. CONVERTING AN NFA INTO A DFA 35

a b

0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

Set of accepting states: F4 = {3}.

0 1 2 3
a b b

a, b

Figure 3.7: NFA for {a, b}∗{abb}

The pointer ⇒ corresponds to marked and the pointer → to total.

Initial transition table ∆.

⇒ index states a b
→ A {0}

Just after entering the while loop

index states a b
⇒→ A {0}

After the first round through the while loop.

index states a b
⇒ A {0} B A
→ B {0, 1}

After just reentering the while loop.

index states a b
A {0} B A

⇒→ B {0, 1}

After the second round through the while loop.

index states a b
A {0} B A

⇒ B {0, 1} B C
→ C {0, 2}

36 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

After the third round through the while loop.

index states a b
A {0} B A
B {0, 1} B C

⇒ C {0, 2} B D
→ D {0, 3}

After the fourth round through the while loop.

index states a b
A {0} B A
B {0, 1} B C
C {0, 2} B D

⇒→ D {0, 3} B A

This is the DFA of Figure 3.3, except that in that example A,B,C,D are renamed
0, 1, 2, 3.

0 1 2 3
a b

a

b

b a

b

a

Figure 3.8: DFA for {a, b}∗{abb}

3.6 Finite State Automata With Output: Transducers

So far, we have only considered automata that recognize languages, i.e., automata that do
not produce any output on any input (except “accept” or “reject”).

It is interesting and useful to consider input/output finite state machines. Such automata
are called transducers . They compute functions or relations. First, we define a deterministic
kind of transducer.

Definition 3.8. A general sequential machine (gsm) is a sextuple M = (Q,Σ,∆, δ,λ, q0),
where

(1) Q is a finite set of states ,

3.6. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 37

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) δ : Q× Σ→ Q is the transition function,

(5) λ : Q× Σ→ ∆∗ is the output function and

(6) q0 is the initial (or start) state.

If λ(p, a) ̸= ϵ, for all p ∈ Q and all a ∈ Σ, then M is nonerasing . If λ(p, a) ∈ ∆ for all
p ∈ Q and all a ∈ Σ, we say that M is a complete sequential machine (csm).

An example of a gsm for which Σ = {a, b} and ∆ = {0, 1, 2} is shown in Figure 3.9. For
example aab is converted to 102001.

0 1

2

a/00

b/01

a/10

b/11

a/20

b/21

Figure 3.9: Example of a gsm

In order to define how a gsm works, we extend the transition and the output functions.
We define δ∗ : Q × Σ∗ → Q and λ∗ : Q × Σ∗ → ∆∗ recursively as follows: For all p ∈ Q, all
u ∈ Σ∗ and all a ∈ Σ

δ∗(p, ϵ) = p

δ∗(p, ua) = δ(δ∗(p, u), a)

λ∗(p, ϵ) = ϵ

λ∗(p, ua) = λ∗(p, u)λ(δ∗(p, u), a).

For any w ∈ Σ∗, we let
M(w) = λ∗(q0, w)

and for any L ⊆ Σ∗ and L′ ⊆ ∆∗, let

M(L) = {λ∗(q0, w) | w ∈ L}

38 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

and

M−1(L′) = {w ∈ Σ∗ | λ∗(q0, w) ∈ L′}.

Note that if M is a csm, then |M(w)| = |w| for all w ∈ Σ∗. Also, a homomorphism is a
special kind of gsm—it can be realized by a gsm with one state.

We can use gsm’s and csm’s to compute certain kinds of functions.

Definition 3.9. A function f : Σ∗ → ∆∗ is a gsm (resp. csm) mapping iff there is a gsm
(resp. csm) M so that M(w) = f(w), for all w ∈ Σ∗.

Remark: Ginsburg and Rose (1966) characterized gsm mappings as follows:

A function f : Σ∗ → ∆∗ is a gsm mapping iff

(a) f preserves prefixes, i.e., f(x) is a prefix of f(xy);

(b) There is an integer, m, such that for all w ∈ Σ∗ and all a ∈ Σ, we have |f(wa)| −
|f(w)| ≤ m;

(c) f(ϵ) = ϵ;

(d) For every regular language, R ⊆ ∆∗, the language f−1(R) = {w ∈ Σ∗ | f(w) ∈ R} is
regular.

A function f : Σ∗ → ∆∗ is a csm mapping iff f satisfies (a) and (d), and for all w ∈ Σ∗,
|f(w)| = |w|.

The following proposition is left as a homework problem.

Proposition 3.1. The family of regular languages (over an alphabet Σ) is closed under both
gsm and inverse gsm mappings.

We can generalize the gsm model so that

(1) the device is nondeterministic,

(2) the device has a set of accepting states,

(3) transitions are allowed to occur without new input being processed,

(4) transitions are defined for input strings instead of individual letters.

Here is the definition of such a model, the a-transducer . A much more powerful model
of transducer will be investigated later: the Turing machine.

3.6. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 39

Definition 3.10. An a-transducer (or nondeterministic sequential transducer with accepting
states) is a sextuple M = (K,Σ,∆,λ, q0, F), where

(1) K is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) q0 ∈ K is the start (or initial) state,

(5) F ⊆ K is the set of accepting (of final) states and

(6) λ ⊆ K ×Σ∗×∆∗×K is a finite set of quadruples called the transition function of M .

If λ ⊆ K × Σ∗ ×∆+ ×K, then M is ϵ-free

Clearly, a gsm is a special kind of a-transducer.

An a-transducer defines a binary relation between Σ∗ and ∆∗, or equivalently, a function
M : Σ∗ → 2∆

∗

.

We can explain what this function is by describing how an a-transducer makes a sequence
of moves from configurations to configurations.

The current configuration of an a-transducer is described by a triple

(p, u, v) ∈ K × Σ∗ ×∆∗,

where p is the current state, u is the remaining input, and v is some ouput produced so
far.

We define the binary relation ⊢M on K ×Σ∗×∆∗ as follows: For all p, q ∈ K, u,α ∈ Σ∗,
β, v ∈ ∆∗, if (p, u, v, q) ∈ λ, then

(p, uα, β) ⊢M (q, α, βv).

Let ⊢∗M be the transitive and reflexive closure of ⊢M .

40 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

The function M : Σ∗ → 2∆
∗

is defined such that for every w ∈ Σ∗,

M(w) = {y ∈ ∆∗ | (q0, w, ϵ) ⊢∗M (f, ϵ, y), f ∈ F}.

For any language L ⊆ Σ∗ let

M(L) =
⋃

w∈L

M(w).

For any y ∈ ∆∗, let

M−1(y) = {w ∈ Σ∗ | y ∈M(w)}

and for any language L′ ⊆ ∆∗, let

M−1(L′) =
⋃

y∈L′

M−1(y).

Remark: Notice that if w ∈M−1(L′), then there exists some y ∈ L′ such that w ∈M−1(y),
i.e.,
y ∈M(w). This does not imply that M(w) ⊆ L′, only that M(w) ∩ L′ ̸= ∅.

One should realize that for any L′ ⊆ ∆∗ and any a-transducer, M , there is some a-
transducer, M ′, (from ∆∗ to 2Σ

∗

) so that M ′(L′) = M−1(L′).

The following proposition is left as a homework problem:

Proposition 3.2. The family of regular languages (over an alphabet Σ) is closed under both
a-transductions and inverse a-transductions.

3.7 An Application of NFA’s: Text Search

A common problem in the age of the Web (and on-line text repositories) is the following:

Given a set of words, called the keywords , find all the documents that contain one (or
all) of those words.

Search engines are a popular example of this process. Search engines use inverted indexes
(for each word appearing on the Web, a list of all the places where that word occurs is stored).

However, there are applications that are unsuited for inverted indexes, but are good for
automaton-based techniques.

Some text-processing programs, such as advanced forms of the UNIX grep command
(such as egrep or fgrep) are based on automaton-based techniques.

The characteristics that make an application suitable for searches that use automata are:

3.7. AN APPLICATION OF NFA’S: TEXT SEARCH 41

(1) The repository on which the search is conducted is rapidly changing.

(2) The documents to be searched cannot be catalogued. For example, Amazon.com cre-
ates pages “on the fly” in response to queries.

We can use an NFA to find occurrences of a set of keywords in a text. This NFA signals
by entering a final state that it has seen one of the keywords. The form of such an NFA is
special.

(1) There is a start state, q0, with a transition to itself on every input symbol from the
alphabet, Σ.

(2) For each keyword, w = w1 · · ·wk (with wi ∈ Σ), there are k states, q(w)
1 , . . . , q(w)

k , and

there is a transition from q0 to q(w)
1 on input w1, a transition from q(w)

1 to q(w)
2 on input

w2, and so on, until a transition from q(w)
k−1 to q(w)

k on input wk. The state q(w)
k is an

accepting state and indicates that the keyword w = w1 · · ·wk has been found.

The NFA constructed above can then be converted to a DFA using the subset construc-
tion.

Here is an example where Σ = {a, b} and the set of keywords is

{aba, ab, ba}.

0

qaba1 qaba2 qaba3

qab1 qab2

qba1 qba2

a

b a

a b

b

a

a, b

Figure 3.10: NFA for the keywords aba, ab, ba.

42 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Applying the subset construction to the NFA, we obtain the DFA whose transition table
is:

a b

0 0 1 2

1 0, qaba1 , qab1 1 3

2 0, qba1 4 2

3 0, qba1 , qaba2 , qab2 5 2

4 0, qaba1 , qab1 , qba2 1 3

5 0, qaba1 , qab1 , qba2 , qaba3 1 3

The final states are: 3, 4, 5.

0

1

2

3

4

5

a

b

b

a

ba

a

ba

b

a

b

Figure 3.11: DFA for the keywords aba, ab, ba.

The good news news is that, due to the very special structure of the NFA, the number
of states of the corresponding DFA is at most the number of states of the original NFA!

We find that the states of the DFA are (check it yourself!):

(1) The set {q0}, associated with the start state q0 of the NFA.

(2) For any state p ̸= q0 of the NFA reached from q0 along a path corresponding to a string
u = u1 · · ·um, the set consisting of:

3.7. AN APPLICATION OF NFA’S: TEXT SEARCH 43

(a) q0

(b) p

(c) The set of all states q of the NFA reachable from q0 by following a path whose
symbols form a nonempty suffix of u, i.e., a string of the form
ujuj+1 · · ·um.

As a consequence, we get an efficient (w.r.t. time and space) method to recognize a set
of keywords. In fact, this DFA recognizes leftmost occurrences of keywords in a text (we can
stop as soon as we enter a final state).

44 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Chapter 4

Hidden Markov Models (HMMs)

4.1 Hidden Markov Models (HMMs)

There is a variant of the notion of DFA with ouput, for example a transducer such as
a gsm (generalized sequential machine), which is widely used in machine learning. This
machine model is known as hidden Markov model , for short HMM . These notes are only an
introduction to HMMs and are by no means complete. For more comprehensive presentations
of HMMs, see the references at the end of this chapter.

There are three new twists compared to traditional gsm models:

(1) There is a finite set of states Q with n elements, a bijection σ : Q → {1, . . . , n}, and
the transitions between states are labeled with probabilities rather that symbols from
an alphabet. For any two states p and q in Q, the edge from p to q is labeled with a
probability A(i, j), with i = σ(p) and j = σ(q). The probabilities A(i, j) form an n×n
matrix A = (A(i, j)).

(2) There is a finite set O of size m (called the observation space) of possible outputs that
can be emitted, a bijection ω : O → {1, . . . , m}, and for every state q ∈ Q, there is
a probability B(i, j) that output O ∈ O is emitted (produced), with i = σ(q) and
j = ω(O). The probabilities B(i, j) form an n×m matrix B = (B(i, j)).

(3) Sequences of outputs O = (O1, . . . , OT) (with Ot ∈ O for t = 1, . . . , T) emitted by
the model are directly observable, but the sequences of states S = (q1, . . . , qT) (with
qt ∈ Q for t = 1, . . . , T) that caused some sequence of output to be emitted are not
observable. In this sense the states are hidden, and this is the reason for calling this
model a hidden Markov model.

Remark: We could define a state transition probability function A : Q × Q → [0, 1] by
A(p, q) = A(σ(p), σ(q)), and a state observation probability function B : Q × O → [0, 1] by
B(p, O) = B(σ(p),ω(O)). The function A conveys exactly the same amount of information

45

46 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

as the matrix A, and the function B conveys exactly the same amount of information as the
matrix B. The only difference is that the arguments of A are states rather than integers,
so in that sense it is perhaps more natural. We can think of A as an implementation of A.
Similarly, the arguments of B are states and outputs rather than integers. Again, we can
think of B as an implementation of B. Most of the literature is rather sloppy about this.
We will use matrices.

Before going any further, we wish to address a notational issue that everyone who writes
about state-processes faces. This issue is a bit of a headache which needs to be resolved to
avoid a lot of confusion.

The issue is how to denote the states, the ouputs, as well as (ordered) sequences of states
and sequences of output. In most problems, states and outputs have “meaningful” names.
For example, if we wish to describe the evolution of the temperature from day to day, it
makes sense to use two states “Cold” and “Hot,” and to describe whether a given individual
has a drink by “D,” and no drink by “N.” Thus our set of states is Q = {Cold,Hot}, and
our set of outputs is O = {N,D}.

However, when computing probabilities, we need to use matrices whose rows and columns
are indexed by positive integers, so we need a mechanism to associate a numerical index to
every state and to every output, and this is the purpose of the bijections σ : Q→ {1, . . . , n}
and ω : O → {1, . . . , m}. In our example, we define σ by σ(Cold) = 1 and σ(Hot) = 2, and
ω by ω(N) = 1 and ω(D) = 2.

Some author circumvent (or do they?) this notational issue by assuming that the set of
outputs is O = {1, 2, . . . , m}, and that the set of states is Q = {1, 2, . . . , n}. The disad-
vantage of doing this is that in “real” situations, it is often more convenient to name the
outputs and the states with more meaningful names than 1, 2, 3 etc. With respect to this,
Mitch Marcus pointed out to me that the task of naming the elements of the output alphabet
can be challenging, for example in speech recognition.

Let us now turn to sequences. For example, consider the sequence of six states (from the
set Q = {Cold,Hot}),

S = (Cold,Cold,Hot,Cold,Hot,Hot).

Using the bijection σ : {Cold,Hot} → {1, 2} defined above, the sequence S is completely
determined by the sequence of indices

σ(S) = (σ(Cold), σ(Cold), σ(Hot), σ(Cold), σ(Hot), σ(Hot)) = (1, 1, 2, 1, 2, 2).

More generally, we will denote a sequence of length T ≥ 1 of states from a set Q of size
n by

S = (q1, q2, . . . , qT),

with qt ∈ Q for t = 1, . . . , T . Using the bijection σ : Q → {1, . . . , n}, the sequence S is
completely determined by the sequence of indices

σ(S) = (σ(q1), σ(q2), . . . , σ(qT)),

4.1. HIDDEN MARKOV MODELS (HMMS) 47

where σ(qt) is some index from the set {1, . . . , n}, for t = 1, . . . , T . The problem now is,
what is a better notation for the index denoted by σ(qt)?

Of course, we could use σ(qt), but this is a heavy notation, so we adopt the notational
convention to denote the index σ(qt) by it.1

Going back to our example

S = (q1, q2, q3, q4, q4, q6) = (Cold,Cold,Hot,Cold,Hot,Hot),

we have
σ(S) = (σ(q1), σ(q2), σ(q3), σ(q4), σ(q5), σ(q6)) = (1, 1, 2, 1, 2, 2),

so the sequence of indices (i1, i2, i3, i4, i5, i6) = (σ(q1), σ(q2), σ(q3), σ(q4), σ(q5), σ(q6)) is given
by

σ(S) = (i1, i2, i3, i4, i5, i6) = (1, 1, 2, 1, 2, 2).

So, the fourth index i4 is has the value 1.

We apply a similar convention to sequences of outputs. For example, consider the se-
quence of six outputs (from the set O = {N,D}),

O = (N,D,N,N,N,D).

Using the bijection ω : {N,D} → {1, 2} defined above, the sequence O is completely deter-
mined by the sequence of indices

ω(O) = (ω(N),ω(D),ω(N),ω(N),ω(N),ω(D)) = (1, 2, 1, 1, 1, 2).

More generally, we will denote a sequence of length T ≥ 1 of outputs from a set O of size
m by

O = (O1, O2, . . . , OT),

with Ot ∈ O for t = 1, . . . , T . Using the bijection ω : O → {1, . . . , m}, the sequence O is
completely determined by the sequence of indices

ω(O) = (ω(O1),ω(O2), . . . ,ω(OT)),

where ω(Ot) is some index from the set {1, . . . , m}, for t = 1, . . . , T . This time, we adopt
the notational convention to denote the index ω(Ot) by ωt.

Going back to our example

O = (O1, O2, O3, O4, O5, O6) = (N,D,N,N,N,D),

1We contemplated using the notation σt for σ(qt) instead of it. However, we feel that this would deviate
too much from the common practice found in the literature, which uses the notation it. This is not to say
that the literature is free of horribly confusing notation!

48 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

we have

ω(O) = (ω(O1),ω(O2),ω(O3),ω(O4),ω(O5),ω(O6)) = (1, 2, 1, 1, 1, 2),

so the sequence of indices (ω1,ω2,ω3,ω4,ω5,ω6) = (ω(O1),ω(O2),ω(O3),ω(O4),ω(O5),
ω(O6)) is given by

ω(O) = (ω1,ω2,ω3,ω4,ω5,ω6) = (1, 2, 1, 1, 1, 2).

Remark: What is very confusing is this: to assume that our state set is Q = {q1, . . . , qn},
and to denote a sequence of states of length T as S = (q1, q2, . . . , qT). The symbol q1 in the
sequence S may actually refer to q3 in Q, etc.

We feel that the explicit introduction of the bijections σ : Q → {1, . . . , n} and ω : O →
{1, . . . , m}, although not standard in the literature, yields a mathematically clean way to
deal with sequences which is not too cumbersome, although this latter point is a matter of
taste.

HMM’s are among the most effective tools to solve the following types of problems:

(1) DNA and protein sequence alignment in the face of mutations and other kinds
of evolutionary change.

(2) Speech understanding, also called Automatic speech recognition. When we
talk, our mouths produce sequences of sounds from the sentences that we want to
say. This process is complex. Multiple words may map to the same sound, words are
pronounced differently as a function of the word before and after them, we all form
sounds slightly differently, and so on. All a listener can hear (perhaps a computer sys-
tem) is the sequence of sounds, and the listener would like to reconstruct the mapping
(backward) in order to determine what words we were attempting to say. For example,
when you “talk to your TV” to pick a program, say game of thrones , you don’t want
to get Jessica Jones.

(3) Optical character recognition (OCR). When we write, our hands map from an
idealized symbol to some set of marks on a page (or screen). The marks are observable,
but the process that generates them isn’t. A system performing OCR, such as a system
used by the post office to read addresses, must discover which word is most likely to
correspond to the mark it reads.

Here is an example illustrating the notion of HMM.

Example 4.1. Say we consider the following behavior of some professor at some university.
On a hot day (denoted by Hot), the professor comes to class with a drink (denoted D) with
probability 0.7, and with no drink (denoted N) with probability 0.3. On the other hand, on

4.1. HIDDEN MARKOV MODELS (HMMS) 49

a cold day (denoted Cold), the professor comes to class with a drink with probability 0.2,
and with no drink with probability 0.8.

Suppose a student intrigued by this behavior recorded a sequence showing whether the
professor came to class with a drink or not, say NNND. Several months later, the student
would like to know whether the weather was hot or cold the days he recorded the drinking
behavior of the professor.

Now the student heard about machine learning, so he constructs a probabilistic (hidden
Markov) model of the weather. Based on some experiments, he determines the probability
of going from a hot day to another hot day to be 0.75, the probability of going from a hot
to a cold day to be 0.25, the probability of going from a cold day to another cold day to be
0.7, and the probability of going from a cold day to a hot day to be 0.3. He also knows that
when he started his observations, it was a cold day with probability 0.45, and a hot day with
probability 0.55.

In this example, the set of states isQ = {Cold,Hot}, and the set of outputs isO = {N,D}.
We have the bijection σ : {Cold,Hot} → {1, 2} given by σ(Cold) = 1 and σ(Hot) = 2, and
the bijection ω : {N,D}→ {1, 2} given by ω(N) = 1 and ω(D) = 2

The above data determine an HMM depicted in Figure 4.1.

start

Cold Hot

N D

0.45 0.55

0.3

0.25

0.8
0.2 0.3

0.7

0.7 0.75

Figure 4.1: Example of an HMM modeling the “drinking behavior” of a professor at the
University of Pennsylvania.

The portion of the state diagram involving the states Cold, Hot, is analogous to an NFA
in which the transition labels are probabilities; it is the underlying Markov model of the
HMM. For any given state, the probabilities on the outgoing edges sum to 1. The start state
is a convenient way to express the probabilities of starting either in state Cold or in state

50 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

Hot. Also, from each of the states Cold and Hot, we have emission probabilities of producing
the ouput N or D, and these probabilities also sum to 1.

We can also express these data using matrices. The matrix

A =

⎛

⎝ 0.7 0.3

0.25 0.75

⎞

⎠

describes the transitions of the Makov model, the vector

π =

⎛

⎝0.45

0.55

⎞

⎠

describes the probabilities of starting either in state Cold or in state Hot, and the matrix

B =

⎛

⎝0.8 0.2

0.3 0.7

⎞

⎠

describes the emission probabilities. Observe that the rows of the matrices A and B sum to
1. Such matrices are called row-stochastic matrices. The entries in the vector π also sum to
1.

The student would like to solve what is known as the decoding problem. Namely, given
the output sequence NNND, find the most likely state sequence of the Markov model that
produces the output sequence NNND. Is it (Cold,Cold,Cold,Cold), or (Hot,Hot,Hot,Hot),
or (Hot,Cold,Cold,Hot), or (Cold,Cold,Cold,Hot)? Given the probabilities of the HMM,
it seems unlikely that it is (Hot,Hot,Hot,Hot), but how can we find the most likely one?

Let us consider another example taken from Stamp [20].

Example 4.2. Suppose we want to determine the average annual temperature at a particular
location over a series of years in a distant past where thermometers did not exist. Since we
can’t go back in time, we look for indirect evidence of the temperature, say in terms of the
size of tree growth rings. For simplicity, assume that we consider the two temperatures Cold
and Hot, and three different sizes of tree rings: small, medium and large, which we denote
by S, M, L.

In this example, the set of states is Q = {Cold,Hot}, and the set of outputs is O =
{S,M,L}. We have the bijection σ : {Cold,Hot} → {1, 2} given by σ(Cold) = 1 and
σ(Hot) = 2, and the bijection ω : {S,M,L} → {1, 2, 3} given by ω(S) = 1, ω(M) = 2,
and ω(L) = 3. The HMM shown in Figure 4.2 is a model of the situation.

Suppose we observe the sequence of tree growth rings (S, M, S, L). What is the most
likely sequence of temperatures over a four-year period which yields the observations (S, M,
S, L)?

4.1. HIDDEN MARKOV MODELS (HMMS) 51

start

Cold Hot

S M L

0.4 0.6

0.4

0.3

0.7
0.2

0.1 0.1
0.4

0.5

0.6 0.7

Figure 4.2: Example of an HMM modeling the temperature in terms of tree growth rings.

Going back to Example 4.1, we need to figure out the probability that a sequence of
states S = (q1, q2, . . . , qT) produces the output sequence O = (O1, O2, . . . , OT). Then the
probability that we want is just the product of the probability that we begin with state q1,
times the product of the probabilities of each of the transitions, times the product of the
emission probabilities. With our notational conventions, σ(qt) = it and ω(Ot) = ωt, so we
have

Pr(S,O) = π(i1)B(i1,ω1)
T∏

t=2

A(it−1, it)B(it,ωt).

In our example, ω(O) = (ω1,ω2,ω3,ω4) = (1, 1, 1, 2), which corresponds to NNND. The
brute-force method is to compute these probabilities for all 24 = 16 sequences of states of
length 4 (in general, there are nT sequences of length T). For example, for the sequence
S = (Cold,Cold,Cold,Hot), associated with the sequence of indices σ(S) = (i1, i2, i3, i4) =
(1, 1, 1, 2), we find that

Pr(S,NNND) = π(1)B(1, 1)A(1, 1)B(1, 1)A(1, 1)B(1, 1)A(1, 2)B(2, 2)

= 0.45× 0.8× 0.7× 0.8× 0.7× 0.8× 0.3× 0.7 = 0.0237.

A much more efficient way to proceed is to use a method based on dynamic programming .
Recall the bijection σ : {Cold,Hot} → {1, 2}, so that we will refer to the state Cold as 1,
and to the state Hot as 2. For t = 1, 2, 3, 4, for every state i = 1, 2, we compute score(i, t) to
be the highest probability that a sequence of length t ending in state i produces the output
sequence (O1, . . . , Ot), and for t ≥ 2, we let pred(i, t) be the state that precedes state i in a
best sequence of length t ending in i.

52 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

Recall that in our example, ω(O) = (ω1,ω2,ω3,ω4) = (1, 1, 1, 2), which corresponds to
NNND. Initially, we set

score(j, 1) = π(j)B(j,ω1), j = 1, 2,

and since ω1 = 1 we get score(1, 1) = 0.45× 0.8 = 0.36, which is the probability of starting
in state Cold and emitting N, and score(2, 1) = 0.55× 0.3 = 0.165, which is the probability
of starting in state Hot and emitting N.

Next we compute score(1, 2) and score(2, 2) as follows. For j = 1, 2, for i = 1, 2, compute
temporary scores

tscore(i, j) = score(i, 1)A(i, j)B(j,ω2);

then pick the best of the temporary scores,

score(j, 2) = max
i

tscore(i, j).

Since ω2 = 1, we get tscore(1, 1) = 0.36×0.7×0.8 = 0.2016, tscore(2, 1) = 0.165×0.25×0.8 =
0.0330, and tscore(1, 2) = 0.36×0.3×0.3 = 0.0324, tscore(2, 2) = 0.165×0.75×0.3 = 0.0371.
Then

score(1, 2) = max{tscore(1, 1), tscore(2, 1)} = max{0.2016, 0.0330} = 0.2016,

which is the largest probability that a sequence of two states emitting the output (N,N)
ends in state Cold, and

score(2, 2) = max{tscore(1, 2), tscore(2, 2)} = max{0.0324, 0.0371} = 0.0371.

which is the largest probability that a sequence of two states emitting the output (N,N)
ends in state Hot. Since the state that leads to the optimal score score(1, 2) is 1, we let
pred(1, 2) = 1, and since the state that leads to the optimal score score(2, 2) is 2, we let
pred(2, 2) = 2.

We compute score(1, 3) and score(2, 3) in a similar way. For j = 1, 2, for i = 1, 2,
compute

tscore(i, j) = score(i, 2)A(i, j)B(j,ω3);

then pick the best of the temporary scores,

score(j, 3) = max
i

tscore(i, j).

Since ω3 = 1, we get tscore(1, 1) = 0.2016 × 0.7 × 0.8 = 0.1129, tscore(2, 1) = 0.0371 ×
0.25× 0.8 = 0.0074, and tscore(1, 2) = 0.2016× 0.3× 0.3 = 0.0181, tscore(2, 2) = 0.0371×
0.75× 0.3 = 0.0083. Then

score(1, 3) = max{tscore(1, 1), tscore(2, 1)} = max{0.1129, 0.074} = 0.1129,

4.1. HIDDEN MARKOV MODELS (HMMS) 53

which is the largest probability that a sequence of three states emitting the output (N,N,N)
ends in state Cold, and

score(2, 3) = max{tscore(1, 2), tscore(2, 2)} = max{0.0181, 0.0083} = 0.0181,

which is the largest probability that a sequence of three states emitting the output (N,N,N)
ends in state Hot. We also get pred(1, 3) = 1 and pred(2, 3) = 1. Finally, we compute
score(1, 4) and score(2, 4) in a similar way. For j = 1, 2, for i = 1, 2, compute

tscore(i, j) = score(i, 3)A(i, j)B(j,ω4);

then pick the best of the temporary scores,

score(j, 4) = max
i

tscore(i, j).

Since ω4 = 2, we get tscore(1, 1) = 0.1129 × 0.7 × 0.2 = 0.0158, tscore(2, 1) = 0.0181 ×
0.25× 0.2 = 0.0009, and tscore(1, 2) = 0.1129× 0.3× 0.7 = 0.0237, tscore(2, 2) = 0.0181×
0.75× 0.7 = 0.0095. Then

score(1, 4) = max{tscore(1, 1), tscore(2, 1)} = max{0.0158, 0.0009} = 0.0158,

which is the largest probability that a sequence of four states emitting the output (N,N,N,D)
ends in state Cold, and

score(2, 4) = max{tscore(1, 2), tscore(2, 2)} = max{0.0237, 0.0095} = 0.0237,

which is the largest probability that a sequence of four states emitting the output (N,N,N,D)
ends in state Hot, and pred(1, 4) = 1 and pred(2, 4) = 1

Since max{score(1, 4), score(2, 4)} = max{0.0158, 0.0237} = 0.0237, the state with the
maximum score is Hot, and by following the predecessor list (also called backpointer list),
we find that the most likely state sequence to produce the output sequence NNND is
(Cold,Cold,Cold,Hot).

The stages of the computations of score(j, t) for i = 1, 2 and t = 1, 2, 3, 4 can be recorded
in the following diagram called a lattice, or a trellis (which means lattice in French!):

Cold 0.36 0.2016 ""

0.0324

##❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

0.2016 0.1129 ""

0.0181

$$
❍
❍
❍
❍❍

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

❍

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

❍
❍❍

❍
❍
❍

0.1129 0.0158 ""

0.0237

$$
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■■

■
■■

■
■
■
■
■
■
■
■
■
■■

■
■
■

0.0158

Hot 0.1650
0.0371

""

0.033

%%
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

0.0371
0.0083

!!

0.074

%%
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

0.0181
0.0095

!!

0.0009

&&
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

0.0237

Double arrows represent the predecessor edges. For example, the predecessor pred(2, 3)
of the third node on the bottom row labeled with the score 0.0181 (which corresponds to

54 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

Hot), is the second node on the first row labeled with the score 0.2016 (which corresponds
to Cold). The two incoming arrows to the third node on the bottom row are labeled with
the temporary scores 0.0181 and 0.0083. The node with the highest score at time t = 4 is
Hot, with score 0.0237 (showed in bold), and by following the double arrows backward from
this node, we obtain the most likely state sequence (Cold,Cold,Cold,Hot).

The method we just described is known as the Viterbi algorithm. We now define HHM’s
in general, and then present the Viterbi algorithm.

Definition 4.1. A hidden Markov model , for short HMM , is a quintupleM = (Q,O, π, A, B)
where

• Q is a finite set of states with n elements, and there is a bijection σ : Q→ {1, . . . , n}.

• O is a finite output alphabet (also called set of possible observations) with m observa-
tions, and there is a bijection ω : O→ {1, . . . , m}.

• A = (A(i, j)) is an n× n matrix called the state transition probability matrix , with

A(i, j) ≥ 0, 1 ≤ i, j ≤ n, and
n∑

j=1

A(i, j) = 1, i = 1, . . . , n.

• B = (B(i, j)) is an n×m matrix called the state observation probability matrix (also
called confusion matrix), with

B(i, j) ≥ 0, 1 ≤ i, j ≤ n, and
m∑

j=1

B(i, j) = 1, i = 1, . . . , n.

A matrix satisfying the above conditions is said to be row stochastic. Both A and B
are row-stochastic.

We also need to state the conditions that make M a Markov model. To do this rigorously
requires the notion of random variable and is a bit tricky (see the remark below), so we will
cheat as follows:

(a) Given any sequence of states (q0, . . . , qt−2, p, q), the conditional probability that q is the
tth state given that the previous states were q0, . . . , qt−2, p is equal to the conditional
probability that q is the tth state given that the previous state at time t− 1 is p:

Pr(q | q0, . . . , qt−2, p) = Pr(q | p).

This is the Markov property . Informally, the “next” state q of the process at time t
is independent of the “past” states q0, . . . , qt−2, provided that the “present” state p at
time t− 1 is known.

4.1. HIDDEN MARKOV MODELS (HMMS) 55

(b) Given any sequence of states (q0, . . . , qi, . . . , qt), and given any sequence of outputs
(O0, . . . , Oi, . . . , Ot), the conditional probability that the output Oi is emitted depends
only on the state qi, and not any other states or any other observations:

Pr(Oi | q0, . . . , qi, . . . , qt, O0, . . . , Oi, . . . , Ot) = Pr(Oi | qi).

This is the output independence condition. Informally, the output function is near-
sighted.

Examples of HMMs are shown in Figure 4.1, Figure 4.2, and Figure 4.3. Note that an
ouput is emitted when visiting a state, not when making a transition, as in the case of a gsm.
So the analogy with the gsm model is only partial; it is meant as a motivation for HMMs.

The hidden Markov model was developed by L. E. Baum and colleagues at the Institue
for Defence Analysis at Princeton (including Petrie, Eagon, Sell, Soules, and Weiss) starting
in 1966.

If we ignore the output components O and B, then we have what is called a Markov
chain. A good interpretation of a Markov chain is the evolution over (discrete) time of
the populations of n species that may change from one species to another. The probability
A(i, j) is the fraction of the population of the ith species that changes to the jth species. If
we denote the populations at time t by the row vector x = (x1, . . . , xn), and the populations
at time t + 1 by y = (y1, . . . , yn), then

yj = A(1, j)x1 + · · ·+ A(i, j)xi + · · ·+ A(n, j)xn, 1 ≤ j ≤ n,

in matrix form, y = xA. The condition
∑n

j=1A(i, j) = 1 expresses that the total population
is preserved, namely y1 + · · ·+ yn = x1 + · · ·+ xn.

Remark: This remark is intended for the reader who knows some probability theory, and
it can be skipped without any negative effect on understanding the rest of this chapter.
Given a probability space (Ω,F , µ) and any countable set Q (for simplicity we may assume
Q is finite), a stochastic discrete-parameter process with state space Q is a countable family
(Xt)t∈N of random variables Xt : Ω → Q. We can think of t as time, and for any q ∈ Q, of
Pr(Xt = q) as the probability that the process X is in state q at time t. If

Pr(Xt = q | X0 = q0, . . . , Xt−2 = qt−2, Xt−1 = p) = Pr(Xt = q | Xt−1 = p)

for all q0, , . . . , qt−2, p, q ∈ Q and for all t ≥ 1, and if the probability on the right-hand side
is independent of t, then we say that X = (Xt)t∈N is a time-homogeneous Markov chain, for
short, Markov chain. Informally, the “next” state Xt of the process is independent of the
“past” states X0, . . . , Xt−2, provided that the “present” state Xt−1 is known.

Since for simplicity Q is assumed to be finite, there is a bijection σ : Q→ {1, . . . , n}, and
then, the process X is completely determined by the probabilities

aij = Pr(Xt = q | Xt−1 = p), i = σ(p), j = σ(q), p, q ∈ Q,

56 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

and if Q is a finite state space of size n, these form an n × n matrix A = (aij) called the
Markov matrix of the process X . It is a row-stochastic matrix.

The beauty of Markov chains is that if we write

π(i) = Pr(X0 = i)

for the initial probability distribution, then the joint probability distribution of X0, X1, . . .,
Xt is given by

Pr(X0 = i0, X1 = i1, . . . , Xt = it) = π(i0)A(i0, i1) · · ·A(it−1, it).

The above expression only involves π and the matrix A, and makes no mention of the original
measure space. Therefore, it doesn’t matter what the probability space is!

Conversely, given an n × n row-stochastic matrix A, let Ω be the set of all countable
sequences ω = (ω0,ω1, . . . ,ωt, . . .) with ωt ∈ Q = {1, . . . , n} for all t ∈ N, and let Xt : Ω→ Q
be the projection on the tth component, namely Xt(ω) = ωt.2 Then it is possible to define a
σ-algebra (also called a σ-field) B and a measure µ on B such that (Ω,B, µ) is a probability
space, and X = (Xt)t∈N is a Markov chain with corresponding Markov matrix A.

To define B, proceed as follows. For every t ∈ N, let Ft be the family of all unions of
subsets of Ω of the form

{ω ∈ Ω | (X0(ω) ∈ S0) ∧ (X1(ω) ∈ S1) ∧ · · · ∧ (Xt(ω) ∈ St)},

where S0, S1, . . . , St are subsets of the state space Q = {1, . . . , n}. It is not hard to show
that each Ft is a σ-algebra. Then let

F =
⋃

t≥0

Ft.

Each set in F is a set of paths for which a finite number of outcomes are restricted to lie in
certain subsets of Q = {1, . . . , n}. All other outcomes are unrestricted. In fact, every subset
C in F is a countable union

C =
⋃

i∈N

B(t)
i

of sets of the form

B(t)
i = {ω ∈ Ω | ω = (q0, q1, . . . , qt, st+1,sj , . . . ,) | q0, q1, . . . , qt ∈ Q}

= {ω ∈ Ω | X0(ω) = q0, X1(ω) = q1, . . . , Xt(ω) = qt}.

2It is customary in probability theory to denote events by the letter ω. In the present case, ω denotes a
countable sequence of elements from Q. This notation has nothing do with the bijection ω : O→ {1, . . . ,m}
occurring in Definition 4.1.

4.1. HIDDEN MARKOV MODELS (HMMS) 57

The sequences in B(t)
i are those beginning with the fixed sequence (q0, q1, . . . , qt). One can

show that F is a field of sets, but not necessarily a σ-algebra, so we form the smallest
σ-algebra G containing F .

Using the matrix A we can define the measure ν(B(t)
i) as the product of the probabilities

along the sequence (q0, q1, . . . , qt). Then it can be shown that ν can be extended to a measure
µ on G, and we let B be the σ-algebra obtained by adding to G all subsets of sets of measure
zero. The resulting probability space (Ω,B, µ) is usually called the sequence space, and the
measure µ is called the tree measure. Then it is easy to show that the family of random
variables Xt : Ω→ Q on the probability space(Ω,B, µ) is a time-homogeneous Markov chain
whose Markov matrix is the orginal matrix A. The above construction is presented in full
detail in Kemeny, Snell, and Knapp[11] (Chapter 2, Sections 1 and 2).

Most presentations of Markov chains do not even mention the probability space over
which the random variables Xt are defined. This makes the whole thing quite mysterious,
since the probabilities Pr(Xt = q) are by definition given by

Pr(Xt = q) = µ({ω ∈ Ω | Xt(ω) = q}),

which requires knowing the measure µ. This is more problematic if we start with a stochastic
matrix. What are the random variables Xt, what are they defined on? The above construc-
tion puts things on firm grounds.

There are three types of problems that can be solved using HMMs:

(1) The decoding problem: Given an HMM M = (Q,O, π, A, B), for any observed
output sequence O = (O1, O2, . . . , OT) of length T ≥ 1, find a most likely sequence
of states S = (q1, q2, . . . , qT) that produces the output sequence O. More precisely,
with our notational convention that σ(qt) = it and ω(Ot) = ωt, this means finding a
sequence S such that the probability

Pr(S,O) = π(i1)B(i1,ω1)
T∏

t=2

A(it−1, it)B(it,ωt)

is maximal. This problem is solved effectively by the Viterbi algorithm that we outlined
before.

(2) The evaluation problem, also called the likelyhood problem: Given a finite
collection {M1, . . . ,ML} of HMM’s with the same output alphabet O, for any output
sequence O = (O1, O2, . . . , OT) of length T ≥ 1, find which model Mℓ is most likely to
have generated O. More precisely, given any model Mk, we compute the probability
tprobk that Mk could have produced O along any path. Then we pick an HMM Mℓ

for which tprobℓ is maximal. We will return to this point after having described the
Viterbi algoritm. A variation of the Viterbi algorithm called the forward algorithm
effectively solves the evaluation problem.

58 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

(3) The training problem, also called the learning problem: Given a set {O1, . . . ,Or}
of output sequences on the same output alpabet O, usually called a set of training data,
given Q, find the “best” π, A, and B for an HMM M that produces all the sequences
in the training set, in the sense that the HMM M = (Q,O, π, A, B) is the most likely
to have produced the sequences in the training set. The technique used here is called
expectation maximization, or EM . It is an iterative method that starts with an initial
triple π, A, B, and tries to impove it. There is such an algorithm known as the Baum-
Welch or forward-backward algorithm, but it is beyond the scope of this introduction.

Let us now describe the Viterbi algorithm in more details.

4.2 The Viterbi Algorithm and the Forward Algorithm

Given an HMM M = (Q,O, π, A, B), for any observed output sequence O = (O1, O2, . . .,
OT) of length T ≥ 1, we want to find a most likely sequence of states S = (q1, q2, . . . , qT)
that produces the output sequence O.

Using the bijections σ : Q → {1, . . . , n} and ω : O → {1, . . . , m}, we can work with
sequences of indices, and recall that we denote the index σ(qt) associated with the tth state
qt in the sequence S by it, and the index ω(Ot) associated with the tth output Ot in the
sequence O by ωt. Then we need to find a sequence S such that the probability

Pr(S,O) = π(i1)B(i1,ω1)
T∏

t=2

A(it−1, it)B(it,ωt)

is maximal.

In general, there are nT sequences of length T . This problem can be solved efficiently
by a method based on dynamic programming . For any t, 1 ≤ t ≤ T , for any state q ∈ Q,
if σ(q) = j, then we compute score(j, t), which is the largest probability that a sequence
(q1, . . . , qt−1, q) of length t ending with q has produced the output sequence (O1, . . . , Ot−1, Ot).

The point is that if we know score(k, t − 1) for k = 1, . . . , n (with t ≥ 2), then we can
find score(j, t) for j = 1, . . . , n, because if we write k = σ(qt−1) and j = σ(q) (recall that
ωt = ω(Ot)), then the probability associated with the path (q1, . . . , qt−1, q) is

tscore(k, j) = score(k, t− 1)A(k, j)B(j,ωt).

4.2. THE VITERBI ALGORITHM AND THE FORWARD ALGORITHM 59

See the illustration below:

state indices i1 . . . k j

states q1

σ

''

((

. . .
score(k,t−1)

!! qt−1

σ

''

((

A(k,j)
!! q

σ

''

B(j,ωt)
((

outputs O1

ω

))

. . . Ot−1

ω

))

Ot

ω

))
output indices ω1 . . . ωt−1 ωt

So to maximize this probability, we just have to find the maximum of the probabilities
tscore(k, j) over all k, that is, we must have

score(j, t) = max
k

tscore(k, j).

See the illustration below:

σ−1(1)

tscore(1,j)

**❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

σ−1(k)
tscore(k,j)

!! q = σ−1(j)

σ−1(n)

tscore(n,j)

++♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

To get started, we set score(j, 1) = π(j)B(j,ω1) for j = 1, . . . , n.

The algorithm goes through a forward phase for t = 1, . . . , T , during which it computes
the probabilities score(j, t) for j = 1, . . . , n. When t = T , we pick an index j such that
score(j, T) is maximal. The machine learning community is fond of the notation

j = argmax
k

score(k, T)

to express the above fact. Typically, the smallest index j corresponding the maximum
element in the list of probabilities

(score(1, T), score(2, T), . . . , score(n, T))

is returned. This gives us the last state qT = σ−1(j) in an optimal sequence that yields the
output sequence O.

60 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

The algorithm then goes through a path retrieval phase. To do this, when we compute

score(j, t) = max
k

tscore(k, j),

we also record the index k = σ(qt−1) of the state qt−1 in the best sequence (q1, . . . , qt−1, qt)
for which tscore(k, j) is maximal (with j = σ(qt)), as pred(j, t) = k. The index k is often
called the backpointer of j at time t. This index may not be unique, we just pick one of
them. Again, this can be expressed by

pred(j, t) = argmax
k

tscore(k, j).

Typically, the smallest index k corresponding the maximum element in the list of probabil-
ities

(tscore(1, j), tscore(2, j), . . . , tscore(n, j))

is returned.

The predecessors pred(j, t) are only defined for t = 2, . . . , T , but we can let pred(j, 1) = 0.

Observe that the path retrieval phase of the Viterbi algorithm is very similar to the
phase of Dijkstra’s algorithm for finding a shortest path that follows the prev array. One
should not confuse this phase with what is called the backward algorithm, which is used in
solving the learning problem. The forward phase of the Viterbi algorithm is quite different
from the Dijkstra’s algorithm, and the Viterbi algorithm is actually simpler (it computes
score(j, t) for all states and for t = 1, . . . , T), whereas Dijkstra’s algorithm maintains a list
of unvisited vertices, and needs to pick the next vertex). The major difference is that the
Viterbi algorithm maximizes a product of weights along a path, but Dijkstra’s algorithm
minimizes a sum of weights along a path. Also, the Viterbi algorithm knows the length of
the path (T) ahead of time, but Dijkstra’s algorithm does not.

The Viterbi algorithm, invented by Andrew Viterbi in 1967, is shown below.

The input to the algorithm is M = (Q,O, π, A, B) and the sequence of indices ω(O) =
(ω1, . . . ,ωT) associated with the observed sequence O = (O1, O2, . . . , OT) of length T ≥ 1,
with ωt = ω(Ot) for t = 1, . . . , T .

The output is a sequence of states (q1, . . . , qT). This sequence is determined by the
sequence of indices (I1, . . . , IT); namely, qt = σ−1(It).

The Viterbi Algorithm

begin

for j = 1 to n do

score(j, 1) = π(j)B(j,ω1)

endfor;

4.2. THE VITERBI ALGORITHM AND THE FORWARD ALGORITHM 61

(∗ forward phase to find the best (highest) scores ∗)
for t = 2 to T do

for j = 1 to n do

for k = 1 to n do

tscore(k) = score(k, t− 1)A(k, j)B(j,ωt)

endfor;

score(j, t) = maxk tscore(k);

pred(j, t) = argmaxk tscore(k)

endfor

endfor;

(∗ second phase to retrieve the optimal path ∗)
IT = argmaxj score(j, T);

qT = σ−1(IT);

for t = T to 2 by −1 do

It−1 = pred(It, t);

qt−1 = σ−1(It−1)

endfor

end

An illustration of the Viterbi algorithm applied to Example 4.1 was presented after
Example 4.3. If we run the Viterbi algorithm on the output sequence (S, M, S, L) of
Example 4.2, we find that the sequence (Cold,Cold,Cold,Hot) has the highest probability,
0.00282, among all sequences of length four.

One may have noticed that the numbers involved, being products of probabilities, become
quite small. Indeed, underflow may arise in dynamic programming. Fortunately, there
is a simple way to avoid underflow by taking logarithms. We initialize the algorithm by
computing

score(j, 1) = log[π(j)] + log[B(j,ω1)],

and in the step where tscore is computed we use the formula

tscore(k) = score(k, t− 1) + log[A(k, j)] + log[B(j,ωt)].

It immediately verified that the time complexity of the Viterbi algorithm is O(n2T).

Let us now to turn to the second problem, the evaluation problem (or likelyhood problem).

This time, given a finite collection {M1, . . . ,ML} of HMM’s with the same output al-
phabet O, for any observed output sequence O = (O1, O2, . . . , OT) of length T ≥ 1, find
which model Mℓ is most likely to have generated O. More precisely, given any model Mk,

62 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

we compute the probability tprobk that Mk could have produced O along any sequence of
states S = (q1, . . . , qT). Then we pick an HMM Mℓ for which tprobℓ is maximal.

The probability tprobk that we are seeking is given by

tprobk = Pr(O)

=
∑

(i1,...,iT)∈{1,...,n}T

Pr((qi1 , . . . , qiT),O)

=
∑

(i1,...,iT)∈{1,...,n}T

π(i1)B(i1,ω1)
T∏

t=2

A(it−1, it)B(it,ωt),

where {1, . . . , n}T denotes the set of all sequences of length T consisting of elements from
the set {1, . . . , n}.

It is not hard to see that a brute-force computation requires 2TnT multiplications. For-
tunately, it is easy to adapt the Viterbi algorithm to compute tprobk efficiently. Since we
are not looking for an explicity path, there is no need for the second phase, and during the
forward phase, going from t−1 to t, rather than finding the maximum of the scores tscore(k)
for k = 1, . . . , n, we just set score(j, t) to the sum over k of the temporary scores tscore(k).
At the end, tprobk is the sum over j of the probabilities score(j, T).

The algorithm solving the evaluation problem known as the forward algorithm is shown
below.

The input to the algorithm is M = (Q,O, π, A, B) and the sequence of indices ω(O) =
(ω1, . . . ,ωT) associated with the observed sequence O = (O1, O2, . . . , OT) of length T ≥ 1,
with ωt = ω(Ot) for t = 1, . . . , T . The output is the probability tprob.

The Foward Algorithm

begin

for j = 1 to n do

score(j, 1) = π(j)B(j,ω1)

endfor;

for t = 2 to T do

for j = 1 to n do

for k = 1 to n do

tscore(k) = score(k, t− 1)A(k, j)B(j,ωt)

endfor;

score(j, t) =
∑

k tscore(k)

endfor

4.2. THE VITERBI ALGORITHM AND THE FORWARD ALGORITHM 63

endfor;

tprob =
∑

j score(j, T)

end

We can now run the above algorithm on M1, . . . ,ML to compute tprob1, . . . , tprobL, and
we pick the model Mℓ for which tprobℓ is maximum.

As for the Viterbi algorithm, the time complexity of the forward algorithm is O(n2T).

Underflow is also a problem with the forward algorithm. At first glance it looks like
taking logarithms does not help because there is no simple expression for log(x1 + · · ·+ xn)
in terms of the log xi. Fortunately, we can use the log-sum exp trick (which I learned from
Mitch Marcus), namely the identity

log

(
n∑

i=1

exi

)

= a+ log

(
n∑

i=1

exi−a

)

for all x1, . . . , xn ∈ R and a ∈ R (take exponentials on both sides). Then, if we pick
a = max1≤i≤n xi, we get

1 ≤
n∑

i=1

exi−a ≤ n,

so

max
1≤i≤n

xi ≤ log

(
n∑

i=1

exi

)

≤ max
1≤i≤n

xi + log n,

which shows that max1≤i≤n xi is a good approximation for log (
∑n

i=1 e
xi). For any positive

reals y1, . . . , yn, if we let xi = log yi, then we get

log

(
n∑

i=1

yi

)

= max
1≤i≤n

log yi + log

(
n∑

i=1

elog(yi)−a

)

, with a = max
1≤i≤n

log yi.

We will use this trick to compute

log(score(j, k)) = log

(
n∑

k=1

elog(tscore(k))
)

= a+ log

(
n∑

k=1

elog(tscore(k))−a

)

with a = max1≤k≤n log(tscore(k)), where tscore((k) could be very small, but log(tscore(k))
is not, so computing log(tscore(k))− a does not cause underflow, and

1 ≤
n∑

k=1

elog(tscore(k))−a ≤ n,

since log(tscore(k)) − a ≤ 0 and one of these terms is equal to zero, so even if some of the
terms elog(tscore(k))−a are very small, this does not cause any trouble. We will also use this

trick to compute log(tprob) = log
(∑n

j=1 score(j, T)
)
in terms of the log(score(j, T)).

64 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

We leave it as an exercise to the reader to modify the forward algorithm so that it
computes log(score(j, t)) and log(tprob) using the log-sum exp trick. If you use Matlab,
then this is quite easy because Matlab does a lot of the work for you since it can apply
operators such as exp or

∑
(sum) to vectors.

Example 4.3. To illustrate the forward algorithm, assume that our observant student also
recorded the drinking behavior of a professor at Harvard, and that he came up with the
HHM shown in Figure 4.3.

start

Cold Hot

N D

0.13 0.87

0.67

0.1

0.95
0.05 0.8

0.2

0.33 0.9

Figure 4.3: Example of an HMM modeling the “drinking behavior” of a professor at Harvard.

However, the student can’t remember whether he observed the sequence NNND at Penn
or at Harvard. So he runs the forward algorithm on both HMM’s to find the most likely
model. Do it!

Following Jurafsky, the following chronology shows how of the Viterbi algorithm has had
applications in many separate fields.

Citation Field

Viterbi (1967) information theory

Vintsyuk (1968) speech processing

Needleman and Wunsch (1970) molecular biology

Sakoe and Chiba (1971) speech processing

Sankoff (1972) molecular biology

Reichert et al. (1973) molecular biology

Wagner and Fischer (1974) computer science

4.2. THE VITERBI ALGORITHM AND THE FORWARD ALGORITHM 65

Readers who wish to learn more about HMMs should begin with Stamp [20], a great
tutorial which contains a very clear and easy to read presentation. Another nice intro-
duction is given in Rich [19] (Chapter 5, Section 5.11). A much more complete, yet ac-
cessible, coverage of HMMs is found in Rabiner’s tutorial [17]. Jurafsky and Martin’s
online Chapter 9 (Hidden Markov Models) is also a very good and informal tutorial (see
https://web.stanford.edu/̃ jurafsky/slp3/9.pdf).

A very clear and quite accessible presentation of Markov chains is given in Cinlar [4].
Another thorough but a bit more advanced presentation is given in Brémaud [3]. Other pre-
sentations of Markov chains can be found in Mitzenmacher and Upfal [14], and in Grimmett
and Stirzaker [10].

Acknowledgments: I would like to thank Mitch Marcus, Jocelyn Qaintance, and Joao
Sedoc, for scrutinizing my work and for many insightful comments.

66 CHAPTER 4. HIDDEN MARKOV MODELS (HMMS)

Chapter 5

Regular Languages and Equivalence
Relations, The Myhill-Nerode
Characterization, State Equivalence

5.1 Morphisms, F -Maps, B-Maps and
Homomorphisms of DFA’s

It is natural to wonder whether there is a reasonable notion of a mapping between DFA’s.
It turns out that this is indeed the case and there is a notion of a map between DFA’s
which is very useful in the theory of DFA minimization (given a DFA, find an equivalent
DFA of minimal size). Obviously, a map between DFA’s should be a certain kind of graph
homomorphism, which means that given two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and D2 =
(Q2,Σ, δ2, q0,2, F2), we have a function, h : Q1 → Q2, mapping every state, p ∈ Q1, of D1,
to some state, q = h(p) ∈ Q2, of D2 in such a way that for every input symbol, a ∈ Σ, the
transition on a from p to δ1(p, a) is mapped to the transition on a from h(p) to h(δ1(p, a)),
so that

h(δ1(p, a)) = δ2(h(p), a),

which can be expressed by the commutativity of the following diagram:

p h !!

a
))

h(p)

a
))

δ1(p, a)
h !! δ2(h(p), a)

In order to be useful, a map of DFA’s, h : D1 → D2, should induce a relationship between
the languages, L(D1) and L(D2), such as L(D1) ⊆ L(D2), L(D2) ⊆ L(D1) or L(D1) = L(D2).
This can indeed be achieved by requiring some simple condition on the way final states are
related by h.

67

68 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

For any function, h : X → Y , and for any two subsets, A ⊆ X and B ⊆ Y , recall that

h(A) = {h(a) ∈ Y | a ∈ A}

is the (direct) image of A by h and

h−1(B) = {x ∈ X | h(x) ∈ B}

is the inverse image of B by h, and h−1(B) makes sense even if h is not invertible. The
following Definition is adapted from Eilenberg [8] (Automata, Languages and Machines, Vol
A, Academic Press, 1974; see Chapter III, Section 4).

Definition 5.1. Given two DFA’s, D1 = (Q1,Σ, δ1, q0,1, F1) and D2 = (Q2,Σ, δ2, q0,2, F2),
a morphism, h : D1 → D2, of DFA’s is a function, h : Q1 → Q2, satisfying the following
conditions:

(1)
h(δ1(p, a)) = δ2(h(p), a), for all p ∈ Q1 and all a ∈ Σ,

which can be expressed by the commutativity of the following diagram:

p h !!

a
))

h(p)

a
))

δ1(p, a)
h !! δ2(h(p), a).

(2) h(q0,1) = q0,2.

An F -map of DFA’s, for short, a map, is a morphism of DFA’s, h : D1 → D2, that
satisfies the condition

(3a) h(F1) ⊆ F2.

A B-map of DFA’s is a morphism of DFA’s, h : D1 → D2, that satisfies the condition

(3b) h−1(F2) ⊆ F1.

A proper homomorphism of DFA’s , for short, a homomorphism, is an F -map of DFA’s
that is also a B-map of DFA’s namely, a homomorphism satisfies (3a) & (3b).

Now, for any function f : X → Y and any two subsets A ⊆ X and B ⊆ Y , recall that

f(A) ⊆ B iff A ⊆ f−1(B).

Thus, (3a) & (3b) is equivalent to the condition (3c) below, that is, a homomorphism of
DFA’s is a morphism satisfying the condition

(3c) h−1(F2) = F1.

5.1. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 69

Note that the condition for being a proper homomorphism of DFA’s (condition (3c)) is
not equivalent to

h(F1) = F2.

Condition (3c) forces h(F1) = F2 ∩ h(Q1), and furthermore, for every p ∈ Q1, whenever
h(p) ∈ F2, then p ∈ F1.

Example 5.1. Figure 5.1 shows a map, h, of DFA’s, with

h(A) = h(C) = 0

h(B) = 1

h(D) = 2

h(E) = 3.

It is easy to check that h is actually a (proper) homomorphism.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

0 1 2 3
a b

a

b

b a

b

a

A −→ 0; B −→ 1; C −→ 0; D −→ 2; E −→ 3

Figure 5.1: A map of DFA’s

The reader should check that if f : D1 → D2 and g : D2 → D3 are morphisms (resp.
F -maps, resp. B-maps), then g ◦ f : D1 → D3 is also a morphism (resp. an F -map, resp. a
B-map).

70 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Remark: In previous versions of these notes, an F -map was called simply a map and a
B-map was called an F−1-map. Over the years, the old terminology proved to be confusing.
We hope the new one is less confusing!

Note that an F -map or a B-map is a special case of the concept of simulation of automata.
A proper homomorphism is a special case of a bisimulation. Bisimulations play an important
role in real-time systems and in concurrency theory.

The main motivation behind these definitions is that when there is an F -map h : D1 →
D2, somehow, D2 simulates D1, and it turns out that L(D1) ⊆ L(D2).

When there is a B-map h : D1 → D2, somehow, D1 simulates D2, and it turns out that
L(D2) ⊆ L(D1).

When there is a proper homomorphism h : D1 → D2, somehow, D1 bisimulates D2, and
it turns out that L(D2) = L(D1).

A DFA morphism f : D1 → D2, is an isomorphism iff there is a DFA morphism,
g : D2 → D1, so that

g ◦ f = idD1 and f ◦ g = idD2 .

Similarly an F -map f : D1 → D2, is an isomorphism iff there is an F -map, g : D2 → D1, so
that

g ◦ f = idD1 and f ◦ g = idD2 .

Finally, a B-map f : D1 → D2, is an isomorphism iff there is a B-map, g : D2 → D1, so that

g ◦ f = idD1 and f ◦ g = idD2 .

The map g is unique and it is denoted f−1. The reader should prove that if a DFA F -
map is an isomorphism, then it is also a proper homomorphism and if a DFA B-map is an
isomorphism, then it is also a proper homomorphism.

If h : D1 → D2 is a morphism of DFA’s, it is easily shown by induction on the length of
w that

h(δ∗1(p, w)) = δ∗2(h(p), w),

for all p ∈ Q1 and all w ∈ Σ∗, which corresponds to the commutativity of the following
diagram:

p h !!

w
))

h(p)

w
))

δ∗1(p, w)
h !! δ∗2(h(p), w).

This is the generalization of the commutativity of the diagram in condition (1) of Definition
5.1, where any arbitrary string w ∈ Σ∗ is allowed instead of just a single symbol a ∈ Σ.

This is the crucial property of DFA morphisms. It says that for every string, w ∈ Σ∗, if
we pick any state, p ∈ Q1, as starting point in D1, then the image of the path from p on

5.1. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 71

input w in D1 is the path in D2 from the image, h(p) ∈ Q2, of p on the same input, w. In
particular, the image, h(δ∗1(p, w)) of the state reached from p on input w in D1 is the state,
δ∗2(h(p), w), in D2 reached from h(p) on input w.

Example 5.2. For example, going back to the DFA map shown in Figure 3.3, the image of
the path

C
a−→ B

b−→ D
a−→ B

b−→ D
b−→ E

from C on input w = ababb in D1 is the path

0
a−→ 1

b−→ 2
a−→ 1

b−→ 2
b−→ 3

from 0 on input w = ababb in D2.

As a consequence, we have the following Proposition:

Proposition 5.1. If h : D1 → D2 is an F -map of DFA’s, then L(D1) ⊆ L(D2).
If h : D1 → D2 is a B-map of DFA’s, then L(D2) ⊆ L(D1). Finally, if h : D1 → D2 is a
proper homomorphism of DFA’s, then L(D1) = L(D2).

One might think that there may be many DFA morphisms between two DFA’s D1 and
D2, but this is not the case. In fact, if every state of D1 is reachable from the start state,
then there is at most one morphism from D1 to D2.

Given a DFA D = (Q,Σ, δ, q0, F), the set Qr of accessible or reachable states is the subset
of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qr can be easily computed by stages. A DFA is accessible, or trim if Q = Qr; that
is, if every state is reachable from the start state.

A morphism (resp. F -map, B-map) h : D1 → D2 is surjective if h(Q1) = Q2.

The following proposition is easy to show:

Proposition 5.2. If D1 is trim, then there is at most one morphism h : D1 → D2 (resp.
F -map, resp. B-map). If D2 is also trim and we have a morphism, h : D1 → D2, then h is
surjective.

It can also be shown that a minimal DFA DL for L is characterized by the property
that there is unique surjective proper homomorphism h : D → DL from any trim DFA D
accepting L to DL.

Another useful notion is the notion of a congruence on a DFA.

Definition 5.2. Given any DFA,D = (Q,Σ, δ, q0, F), a congruence ≡ on D is an equivalence
relation ≡ on Q satisfying the following conditions: For all p, q ∈ Q and all a ∈ Σ,

72 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

(1) If p ≡ q, then δ(p, a) ≡ δ(q, a).

(2) If p ≡ q and p ∈ F , then q ∈ F .

It can be shown that a proper homomorphism of DFA’s h : D1 → D2 induces a congruence
≡h on D1 defined as follows:

p ≡h q iff h(p) = h(q).

Given a congruence ≡ on a DFA D, we can define the quotient DFA D/ ≡, and there is
a surjective proper homomorphism π : D → D/ ≡.

We will come back to this point when we study minimal DFA’s.

5.2 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled directed graphs.

Definition 5.3. A directed graph is a quadruple G = (V,E, s, t), where V is a set of vertices,
or nodes , E is a set of edges, or arcs , and s, t : E → V are two functions, s being called the
source function, and t the target function. Given an edge e ∈ E, we also call s(e) the origin
(or source) of e, and t(e) the endpoint (or target) of e.

Remark : the functions s, t need not be injective or surjective. Thus, we allow “isolated
vertices.”

Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

Such a graph can be represented by the following diagram:

5.2. DIRECTED GRAPHS AND PATHS 73

e7

e8

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 5.2: A directed graph

In drawing directed graphs, we will usually omit edge names (the ei), and sometimes
even the node names (the vj).

We now define paths in a directed graph.

Definition 5.4. Given a directed graph G = (V,E, s, t), for any two nodes u, v ∈ V , a path
from u to v is a triple π = (u, e1 . . . en, v), where e1 . . . en is a string (sequence) of edges in E
such that, s(e1) = u, t(en) = v, and t(ei) = s(ei+1), for all i such that 1 ≤ i ≤ n− 1. When
n = 0, we must have u = v, and the path (u, ϵ, u) is called the null path from u to u. The
number n is the length of the path. We also call u the source (or origin) of the path, and
v the target (or endpoint) of the path. When there is a nonnull path π from u to v, we say
that u and v are connected .

Remark : In a path π = (u, e1 . . . en, v), the expression e1 . . . en is a sequence, and thus,
the ei are not necessarily distinct.

For example, the following are paths:

π1 = (v1, e1e5e7, v6),

74 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

π2 = (v2, e2e3e4e2e3e4e2e3e4, v2),

and
π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6).

Clearly, π2 and π3 are of a different nature from π1. Indeed, they contain cycles. This is
formalized as follows.

Definition 5.5. Given a directed graph G = (V,E, s, t), for any node u ∈ V a cycle (or
loop) through u is a nonnull path of the form π = (u, e1 . . . en, u) (equivalently, t(en) = s(e1)).
More generally, a nonnull path π = (u, e1 . . . en, v) contains a cycle iff for some i, j, with
1 ≤ i ≤ j ≤ n, t(ej) = s(ei). In this case, letting w = t(ej) = s(ei), the path (w, ei . . . ej , w)
is a cycle through w. A path π is acyclic iff it does not contain any cycle. Note that each
null path (u, ϵ, u) is acyclic.

Obviously, a cycle π = (u, e1 . . . en, u) through u is also a cycle through every node t(ei).
Also, a path π may contain several different cycles.

Paths can be concatenated as follows.

Definition 5.6. Given a directed graph G = (V,E, s, t), two paths π1 = (u, e1 . . . em, v)
and π2 = (u′, e′1 . . . e

′
n, v

′) can be concatenated provided that v = u′, in which case their
concatenation is the path

π1π2 = (u, e1 . . . eme
′
1 . . . e

′
n, v

′).

It is immediately verified that the concatenation of paths is associative, and that the
concatenation of the path
π = (u, e1 . . . em, v) with the null path (u, ϵ, u) or with the null path (v, ϵ, v) is the path π
itself.

The following fact, although almost trivial, is used all the time, and is worth stating in
detail.

Proposition 5.3. Given a directed graph G = (V,E, s, t), if the set of nodes V contains
m ≥ 1 nodes, then every path π of length at least m contains some cycle.

A consequence of Proposition 5.3 is that in a finite graph with m nodes, given any two
nodes u, v ∈ V , in order to find out whether there is a path from u to v, it is enough to
consider paths of length ≤ m− 1.

Indeed, if there is path between u and v, then there is some path π of minimal length
(not necessarily unique, but this doesn’t matter).

If this minimal path has length at least m, then by the Proposition, it contains a cycle.

However, by deleting this cycle from the path π, we get an even shorter path from u to
v, contradicting the minimality of π.

We now turn to labeled graphs.

5.3. LABELED GRAPHS AND AUTOMATA 75

5.3 Labeled Graphs and Automata

In fact, we only need edge-labeled graphs.

Definition 5.7. A labeled directed graph is a tuple G = (V,E, L, s, t,λ), where V is a set
of vertices, or nodes , E is a set of edges, or arcs , L is a set of labels, s, t : E → V are two
functions, s being called the source function, and t the target function, and λ : E → L is the
labeling function. Given an edge e ∈ E, we also call s(e) the origin (or source) of e, t(e) the
endpoint (or target) of e, and λ(e) the label of e.

Note that the function λ need not be injective or surjective. Thus, distinct edges may
have the same label.

Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},
V = {v1, v2, v3, v4, v5, v6}, L = {a, b},
and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6
λ(e1) = a, λ(e2) = b, λ(e3) = a, λ(e4) = a,

λ(e5) = b, λ(e6) = a, λ(e7) = a, λ(e8) = b.

Such a labeled graph can be represented by the following diagram:

In drawing labeled graphs, we will usually omit edge names (the ei), and sometimes even
the node names (the vj).

Paths, cycles, and concatenation of paths are defined just as before (that is, we ignore
the labels). However, we can now define the spelling of a path.

Definition 5.8. Given a labeled directed graph G = (V,E, L, s, t,λ) for any two nodes
u, v ∈ V , for any path π = (u, e1 . . . en, v), the spelling of the path π is the string of labels

λ(e1) · · ·λ(en).

When n = 0, the spelling of the null path (u, ϵ, u) is the null string ϵ.

For example, the spelling of the path

π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6)

76 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

a

b

a

a

b

e7

a

e8

b

a

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 5.3: A labeled directed graph

is
abaabaabaab.

Every DFA and every NFA can be viewed as a labeled graph, in such a way that the set
of spellings of paths from the start state to some final state is the language accepted by the
automaton in question.

Given a DFA D = (Q,Σ, δ, q0, F), where δ : Q×Σ→ Q, we associate the labeled directed
graph GD = (V,E, L, s, t,λ) defined as follows:

V = Q, E = {(p, a, q) | q = δ(p, a), p, q ∈ Q, a ∈ Σ},

L = Σ, s((p, a, q)) = p, t((p, a, q)) = q, and λ((p, a, q)) = a.

Such labeled graphs have a special structure that can easily be characterized.

It is easily shown that a string w ∈ Σ∗ is in the language L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}
iff w is the spelling of some path in GD from q0 to some final state.

5.4. THE CLOSURE DEFINITION OF THE REGULAR LANGUAGES 77

Similarly, given an NFA N = (Q,Σ, δ, q0, F), where δ : Q× (Σ∪ {ϵ})→ 2Q, we associate
the labeled directed graph GN = (V,E, L, s, t,λ) defined as follows: V = Q

E = {(p, a, q) | q ∈ δ(p, a), p, q ∈ Q, a ∈ Σ ∪ {ϵ}},

L = Σ ∪ {ϵ}, s((p, a, q)) = p, t((p, a, q)) = q,

λ((p, a, q)) = a.

Remark : When N has no ϵ-transitions, we can let L = Σ.

Such labeled graphs have also a special structure that can easily be characterized.

Again, a string w ∈ Σ∗ is in the language L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F ̸= ∅} iff w is
the spelling of some path in GN from q0 to some final state.

5.4 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be some alphabet. We would like to define a family of languages, R(Σ),
by singling out some very basic (atomic) languages, namely the languages {a1}, . . . , {am},
the empty language, and the trivial language, {ϵ}, and then forming more complicated
languages by repeatedly forming union, concatenation and Kleene ∗ of previously constructed
languages. By doing so, we hope to get a family of languages (R(Σ)) that is closed under
union, concatenation, and Kleene ∗. This means that for any two languages, L1, L2 ∈ R(Σ),
we also have L1 ∪ L2 ∈ R(Σ) and L1L2 ∈ R(Σ), and for any language L ∈ R(Σ), we have
L∗ ∈ R(Σ). Furthermore, we would like R(Σ) to be the smallest family with these properties.
How do we achieve this rigorously?

First, let us look more closely at what we mean by a family of languages. Recall that a
language (over Σ) is any subset, L, of Σ∗. Thus, the set of all languages is 2Σ

∗

, the power
set of Σ∗. If Σ is nonempty, this is an uncountable set. Next, we define a family , L, of
languages to be any subset of 2Σ

∗

. This time, the set of families of languages is 22
Σ∗

. This
is a huge set. We can use the inclusion relation on 22

Σ∗

to define a partial order on families
of languages. So, L1 ⊆ L2 iff for every language, L, if L ∈ L1 then L ∈ L2.

We can now state more precisely what we are trying to do. Consider the following
properties for a family of languages, L:

(1) We have {a1}, . . . , {am}, ∅, {ϵ} ∈ L, i.e., L contains the “atomic” languages.

(2a) For all L1, L2 ∈ L, we also have L1 ∪ L2 ∈ L.

(2b) For all L1, L2 ∈ L, we also have L1L2 ∈ L.

(2c) For all L ∈ L, we also have L∗ ∈ L.

78 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

In other words, L is closed under union, concatenation and Kleene ∗.
Now, what we want is the smallest (w.r.t. inclusion) family of languages that satisfies

properties (1) and (2)(a)(b)(c). We can construct such a family using an inductive definition.
This inductive definition constructs a sequence of families of languages, (R(Σ)n)n≥0, called
the stages of the inductive definition, as follows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ϵ}},
R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L

∗ | L1, L2, L ∈ R(Σ)n}.

Then, we define R(Σ) by

R(Σ) =
⋃

n≥0

R(Σ)n.

Thus, a language L belongs to R(Σ) iff it belongs Ln, for some n ≥ 0.

For example, if Σ = {a, b}, we have

R(Σ)1 = {{a}, {b}, ∅, {ϵ},
{a, b}, {a, ϵ}, {b, ϵ},
{ab}, {ba}, {aa}, {bb}, {a}∗, {b}∗}.

Some of the languages that will appear in R(Σ)2 are:

{a, bb}, {ab, ba}, {abb}, {aabb}, {a}{a}∗, {aa}{b}∗, {bb}∗.

Observe that

R(Σ)0 ⊆ R(Σ)1 ⊆ R(Σ)2 ⊆ · · ·R(Σ)n ⊆ R(Σ)n+1 ⊆ · · · ⊆ R(Σ),

so that if L ∈ R(Σ)n, then L ∈ R(Σ)p, for all p ≥ n. Also, there is some smallest n for
which L ∈ R(Σ)n (the birthdate of L!). In fact, all these inclusions are strict. Note that each
R(Σ)n only contains a finite number of languages (but some of the languages in R(Σ)n are
infinite, because of Kleene ∗).

Then we define the Regular languages, Version 2 , as the family R(Σ).

Of course, it is far from obvious that R(Σ) coincides with the family of languages accepted
by DFA’s (or NFA’s), what we call the regular languages, version 1. However, this is the case,
and this can be demonstrated by giving two algorithms. Actually, it will be slightly more
convenient to define a notation system, the regular expressions , to denote the languages
in R(Σ). Then, we will give an algorithm that converts a regular expression, R, into an
NFA, NR, so that LR = L(NR), where LR is the language (in R(Σ)) denoted by R. We
will also give an algorithm that converts an NFA, N , into a regular expression, RN , so that
L(RN) = L(N).

But before doing all this, we should make sure that R(Σ) is indeed the family that we
are seeking. This is the content of

5.4. THE CLOSURE DEFINITION OF THE REGULAR LANGUAGES 79

Proposition 5.4. The family, R(Σ), is the smallest family of languages which contains the
atomic languages {a1}, . . . , {am}, ∅, {ϵ}, and is closed under union, concatenation, and
Kleene ∗.

Proof. There are two things to prove.

(i) We need to prove that R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) We need to prove that R(Σ) is the smallest family having properties (1) and
(2)(a)(b)(c).

(i) Since
R(Σ)0 = {{a1}, . . . , {am}, ∅, {ϵ}},

it is obvious that (1) holds. Next, assume that L1, L2 ∈ R(Σ). This means that there are
some integers n1, n2 ≥ 0, so that L1 ∈ R(Σ)n1 and L2 ∈ R(Σ)n2 . Now, it is possible that
n1 ̸= n2, but if we let n = max{n1, n2}, as we observed that R(Σ)p ⊆ R(Σ)q whenever
p ≤ q, we are guaranteed that both L1, L2 ∈ R(Σ)n. However, by the definition of R(Σ)n+1

(that’s why we defined it this way!), we have L1 ∪ L2 ∈ R(Σ)n+1 ⊆ R(Σ). The same
argument proves that L1L2 ∈ R(Σ)n+1 ⊆ R(Σ). Also, if L ∈ R(Σ)n, we immediately have
L∗ ∈ R(Σ)n+1 ⊆ R(Σ). Therefore, R(Σ) has properties (1) and (2)(a)(b)(c).

(ii) Let L be any family of languages having properties (1) and (2)(a)(b)(c). We need to
prove that R(Σ) ⊆ L. If we can prove that R(Σ)n ⊆ L, for all n ≥ 0, we are done (since
then, R(Σ) =

⋃
n≥0R(Σ)n ⊆ L). We prove by induction on n that R(Σ)n ⊆ L, for all n ≥ 0.

The base case n = 0 is trivial, since L has (1), which says that R(Σ)0 ⊆ L. Assume
inductively that R(Σ)n ⊆ L. We need to prove that R(Σ)n+1 ⊆ L. Pick any L ∈ R(Σ)n+1.
Recall that

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L
∗ | L1, L2, L ∈ R(Σ)n}.

If L ∈ R(Σ)n, then L ∈ L, since R(Σ)n ⊆ L, by the induction hypothesis. Otherwise, there
are three cases:

(a) L = L1 ∪ L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we
get L1, L2 ∈ L; since L has 2(a), we have L1 ∪ L2 ∈ L.

(b) L = L1L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get
L1, L2 ∈ L; since L has 2(b), we have L1L2 ∈ L.

(c) L = L∗
1, where L1 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get

L1 ∈ L; since L has 2(c), we have L∗
1 ∈ L.

Thus, in all cases, we showed that L ∈ L, and so, R(Σ)n+1 ⊆ L, which proves the induction
step.

80 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Note: a given language L may be built up in different ways. For example,

{a, b}∗ = ({a}∗{b}∗)∗.

Students should study carefully the above proof. Although simple, it is the prototype of
many proofs appearing in the theory of computation.

5.5 Regular Expressions

The definition of the family of languages R(Σ) given in the previous section in terms of
an inductive definition is good to prove properties of these languages but is it not very
convenient to manipulate them in a practical way. To do so, it is better to introduce a
symbolic notation system, the regular expressions . Regular expressions are certain strings
formed according to rules that mimic the inductive rules for constructing the families R(Σ)n.
The set of regular expressions R(Σ) over an alphabet Σ is a language defined on an alphabet
∆ defined as follows.

Given an alphabet Σ = {a1, . . . , am}, consider the new alphabet

∆ = Σ ∪ {+, ·, ∗, (,), ∅, ϵ}.

We define the family (R(Σ)n) of languages over ∆ as follows:

R(Σ)0 = {a1, . . . , am, ∅, ϵ},
R(Σ)n+1 = R(Σ)n ∪ {(R1 +R2), (R1 ·R2), R

∗ |
R1, R2, R ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.

Note that every language R(Σ)n is finite.

For example, if Σ = {a, b}, we have

R(Σ)1 = {a, b, ∅, ϵ,
(a+ b), (b+ a), (a+ a), (b+ b), (a + ϵ), (ϵ+ a),

(b+ ϵ), (ϵ+ b), (a+ ∅), (∅+ a), (b+ ∅), (∅+ b),

(ϵ+ ϵ), (ϵ+ ∅), (∅+ ϵ), (∅+ ∅),
(a · b), (b · a), (a · a), (b · b), (a · ϵ), (ϵ · a),
(b · ϵ), (ϵ · b), (ϵ · ϵ), (a · ∅), (∅ · a),
(b · ∅), (∅ · b), (ϵ · ∅), (∅ · ϵ), (∅ · ∅),
a∗, b∗, ϵ∗, ∅∗}.

5.6. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 81

Some of the regular expressions appearing in R(Σ)2 are:

(a+ (b · b)), ((a · b) + (b · a)), ((a · b) · b),
((a · a) · (b · b)), (a · a∗), ((a · a) · b∗), (b · b)∗.

Definition 5.9. The set R(Σ) is the set of regular expressions (over Σ).

Proposition 5.5. The language R(Σ) is the smallest language which contains the symbols
a1, . . . , am, ∅, ϵ, from ∆, and such that (R1 + R2), (R1 · R2), and R∗, also belong to R(Σ),
when R1, R2, R ∈ R(Σ).

For simplicity of notation, we write

(R1R2)

instead of

(R1 ·R2).

Examples : R = (a+ b)∗, S = (a∗b∗)∗.

T = ((a + b)∗a)((a+ b) · · · (a+ b)︸ ︷︷ ︸
n

).

5.6 Regular Expressions and Regular Languages

Every regular expression R ∈ R(Σ) can be viewed as the name, or denotation, of some
language L ∈ R(Σ). Similarly, every language L ∈ R(Σ) is the interpretation (or meaning)
of some regular expression R ∈ R(Σ).

Think of a regular expression R as a program, and of L(R) as the result of the execution
or evaluation, of R by L.

This can be made rigorous by defining a function

L : R(Σ)→ R(Σ).

This function is defined recursively as follows:

L[ai] = {ai},
L[∅] = ∅,
L[ϵ] = {ϵ},

L[(R1 +R2)] = L[R1] ∪ L[R2],

L[(R1R2)] = L[R1]L[R2],

L[R∗] = L[R]∗.

82 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Proposition 5.6. For every regular expression R ∈ R(Σ), the language L[R] is regular
(version 2), i.e. L[R] ∈ R(Σ). Conversely, for every regular (version 2) language L ∈ R(Σ),
there is some regular expression R ∈ R(Σ) such that L = L[R].

Proof. To prove that L[R] ∈ R(Σ) for all R ∈ R(Σ), we prove by induction on n ≥ 0 that
if R ∈ R(Σ)n, then L[R] ∈ R(Σ)n. To prove that L is surjective, we prove by induction on
n ≥ 0 that if L ∈ R(Σ)n, then there is some R ∈ R(Σ)n such that L = L[R].

Note: the function L is not injective.

Example: If R = (a+ b)∗, S = (a∗b∗)∗, then

L[R] = L[S] = {a, b}∗.

For simplicity, we often denote L[R] as LR. As examples, we have

L[(((ab)b) + a)] = {a, abb}
L[((((a∗b)a∗)b)a∗)] = {w ∈ {a, b}∗ | w has

two b’s}
L[(((((a∗b)a∗)b)a∗)∗a∗)] = {w ∈ {a, b}∗ | w has an

even # of b’s}
L[(((((((a∗b)a∗)b)a∗)∗a∗)b)a∗)] = {w ∈ {a, b}∗ | w has an

odd # of b’s}

Remark. If
R = ((a+ b)∗a)((a+ b) · · · (a+ b)︸ ︷︷ ︸

n

),

it can be shown that any minimal DFA accepting LR has 2n+1 states. Yet, both ((a+ b)∗a)
and ((a + b) · · · (a + b)︸ ︷︷ ︸

n

) denote languages that can be accepted by “small” DFA’s (of size 2

and n+ 2).

Definition 5.10. Two regular expressions R, S ∈ R(Σ) are equivalent , denoted as R ∼= S,
iff L[R] = L[S].

It is immediate that ∼= is an equivalence relation. The relation ∼= satisfies some (nice)
identities. For example:

(((aa) + b) + c) ∼= ((aa) + (b+ c))

((aa)(b(cc))) ∼= (((aa)b)(cc))

(a∗a∗) ∼= a∗,

5.7. REGULAR EXPRESSIONS AND NFA’S 83

and more generally

((R1 +R2) +R3) ∼= (R1 + (R2 +R3)),

((R1R2)R3) ∼= (R1(R2R3)),

(R1 +R2) ∼= (R2 +R1),

(R∗R∗) ∼= R∗,

R∗∗ ∼= R∗.

There is an algorithm to test the equivalence of regular expressions, but its complexity
is exponential. Such an algorithm uses the conversion of a regular expression to an NFA,
and the subset construction for converting an NFA to a DFA. Then the problem of deciding
whether two regular expressions R and S are equivalent is reduced to testing whether two
DFA D1 and D2 accept the same languages (the equivalence problem for DFA’s). This last
problem is equivalent to testing whether

L(D1)− L(D2) = ∅ and L(D2)− L(D1) = ∅.

But L(D1) − L(D2) (and similarly L(D2) − L(D1)) is accepted by a DFA obtained by the
cross-product construction for the relative complement (with final states F1×F2 and F1×F2).
Thus, in the end, the equivalence problem for regular expressions reduces to the problem of
testing whether a DFA D = (Q,Σ, δ, q0, F) accepts the empty language, which is equivalent
to Qr ∩ F = ∅. This last problem is a reachability problem in a directed graph which is
easily solved in polynomial time.

It is an open problem to prove that the problem of testing the equivalence of regular
expressions cannot be decided in polynomial time.

In the next two sections we show the equivalence of NFA’s and regular expressions, by
providing an algorithm to construct an NFA from a regular expression, and an algorithm for
constructing a regular expression from an NFA. This will show that the regular languages
Version 1 coincide with the regular languages Version 2.

5.7 Regular Expressions and NFA’s

Proposition 5.7. There is an algorithm, which, given any regular expression R ∈ R(Σ),
constructs an NFA NR accepting LR, i.e., such that LR = L(NR).

In order to ensure the correctness of the construction as well as to simplify the description
of the algorithm it is convenient to assume that our NFA’s satisfy the following conditions:

1. Each NFA has a single final state, t, distinct from the start state, s.

2. There are no incoming transitions into the the start state, s, and no outgoing transi-
tions from the final state, t.

84 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

3. Every state has at most two incoming and two outgoing transitions.

Here is the algorithm.

For the base case, either

(a) R = ai, in which case, NR is the following NFA:

s t
ai

Figure 5.4: NFA for ai

(b) R = ϵ, in which case, NR is the following NFA:

s t
ϵ

Figure 5.5: NFA for ϵ

(c) R = ∅, in which case, NR is the following NFA:

s t

Figure 5.6: NFA for ∅

The recursive clauses are as follows:

(i) If our expression is (R+S), the algorithm is applied recursively to R and S, generating
NFA’s NR and NS, and then these two NFA’s are combined in parallel as shown in Figure
5.7:

s

s2

s1

t2

t1

t

ϵ

ϵ

ϵ

ϵ

NS

NR

Figure 5.7: NFA for (R + S)

5.7. REGULAR EXPRESSIONS AND NFA’S 85

(ii) If our expression is (R ·S), the algorithm is applied recursively to R and S, generating
NFA’s NR and NS, and then these NFA’s are combined sequentially as shown in Figure 5.8
by merging the “old” final state, t1, of NR, with the “old” start state, s2, of NS:

s1 t1 t2NR NS

Figure 5.8: NFA for (R · S)

Note that since there are no incoming transitions into s2 in NS, once we enter NS, there
is no way of reentering NR, and so the construction is correct (it yields the concatenation
LRLS).

(iii) If our expression is R∗, the algorithm is applied recursively to R, generating the NFA
NR. Then we construct the NFA shown in Figure 5.9 by adding an ϵ-transition from the
“old” final state, t1, of NR to the “old” start state, s1, of NR and, as ϵ is not necessarily
accepted by NR, we add an ϵ-transition from s to t:

s s1 t1 t
ϵ ϵ

ϵ

ϵ

NR

Figure 5.9: NFA for R∗

Since there are no outgoing transitions from t1 in NR, we can only loop back to s1 from
t1 using the new ϵ-transition from t1 to s1 and so the NFA of Figure 5.9 does accept L∗

R.

The algorithm that we just described is sometimes called the “sombrero construction.”

As a corollary of this construction, we get

Reg. languages version 2 ⊆ Reg. languages, version 1.

The reader should check that if one constructs the NFA corresponding to the regular
expression (a+ b)∗abb and then applies the subset construction, one get the following DFA:

86 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 5.10: A non-minimal DFA for {a, b}∗{abb}

We now consider the construction of a regular expression from an NFA.

Proposition 5.8. There is an algorithm, which, given any NFA N , constructs a regular
expression R ∈ R(Σ), denoting L(N), i.e., such that LR = L(N).

As a corollary,

Reg. languages version 1 ⊆ Reg. languages, version 2.

This is the node elimination algorithm.

The general idea is to allow more general labels on the edges of an NFA, namely, regular
expressions. Then, such generalized NFA’s are simplified by eliminating nodes one at a time,
and readjusting labels.

Preprocessing, phase 1:

If necessary, we need to add a new start state with an ϵ-transition to the old start state,
if there are incoming edges into the old start state.

If necessary, we need to add a new (unique) final state with ϵ-transitions from each of the
old final states to the new final state, if there is more than one final state or some outgoing
edge from any of the old final states.

At the end of this phase, the start state, say s, is a source (no incoming edges), and the
final state, say t, is a sink (no outgoing edges).

Preprocessing, phase 2:

We need to “flatten” parallel edges. For any pair of states (p, q) (p = q is possible), if
there are k edges from p to q labeled u1, . . ., uk, then create a single edge labeled with the
regular expression

u1 + · · ·+ uk.

5.7. REGULAR EXPRESSIONS AND NFA’S 87

For any pair of states (p, q) (p = q is possible) such that there is no edge from p to q, we
put an edge labeled ∅.

At the end of this phase, the resulting “generalized NFA” is such that for any pair of
states (p, q) (where p = q is possible), there is a unique edge labeled with some regular
expression denoted as Rp,q. When Rp,q = ∅, this really means that there is no edge from p
to q in the original NFA N .

By interpreting each Rp,q as a function call (really, a macro) to the NFA Np,q accepting
L[Rp,q] (constructed using the previous algorithm), we can verify that the original language
L(N) is accepted by this new generalized NFA.

Node elimination only applies if the generalized NFA has at least one node distinct
from s and t.

Pick any node r distinct from s and t. For every pair (p, q) where p ̸= r and q ̸= r,
replace the label of the edge from p to q as indicated below:

Rr,r

Rp,q

Rp,r Rr,q

p q

r

Figure 5.11: Before Eliminating node r

88 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Rp,q +Rp,rR∗
r,rRr,q

p q

Figure 5.12: After Eliminating node r

At the end of this step, delete the node r and all edges adjacent to r.

Note that p = q is possible, in which case the triangle is “flat”. It is also possible that
p = s or q = t. Also, this step is performed for all pairs (p, q), which means that both (p, q)
and (q, p) are considered (when p ̸= q)).

Note that this step only has an effect if there are edges from p to r and from r to q in
the original NFA N . Otherwise, r can simply be deleted, as well as the edges adjacent to r.

Other simplifications can be made. For example, when Rr,r = ∅, we can simplify
Rp,rR∗

r,rRr,q to Rp,rRr,q. When Rp,q = ∅, we have Rp,rR∗
r,rRr,q.

The order in which the nodes are eliminated is irrelevant, although it affects the size of
the final expression.

The algorithm stops when the only remaining nodes are s and t. Then, the label R of
the edge from s to t is a regular expression denoting L(N).

For example, let

L = {w ∈ Σ∗ | w contains an odd number of a’s

or an odd number of b’s}.

An NFA for L after the preprocessing phase is:

5.7. REGULAR EXPRESSIONS AND NFA’S 89

0

1 2

3 4

5

ϵ

a

a

bb

a

a

bb ϵ

ϵ

ϵ

Figure 5.13: NFA for L (after preprocessing phase)

After eliminating node 2:

0 1

3 4

5

ϵ

ab

ba
bb

a

a

a

ϵ+ b

ϵ

aa

bb

Figure 5.14: NFA for L (after eliminating node 2)

After eliminating node 3:

90 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

0 1

4

5

ϵ

ab+ ba

ab+ ba

a + b

ϵ+ a + b

aa + bb

aa + bb

Figure 5.15: NFA for L (after eliminating node 3)

After eliminating node 4:

0 1 5
ϵ T

S

Figure 5.16: NFA for L (after eliminating node 4)

where

T = a + b+ (ab+ ba)(aa + bb)∗(ϵ+ a+ b)

and

S = aa + bb+ (ab+ ba)(aa + bb)∗(ab+ ba).

Finally, after eliminating node 1, we get:

R = (aa+ bb+ (ab+ ba)(aa + bb)∗(ab+ ba))∗(a + b+ (ab+ ba)(aa + bb)∗(ϵ+ a+ b)).

5.8. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 91

5.8 Right-Invariant Equivalence Relations on Σ∗

The purpose of this section is to give one more characterization of the regular languages in
terms of certain kinds of equivalence relations on strings. Pushing this characterization a bit
further, we will be able to show how minimal DFA’s can be found.

Let D = (Q,Σ, δ, q0, F) be a DFA. The DFA D may be redundant, for example, if there
are states that are not accessible from the start state. The set Qr of accessible or reachable
states is the subset of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

If Q ̸= Qr, we can “clean up” D by deleting the states in Q−Qr and restricting the transition
function δ to Qr. This way, we get an equivalent DFA Dr such that L(D) = L(Dr), where
all the states of Dr are reachable. From now on, we assume that we are dealing with DFA’s
such that D = Dr, called trim, or reachable.

Recall that an equivalence relation ≃ on a set A is a relation which is reflexive, symmetric,
and transitive. Given any a ∈ A, the set

{b ∈ A | a ≃ b}

is called the equivalence class of a, and it is denoted as [a]≃, or even as [a]. Recall that
for any two elements a, b ∈ A, [a] ∩ [b] = ∅ iff a ̸≃ b, and [a] = [b] iff a ≃ b. The set of
equivalence classes associated with the equivalence relation ≃ is a partition Π of A (also
denoted as A/ ≃). This means that it is a family of nonempty pairwise disjoint sets whose
union is equal to A itself. The equivalence classes are also called the blocks of the partition
Π. The number of blocks in the partition Π is called the index of ≃ (and Π).

Given any two equivalence relations ≃1 and ≃2 with associated partitions Π1 and Π2,

≃1 ⊆≃2

iff every block of the partition Π1 is contained in some block of the partition Π2. Then, every
block of the partition Π2 is the union of blocks of the partition Π1, and we say that ≃1 is
a refinement of ≃2 (and similarly, Π1 is a refinement of Π2). Note that Π2 has at most as
many blocks as Π1 does.

We now define an equivalence relation on strings induced by a DFA. This equivalence is
a kind of “observational” equivalence, in the sense that we decide that two strings u, v are
equivalent iff, when feeding first u and then v to the DFA, u and v drive the DFA to the
same state. From the point of view of the observer, u and v have the same effect (reaching
the same state).

Definition 5.11. Given a DFA D = (Q,Σ, δ, q0, F), we define the relation ≃D on Σ∗ as
follows: for any two strings u, v ∈ Σ∗,

u ≃D v iff δ∗(q0, u) = δ∗(q0, v).

92 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Example 5.3. We can figure out what the equivalence classes of ≃D are for the following
DFA:

a b

0 1 0

1 2 1

2 0 2

with 0 both start state and (unique) final state. For example

abbabbb ≃D aa

ababab ≃D ϵ

bba ≃D a.

There are three equivalences classes:

[ϵ]≃, [a]≃, [aa]≃.

Observe that L(D) = [ϵ]≃. Also, the equivalence classes are in one–to–one correspondence
with the states of D.

The relation ≃D turns out to have some interesting properties. In particular, it is right-
invariant , which means that for all u, v, w ∈ Σ∗, if u ≃ v, then uw ≃ vw.

Proposition 5.9. Given any (trim) DFA D = (Q,Σ, δ, q0, F), the relation ≃D is an equiv-
alence relation which is right-invariant and has finite index. Furthermore, if Q has n states,
then the index of ≃D is n, and every equivalence class of ≃D is a regular language. Finally,
L(D) is the union of some of the equivalence classes of ≃D.

Proof. The fact that ≃D is an equivalence relation is a trivial verification. To prove that ≃D

is right-invariant, we first prove by induction on the length of v that for all u, v ∈ Σ∗, for all
p ∈ Q,

δ∗(p, uv) = δ∗(δ∗(p, u), v).

Then, if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), we have

δ∗(q0, uw) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, vw),

which means that uw ≃D vw. Thus, ≃D is right-invariant. We still have to prove that ≃D

has index n. Define the function f : Σ∗ → Q such that

f(u) = δ∗(q0, u).

5.8. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 93

Note that if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), then f(u) = f(v). Thus, the
function f : Σ∗ → Q has the same value on all the strings in some equivalence class [u], so
it induces a function f̂ : Π→ Q defined such that

f̂([u]) = f(u)

for every equivalence class [u] ∈ Π, where Π = Σ∗/ ≃ is the partition associated with
≃D. This function is well defined since f(v) has the same value for all elements v in the
equivalence class [u].

However, the function f̂ : Π→ Q is injective (one-to-one), since f̂([u]) = f̂([v]) is equiva-
lent to f(u) = f(v) (since by definition of f̂ we have f̂([u]) = f(u) and f̂([v]) = f(v)), which
by definition of f means that δ∗(q0, u) = δ∗(q0, v), which means precisely that u ≃D v, that
is, [u] = [v].

Since Q has n states, Π has at most n blocks. Moreover, since every state is accessible, for
every q ∈ Q, there is some w ∈ Σ∗ so that δ∗(q0, w) = q, which shows that f̂([w]) = f(w) = q.
Consequently, f̂ is also surjective. But then, being injective and surjective, f̂ is bijective and
Π has exactly n blocks.

Every equivalence class of Π is a set of strings of the form

{w ∈ Σ∗ | δ∗(q0, w) = p},

for some p ∈ Q, which is accepted by the DFA

Dp = (Q,Σ, δ, q0, {p})

obtained from D by changing F to {p}. Thus, every equivalence class is a regular language.
Finally, since

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}

=
⋃

f∈F

{w ∈ Σ∗ | δ∗(q0, w) = f}

=
⋃

f∈F

L(Df),

we see that L(D) is the union of the equivalence classes corresponding to the final states in
F .

One should not be too optimistic and hope that every equivalence relation on strings is
right-invariant.

Example 5.4. For example, if Σ = {a}, the equivalence relation ≃ given by the partition

{
ϵ, a, a4, a9, a16, . . . , an

2
, . . . | n ≥ 0

}
∪
{
a2, a3, a5, a6, a7, a8, . . . , am, . . . | m is not a square

}

94 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

we have a ≃ a4, yet by concatenating on the right with a5, since aa5 = a6 and a4a5 = a9 we
get

a6 ̸≃ a9,

that is, a6 and a9 are not equivalent. It turns out that the problem is that neither equivalence
class is a regular language.

It is worth noting that a right-invariant equivalence relation is not necessarily left-
invariant , which means that if u ≃ v then wu ≃ wv.

Example 5.5. For example, if ≃ is given by the four equivalence classes

C1 = {bb}∗, C2 = {bb}∗a, C3 = b{bb}∗, C4 = {bb}∗a{a, b}+ ∪ b{bb}∗a{a, b}∗,

then we can check that ≃ is right-invariant by figuring out the inclusions Cia ⊆ Cj and
Cib ⊆ Cj , which are recorded in the following table:

a b

C1 C2 C3

C2 C4 C4

C3 C4 C1

C4 C4 C4

However, both ab, ba ∈ C4, yet bab ∈ C4 and bba ∈ C2, so ≃ is not left-invariant.

The remarkable fact due to Myhill and Nerode is that Proposition 5.9 has a converse.
Indeed, given a right-invariant equivalence relation of finite index it is possible to reconstruct
a DFA, and by a suitable choice of final state, every equivalence class is accepted by such a
DFA. Let us show how this DFA is constructed using a simple example.

Example 5.6. Consider the equivalence relation ≃ on {a, b}∗ given by the three equivalence
classes

C1 = {ϵ}, C2 = a{a, b}∗, C3 = b{a, b}∗.
We leave it as an easy exercise to check that ≃ is right-invariant. For example, if u ≃ v and
u, v ∈ C2, then u = ax and v = ay for some x, y ∈ {a, b}∗, so for any w ∈ {a, b}∗ we have
uw = axw and vw = ayw, which means that we also have uw, vw ∈ C2, thus uw ≃ vw.

For any subset C ⊆ {a, b}∗ and any string w ∈ {a, b}∗ define Cw as the set of strings

Cw = {uw | u ∈ C}.

There are two reasons why a DFA can be recovered from the right-invariant equivalence
relation ≃:

5.8. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 95

(1) For every equivalence class Ci and every string w, there is a unique equivalence class
Cj such that

Ciw ⊆ Cj.

Actually, it is enough to check the above property for strings w of length 1 (i.e. symbols
in the alphabet) because the property for arbitrary strings follows by induction.

(2) For every w ∈ Σ∗ and every class Ci,

C1w ⊆ Ci iff w ∈ Ci,

where C1 is the equivalence class of the empty string.

We can make a table recording these inclusions.

Example 5.7. Continuing Example 5.6, we get:

a b

C1 C2 C3

C2 C2 C2

C3 C3 C3

For example, from C1 = {ϵ} we have C1a = {a} ⊆ C2 and C1b = {b} ⊆ C3, for C2 =
a{a, b}∗, we have C2a = a{a, b}∗a ⊆ C2 and C2a = a{a, b}∗b ⊆ C2, and for C3 = b{a, b}∗, we
have C3a = b{a, b}∗a ⊆ C3 and C3b = b{a, b}∗b ⊆ C3.

The key point is that the above table is the transition table of a DFA with start state
C1 = [ϵ]. Furthermore, if Ci (i = 1, 2, 3) is chosen as a single final state, the corresponding
DFA Di accepts Ci. This is the converse of Myhill-Nerode!

Observe that the inclusions Ciw ⊆ Cj may be strict inclusions. For example, C1a = {a}
is a proper subset of C2 = a{a, b}∗

Let us do another example.

Example 5.8. Consider the equivalence relation ≃ given by the four equivalence classes

C1 = {ϵ}, C2 = {a}, C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗.

We leave it as an easy exercise to check that ≃ is right-invariant.

We obtain the following table of inclusions Cia ⊆ Cj and Cib ⊆ Cj:

96 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

For example, from C3 = {b}+ we get C3a = {b}+a ⊆ C4, and C3b = {b}+b ⊆ C3.

The above table is the transition function of a DFA with four states and start state C1.
If Ci (i = 1, 2, 3, 4) is chosen as a single final state, the corresponding DFA Di accepts Ci.

Here is the general result.

Proposition 5.10. Given any equivalence relation ≃ on Σ∗, if ≃ is right-invariant and has
finite index n, then every equivalence class (block) in the partition Π associated with ≃ is a
regular language.

Proof. Let C1, . . . , Cn be the blocks of Π, and assume that C1 = [ϵ] is the equivalence class
of the empty string.

First, we claim that for every block Ci and every w ∈ Σ∗, there is a unique block Cj such
that Ciw ⊆ Cj, where Ciw = {uw | u ∈ Ci}.

For every u ∈ Ci, the string uw belongs to one and only one of the blocks of Π, say Cj.
For any other string v ∈ Ci, since (by definition) u ≃ v, by right invariance, we get uw ≃ vw,
but since uw ∈ Cj and Cj is an equivalence class, we also have vw ∈ Cj. This proves the
first claim.

We also claim that for every w ∈ Σ∗, for every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

If C1w ⊆ Ci, since C1 = [ϵ], we have ϵw = w ∈ Ci. Conversely, if w ∈ Ci, for any
v ∈ C1 = [ϵ], since ϵ ≃ v, by right invariance we have w ≃ vw, and thus vw ∈ Ci, which
shows that C1w ⊆ Ci.

For every class Ck, let
Dk = ({1, . . . , n},Σ, δ, 1, {k}),

where δ(i, a) = j iff Cia ⊆ Cj. We will prove the following equivalence:

δ∗(i, w) = j iff Ciw ⊆ Cj.

For this, we prove the following two implications by induction on |w|:

(a) If δ∗(i, w) = j, then Ciw ⊆ Cj , and

5.8. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 97

(b) If Ciw ⊆ Cj, then δ∗(i, w) = j.

The base case (w = ϵ) is trivial for both (a) and (b). We leave the proof of the induction
step for (a) as an exercise and give the proof of the induction step for (b) because it is more
subtle. Let w = ua, with a ∈ Σ and u ∈ Σ∗. If Ciua ⊆ Cj, then by the first claim, we know
that there is a unique block, Ck, such that Ciu ⊆ Ck. Furthermore, there is a unique block,
Ch, such that Cka ⊆ Ch, but Ciu ⊆ Ck implies Ciua ⊆ Cka so we get Ciua ⊆ Ch. However,
by the uniqueness of the block, Cj, such that Ciua ⊆ Cj, we must have Ch = Cj . By the
induction hypothesis, as Ciu ⊆ Ck, we have

δ∗(i, u) = k

and, by definition of δ, as Cka ⊆ Cj (= Ch), we have δ(k, a) = j, so we deduce that

δ∗(i, ua) = δ(δ∗(i, u), a) = δ(k, a) = j,

as desired. Then, using the equivalence just proved and the second claim, we have

L(Dk) = {w ∈ Σ∗ | δ∗(1, w) ∈ {k}}
= {w ∈ Σ∗ | δ∗(1, w) = k}
= {w ∈ Σ∗ | C1w ⊆ Ck}
= {w ∈ Σ∗ | w ∈ Ck} = Ck,

proving that every block, Ck, is a regular language.

! In general it is false that Cia = Cj for some block Cj, and we can only claim that
Cia ⊆ Cj.

We can combine Proposition 5.9 and Proposition 5.10 to get the following characterization
of a regular language due to Myhill and Nerode:

Theorem 5.11. (Myhill-Nerode) A language L (over an alphabet Σ) is a regular language iff
it is the union of some of the equivalence classes of an equivalence relation ≃ on Σ∗, which
is right-invariant and has finite index.

Given two DFA’sD1 andD2, whether or not there is a morphism h : D1 → D2 depends on
the relationship between ≃D1 and ≃D2 . More specifically, we have the following proposition:

Proposition 5.12. Given two DFA’s D1 and D2, with D1 trim, the following properties
hold:

(1) There is a DFA morphism h : D1 → D2 iff

≃D1 ⊆≃D2 .

98 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

(2) There is a DFA F -map h : D1 → D2 iff

≃D1 ⊆≃D2 and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h : D1 → D2 iff

≃D1 ⊆≃D2 and L(D2) ⊆ L(D1).

Furthermore, h is surjective iff D2 is trim.

Theorem 5.11 can also be used to prove that certain languages are not regular. A general
scheme (not the only one) goes as follows: If L is not regular, then it must be infinite.
Now, we argue by contradiction. If L was regular, then by Myhill-Nerode, there would be
some equivalence relation ≃, which is right-invariant and of finite index, and such that L is
the union of some of the classes of ≃. Because Σ∗ is infinite and ≃ has only finitely many
equivalence classes, there are strings x, y ∈ Σ∗ with x ̸= y so that

x ≃ y.

If we can find a third string, z ∈ Σ∗, such that

xz ∈ L and yz /∈ L,

then we reach a contradiction. Indeed, by right invariance, from x ≃ y, we get xz ≃ yz. But,
L is the union of equivalence classes of ≃, so if xz ∈ L, then we should also have yz ∈ L,
contradicting yz /∈ L. Therefore, L is not regular.

Then the scenario is this: to prove that L is not regular, first we check that L is infinite.
If so, we try finding three strings x, y, z, where and x and y ̸= x are prefixes of strings in L
such that

x ≃ y,

where ≃ is a right-invariant relation of finite index such that L is the union of equivalence
of L (which must exist by Myhill–Nerode since we are assuming by contradiction that L is
regular), and where z is chosen so that

xz ∈ L and yz ̸∈ L.

Example 5.9. For example, we prove that L = {anbn | n ≥ 1} is not regular.

Assuming for the sake of contradiction that L is regular, there is some equivalence relation
≃ which is right-invariant and of finite index and such that L is the union of some of the
classes of ≃. Since the sequence

a, aa, aaa, . . . , ai, . . .

is infinite and ≃ has a finite number of classes, two of these strings must belong to the
same class, which means that ai ≃ aj for some i ̸= j. But since ≃ is right invariant, by
concatenating with bi on the right, we see that aibi ≃ ajbi for some i ̸= j. However aibi ∈ L,
and since L is the union of classes of ≃, we also have ajbi ∈ L for i ̸= j, which is absurd,
given the definition of L. Thus, in fact, L is not regular.

5.8. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 99

Here is another illustration of the use of the Myhill-Nerode Theorem to prove that a
language is not regular.

Example 5.10. We claim that the language,

L′ = {an! | n ≥ 1},

is not regular, where n! (n factorial) is given by 0! = 1 and (n+ 1)! = (n + 1)n!.

Assume L′ is regular. Then, there is some equivalence relation ≃ which is right-invariant
and of finite index and such that L′ is the union of some of the classes of ≃. Since the
sequence

a, a2, . . . , an, . . .

is infinite, two of these strings must belong to the same class, which means that ap ≃ aq for
some p, q with 1 ≤ p < q. As q! ≥ q for all q ≥ 0 and q > p, we can concatenate on the right
with aq!−p and we get

apaq!−p ≃ aqaq!−p,

that is,
aq! ≃ aq!+q−p.

Since p < q we have q! < q! + q − p. If we can show that

q! + q − p < (q + 1)!

we will obtain a contradiction because then aq!+q−p /∈ L′, yet aq!+q−p ≃ aq! and aq! ∈ L′,
contradicting Myhill-Nerode. Now, as 1 ≤ p < q, we have q − p ≤ q − 1, so if we can prove
that

q! + q − p ≤ q! + q − 1 < (q + 1)!

we will be done. However, q! + q − 1 < (q + 1)! is equivalent to

q − 1 < (q + 1)!− q!,

and since (q + 1)!− q! = (q + 1)q!− q! = qq!, we simply need to prove that

q − 1 < q ≤ qq!,

which holds for q ≥ 1.

There is another version of the Myhill-Nerode Theorem involving congruences which is
also quite useful. An equivalence relation, ≃, on Σ∗ is left and right-invariant iff for all
x, y, u, v ∈ Σ∗,

if x ≃ y then uxv ≃ uyv.

An equivalence relation, ≃, on Σ∗ is a congruence iff for all u1, u2, v1, v2 ∈ Σ∗,

if u1 ≃ v1 and u2 ≃ v2 then u1u2 ≃ v1v2.

100 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

It is easy to prove that an equivalence relation is a congruence iff it is left and right-
invariant.

For example, assume that ≃ is a left and right-invariant equivalence relation, and assume
that

u1 ≃ v1 and u2 ≃ v2.

By right-invariance applied to u1 ≃ v1 , we get

u1u2 ≃ v1u2

and by left-invariance applied to u2 ≃ v2 we get

v1u2 ≃ v1v2.

By transitivity, we conclude that
u1u2 ≃ v1v2.

which shows that ≃ is a congruence.

Proving that a congruence is left and right-invariant is even easier.

There is a version of Proposition 5.9 that applies to congruences and for this we define
the relation ∼D as follows: For any (trim) DFA, D = (Q,Σ, δ, q0, F), for all x, y ∈ Σ∗,

x ∼D y iff (∀q ∈ Q)(δ∗(q, x) = δ∗(q, y)).

Proposition 5.13. Given any (trim) DFA, D = (Q,Σ, δ, q0, F), the relation ∼D is an
equivalence relation which is left and right-invariant and has finite index. Furthermore, if
Q has n states, then the index of ∼D is at most nn and every equivalence class of ∼D is a
regular language. Finally, L(D) is the union of some of the equivalence classes of ∼D.

Proof. We leave most of the proof of Proposition 5.13 as an exercise. The last two parts of
the proposition are proved using the following facts:

(1) Since ∼D is left and right-invariant and has finite index, in particular, ∼D is right-
invariant and has finite index, so by Proposition 5.10 every equivalence class of ∼D is
regular.

(2) Observe that
∼D ⊆≃D,

since the condition δ∗(q, x) = δ∗(q, y) holds for every q ∈ Q, so in particular for q = q0.
But then, every equivalence class of ≃D is the union of equivalence classes of ∼D and
since, by Proposition 5.9, L is the union of equivalence classes of ≃D, we conclude that
L is also the union of equivalence classes of ∼D.

This completes the proof.

5.9. FINDING MINIMAL DFA’S 101

Using Proposition 5.13 and Proposition 5.10, we obtain another version of the Myhill-
Nerode Theorem.

Theorem 5.14. (Myhill-Nerode, Congruence Version) A language L (over an alphabet Σ)
is a regular language iff it is the union of some of the equivalence classes of an equivalence
relation ≃ on Σ∗, which is a congruence and has finite index.

We now consider an equivalence relation associated with a language L.

5.9 Finding minimal DFA’s

Given any language L (not necessarily regular), we can define an equivalence relation ρL on
Σ∗ which is right-invariant, but not necessarily of finite index. The equivalence relation ρL
is such that L is the union of equivalence classes of ρL. Furthermore, when L is regular, the
relation ρL has finite index. In fact, this index is the size of a smallest DFA accepting L. As
a consequence, if L is regular, a simple modification of the proof of Proposition 5.10 applied
to ≃ = ρL yields a minimal DFA DρL accepting L.

Then, given any trim DFA D accepting L, the equivalence relation ρL can be translated
to an equivalence relation ≡ on states, in such a way that for all u, v ∈ Σ∗,

uρLv iff ϕ(u) ≡ ϕ(v),

where ϕ : Σ∗ → Q is the function (run the DFA D on u from q0) given by

ϕ(u) = δ∗(q0, u).

One can then construct a quotient DFA D/ ≡ whose states are obtained by merging all
states in a given equivalence class of states into a single state, and the resulting DFA D/ ≡
is a mininal DFA. Even though D/ ≡ appears to depend on D, it is in fact unique, and
isomorphic to the abstract DFA DρL induced by ρL.

The last step in obtaining the minimal DFA D/ ≡ is to give a constructive method to
compute the state equivalence relation ≡. This can be done by constructing a sequence of
approximations ≡i, where each ≡i+1 refines ≡i. It turns out that if D has n states, then
there is some index i0 ≤ n− 2 such that

≡j =≡i0 for all j ≥ i0 + 1,

and that
≡=≡i0 .

Furthermore, ≡i+1 can be computed inductively from ≡i. In summary, we obtain a iterative
algorithm for computing ≡ that terminates in at most n− 2 steps.

102 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Definition 5.12. Given any language L (over Σ), we define the right-invariant equivalence
ρL associated with L as the relation on Σ∗ defined as follows: for any two strings u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

It is clear that the relation ρL is an equivalence relation, and it is right-invariant. To
show right-invariance, argue as follows: if uρLv, then for any w ∈ Σ∗, since uρLv means that

uz ∈ L iff vz ∈ L

for all z ∈ Σ∗, in particular the above equivalence holds for all z of the form z = wy for any
arbitary y ∈ Σ∗, so we have

uwy ∈ L iff vwy ∈ L

for all y ∈ Σ∗, which means that uwρLvw.

It is also clear that L is the union of the equivalence classes of strings in L. This is
because if u ∈ L and uρLv, by letting w = ϵ in the definition of ρL, we get

u ∈ L iff v ∈ L,

and since u ∈ L, we also have v ∈ L. This implies that if u ∈ L then [u]ρL ⊆ L and so,

L =
⋃

u∈L

[u]ρL.

Example 5.11. For example, consider the regular language

L = {a} ∪ {bm | m ≥ 1}.

We leave it as an exercise to show that the equivalence relation ρL consists of the four
equivalence classes

C1 = {ϵ}, C2 = {a}, C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗

encountered earlier in Example 5.8. Observe that

L = C2 ∪ C3.

When L is regular, we have the following remarkable result:

Proposition 5.15. Given any regular language L, for any (trim) DFA D = (Q,Σ, δ, q0, F)
such that L = L(D), ρL is a right-invariant equivalence relation, and we have ≃D ⊆ ρL.
Furthermore, if ρL has m classes and Q has n states, then m ≤ n.

5.9. FINDING MINIMAL DFA’S 103

Proof. By definition, u ≃D v iff δ∗(q0, u) = δ∗(q0, v). Since w ∈ L(D) iff δ∗(q0, w) ∈ F , the
fact that uρLv can be expressed as

∀w ∈ Σ∗(uw ∈ L iff vw ∈ L)

iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F)

iff

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F),

and if δ∗(q0, u) = δ∗(q0, v), this shows that uρLv. Since the number of classes of ≃D is n and
≃D ⊆ ρL, the equivalence relation ρL has fewer classes than ≃D, and m ≤ n.

Proposition 5.15 shows that when L is regular, the index m of ρL is finite, and it is a
lower bound on the size of all DFA’s accepting L. It remains to show that a DFA with m
states accepting L exists.

However, going back to the proof of Proposition 5.10 starting with the right-invariant
equivalence relation ρL of finite index m, if L is the union of the classes Ci1 , . . . , Cik , the
DFA

DρL = ({1, . . . , m},Σ, δ, 1, {i1, . . . , ik}),
where δ(i, a) = j iff Cia ⊆ Cj, is such that L = L(DρL).

In summary, if L is regular, then the index of ρL is equal to the number of states of a
minimal DFA for L, and DρL is a minimal DFA accepting L.

Example 5.12. For example, if

L = {a} ∪ {bm | m ≥ 1}.

then we saw in Example 5.11 that ρL consists of the four equivalence classes

C1 = {ϵ}, C2 = {a}, C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗,

and we showed in Example 5.8 that the transition table of DρL is given by

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

By picking the final states to be C2 and C3, we obtain the minimal DFA DρL accepting
L = {a} ∪ {bm | m ≥ 1}.

In the next section, we give an algorithm which allows us to find DρL, given any DFA D
accepting L. This algorithms finds which states of D are equivalent.

104 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

5.10 State Equivalence and Minimal DFA’s

The proof of Proposition 5.15 suggests the following definition of an equivalence between
states:

Definition 5.13. Given any DFA D = (Q,Σ, δ, q0, F), the relation ≡ on Q, called state
equivalence, is defined as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F). (∗)

When p ≡ q, we say that p and q are indistinguishable.

It is trivial to verify that ≡ is an equivalence relation, and that it satisfies the following
property:

if p ≡ q then δ(p, a) ≡ δ(q, a), for all a ∈ Σ.

To prove the above, since the condition defining ≡ must hold for all strings w ∈ Σ∗, in
particular it must hold for all strings of the form w = au with a ∈ Σ and u ∈ Σ∗, so if p ≡ q
then we have

(∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(p, au) ∈ F iff δ∗(q, au) ∈ F)

iff (∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(δ∗(p, a), u) ∈ F iff δ∗(δ∗(q, a), u) ∈ F)

iff (∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(δ(p, a), u) ∈ F iff δ∗(δ(q, a), u) ∈ F)

iff (∀a ∈ Σ)(δ(p, a) ≡ δ(q, a)).

Since condition (∗) in Definition 5.13 must hold for w = ϵ, in this case we get

δ∗(p, ϵ) ∈ F iff δ∗(q, ϵ) ∈ F,

which, since δ∗(p, ϵ) = p and δ∗(q, ϵ) = q, is equivalent to

p ∈ F iff q ∈ F.

Therefore, if two states p, q are equivalent, then either both p, q ∈ F or both p, q ∈ F . This
implies that a final state and a rejecting states are never equivalent.

Example 5.13. The reader should check that states A and C in the DFA below are equiv-
alent and that no other distinct states are equivalent.

5.10. STATE EQUIVALENCE AND MINIMAL DFA’S 105

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 5.17: A non-minimal DFA for {a, b}∗{abb}

It is illuminating to express state equivalence as the equality of two languages. Given the
DFA D = (Q,Σ, δ, q0, F), let Dp = (Q,Σ, δ, p, F) be the DFA obtained from D by redefining
the start state to be p. Then, it is clear that

p ≡ q iff L(Dp) = L(Dq).

This simple observation implies that there is an algorithm to test state equivalence.
Indeed, we simply have to test whether the DFA’s Dp and Dq accept the same language
and this can be done using the cross-product construction. Indeed, L(Dp) = L(Dq) iff
L(Dp)−L(Dq) = ∅ and L(Dq)−L(Dp) = ∅. Now, if (Dp×Dq)1−2 denotes the cross-product
DFA with starting state (p, q) and with final states F × (Q− F) and (Dp ×Dq)2−1 denotes
the cross-product DFA also with starting state (p, q) and with final states (Q− F)× F , we
know that

L((Dp ×Dq)1−2) = L(Dp)− L(Dq) and L((Dp ×Dq)2−1) = L(Dq)− L(Dp),

so all we need to do if to test whether (Dp × Dq)1−2 and (Dp × Dq)2−1 accept the empty
language. However, we know that this is the case iff the set of states reachable from (p, q)
in (Dp ×Dq)1−2 contains no state in F × (Q− F) and the set of states reachable from (p, q)
in (Dp ×Dq)2−1 contains no state in (Q− F)× F .

Actually, the graphs of (Dp ×Dq)1−2 and (Dp ×Dq)2−1 are identical, so we only need to
check that no state in (F × (Q−F))∪ ((Q−F)×F) is reachable from (p, q) in that graph.
This algorithm to test state equivalence is not the most efficient but it is quite reasonable
(it runs in polynomial time).

If L = L(D), Theorem 5.16 below shows the relationship between ρL and ≡ and, more
generally, between the DFA, DρL , and the DFA, D/ ≡, obtained as the quotient of the DFA
D modulo the equivalence relation ≡ on Q.

The minimal DFA D/ ≡ is obtained by merging the states in each block Ci of the
partition Π associated with ≡, forming states corresponding to the blocks Ci, and drawing

106 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

a transition on input a from a block Ci to a block Cj of Π iff there is a transition q = δ(p, a)
from any state p ∈ Ci to any state q ∈ Cj on input a.

The start state is the block containing q0, and the final states are the blocks consisting
of final states.

Example 5.14. For example, consider the DFA D1 accepting L = {ab, ba}∗ shown in Figure
5.18.

0 1 2

3 4 5

a

b

b

a

a

ba

b

a

b

a, b

Figure 5.18: A nonminimal DFA D1 for L = {ab, ba}∗

This is not a minimal DFA. In fact,

0 ≡ 2 and 3 ≡ 5.

Here is the minimal DFA for L:

0, 2 1

3, 5 4

a

b

b aa

b

a, b

Figure 5.19: A minimal DFA D2 for L = {ab, ba}∗

The minimal DFA D2 is obtained by merging the states in the equivalence class {0, 2}
into a single state, similarly merging the states in the equivalence class {3, 5} into a single

5.10. STATE EQUIVALENCE AND MINIMAL DFA’S 107

state, and drawing the transitions between equivalence classes. We obtain the DFA shown
in Figure 5.19.

Formally, the quotient DFA D/ ≡ is defined such that

D/ ≡= (Q/ ≡,Σ, δ/ ≡, [q0]≡, F/ ≡),

where
δ/ ≡ ([p]≡, a) = [δ(p, a)]≡.

Theorem 5.16. For any (trim) DFA D = (Q,Σ, δ, q0, F) accepting the regular language
L = L(D), the function ϕ : Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

satisfies the property

uρLv iff ϕ(u) ≡ ϕ(v) for all u, v ∈ Σ∗,

and induces a bijection ϕ̂ : Σ∗/ρL → Q/ ≡, defined such that

ϕ̂([u]ρL) = [δ∗(q0, u)]≡.

Furthermore, we have
[u]ρLa ⊆ [v]ρL iff δ(ϕ(u), a) ≡ ϕ(v).

Consequently, ϕ̂ induces an isomorphism of DFA’s, ϕ̂ : DρL → D/ ≡ (i.e., an invertible F -
map whose inverse is also an F -map; we know from a homework problem that such a map,
ϕ̂, must be a proper homomorphism whose inverse is also a proper homomorphism).

Proof. Since ϕ(u) = δ∗(q0, u) and ϕ(v) = δ∗(q0, v), the fact that ϕ(u) ≡ ϕ(v) can be ex-
pressed as

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F)

iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F),

which is exactly uρLv. Therefore,

uρLv iff ϕ(u) ≡ ϕ(v).

From the above, we see that the equivalence class [ϕ(u)]≡ of ϕ(u) does not depend on the
choice of the representative in the equivalence class [u]ρL of u ∈ Σ∗, since for any v ∈ Σ∗,
if u ρL v then ϕ(u) ≡ ϕ(v), so [ϕ(u)]≡ = [ϕ(v)]≡. Therefore, the function ϕ : Σ∗ → Q maps

108 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

each equivalence class [u]ρL modulo ρL to the equivalence class [ϕ(u)]≡ modulo ≡, and so
the function ϕ̂ : Σ∗/ρL → Q/ ≡ given by

ϕ̂([u]ρL) = [ϕ(u)]≡ = [δ∗(q0, u)]≡

is well-defined. Moreover, ϕ̂ is injective, since ϕ̂([u]) = ϕ̂([v]) iff ϕ(u) ≡ ϕ(v) iff (from above)
uρvv iff [u] = [v]. Since every state in Q is accessible, for every q ∈ Q, there is some u ∈ Σ∗

so that ϕ(u) = δ∗(q0, u) = q, so ϕ̂([u]) = [q]≡ and ϕ̂ is surjective. Therefore, we have a
bijection ϕ̂ : Σ∗/ρL → Q/ ≡.

Since ϕ(u) = δ∗(q0, u), we have

δ(ϕ(u), a) = δ(δ∗(q0, u), a) = δ∗(q0, ua) = ϕ(ua),

and thus, δ(ϕ(u), a) ≡ ϕ(v) can be expressed as ϕ(ua) ≡ ϕ(v). By the previous part, this is
equivalent to uaρLv, and we claim that this is equivalent to

[u]ρLa ⊆ [v]ρL.

First, if [u]ρLa ⊆ [v]ρL , then ua ∈ [v]ρL, that is, uaρLv. Conversely, if uaρLv, then for every
u′ ∈ [u]ρL, we have u′ρLu, so by right-invariance we get u′aρLua, and since uaρLv, we get
u′aρLv, that is, u′a ∈ [v]ρL . Since u′ ∈ [u]ρL is arbitrary, we conclude that [u]ρLa ⊆ [v]ρL .
Therefore, we proved that

δ(ϕ(u), a) ≡ ϕ(v) iff [u]ρLa ⊆ [v]ρL.

It is then easy to check (do it!) that ϕ̂ induces an F -map of DFA’s which is an isomorphism
(i.e., an invertible F -map whose inverse is also an F -map), ϕ̂ : DρL → D/ ≡.

Theorem 5.16 shows that the DFA DρL is isomorphic to the DFA D/ ≡ obtained as the
quotient of the DFA D modulo the equivalence relation ≡ on Q. Since DρL is a minimal
DFA accepting L, so is D/ ≡.

Example 5.15. Consider the following DFA D,

a b

1 2 3

2 4 4

3 4 3

4 5 5

5 5 5

with start state 1 and final states 2 and 3. It is easy to see that

L(D) = {a} ∪ {bm | m ≥ 1}.

5.10. STATE EQUIVALENCE AND MINIMAL DFA’S 109

It is not hard to check that states 4 and 5 are equivalent, and no other pairs of distinct
states are equivalent. The quotient DFA D/ ≡ is obtained my merging states 4 and 5, and
we obtain the following minimal DFA:

a b

1 2 3

2 4 4

3 4 3

4 4 4

with start state 1 and final states 2 and 3. This DFA is isomorphic to the DFA DρL of
Example 5.12.

There are other characterizations of the regular languages. Among those, the character-
ization in terms of right derivatives is of particular interest because it yields an alternative
construction of minimal DFA’s.

Definition 5.14. Given any language, L ⊆ Σ∗, for any string, u ∈ Σ∗, the right derivative
of L by u, denoted L/u, is the language

L/u = {w ∈ Σ∗ | uw ∈ L}.

Theorem 5.17. If L ⊆ Σ∗ is any language, then L is regular iff it has finitely many right
derivatives. Furthermore, if L is regular, then all its right derivatives are regular and their
number is equal to the number of states of the minimal DFA’s for L.

Proof. It is easy to check that

L/u = L/v iff uρLv.

The above shows that ρL has a finite number of classes, say m, iff there is a finite number of
right derivatives, say n, and if so, m = n. If L is regular, then we know that the number of
equivalence classes of ρL is the number of states of the minimal DFA’s for L, so the number
of right derivatives of L is equal to the size of the minimal DFA’s for L.

Conversely, if the number of derivatives is finite, say m, then ρL has m classes and by
Myhill-Nerode, L is regular. It remains to show that if L is regular then every right derivative
is regular.

Let D = (Q,Σ, δ, q0, F) be a DFA accepting L. If p = δ∗(q0, u), then let

Dp = (Q,Σ, δ, p, F),

that is, D with with p as start state. It is clear that

L/u = L(Dp),

110 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

so L/u is regular for every u ∈ Σ∗. Also observe that if |Q| = n, then there are at most n
DFA’s Dp, so there is at most n right derivatives, which is another proof of the fact that a
regular language has a finite number of right derivatives.

If L is regular then the construction of a minimal DFA for L can be recast in terms of
right derivatives. Let L/u1, L/u2, . . . , L/um be the set of all the right derivatives of L. Of
course, we may assume that u1 = ϵ. We form a DFA whose states are the right derivatives,
L/ui. For every state, L/ui, for every a ∈ Σ, there is a transition on input a from L/ui to
L/uj = L/(uia). The start state is L = L/u1 and the final states are the right derivatives,
L/ui, for which ϵ ∈ L/ui.

We leave it as an exercise to check that the above DFA accepts L. One way to do this
is to recall that L/u = L/v iff uρLv and to observe that the above construction mimics the
construction of DρL as in the Myhill-Nerode proposition (Proposition 5.10). This DFA is
minimal since the number of right derivatives is equal to the size of the minimal DFA’s for
L.

We now return to state equivalence. Note that if F = ∅, then ≡ has a single block (Q),
and if F = Q, then ≡ has a single block (F). In the first case, the minimal DFA is the one
state DFA rejecting all strings. In the second case, the minimal DFA is the one state DFA
accepting all strings. When F ̸= ∅ and F ̸= Q, there are at least two states in Q, and ≡
also has at least two blocks, as we shall see shortly.

It remains to compute ≡ explicitly. This is done using a sequence of approximations. In
view of the previous discussion, we are assuming that F ̸= ∅ and F ̸= Q, which means that
n ≥ 2, where n is the number of states in Q.

Definition 5.15. Given any DFA D = (Q,Σ, δ, q0, F), for every i ≥ 0, the relation ≡i on
Q, called i-state equivalence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡i q, we say that p and q are i-indistinguishable.

Since state equivalence ≡ is defined such that

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F),

we note that testing the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

for all strings in Σ∗ is equivalent to testing the above condition for all strings of length at
most i for all i ≥ 0, i.e.

p ≡ q iff ∀i ≥ 0 ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

5.10. STATE EQUIVALENCE AND MINIMAL DFA’S 111

Since ≡i is defined such that

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F),

we conclude that
p ≡ q iff ∀i ≥ 0 (p ≡i q).

This identity can also be expressed as

≡=
⋂

i≥0

≡i .

If we assume that F ̸= ∅ and F ̸= Q, observe that ≡0 has exactly two equivalence classes
F and Q− F , since ϵ is the only string of length 0, and since the condition

δ∗(p, ϵ) ∈ F iff δ∗(q, ϵ) ∈ F

is equivalent to the condition
p ∈ F iff q ∈ F.

It is also obvious from the definition of ≡i that

≡⊆ · · · ⊆≡i+1 ⊆≡i ⊆ · · · ⊆≡1 ⊆≡0 .

If this sequence was strictly decreasing for all i ≥ 0, the partition associated with ≡i+1 would
contain at least one more block than the partition associated with ≡i and since we start with
a partition with two blocks, the partition associated with ≡i would have at least i+2 blocks.
But then, for i = n− 1, the partition associated with ≡n−1 would have at least n+1 blocks,
which is absurd since Q has only n states. Therefore, there is a smallest integer, i0 ≤ n− 2,
such that

≡i0+1 =≡i0 .

Thus, it remains to compute ≡i+1 from ≡i, which can be done using the following propo-
sition: The proposition also shows that

≡=≡i0 .

Proposition 5.18. For any (trim) DFA D = (Q,Σ, δ, q0, F), for all p, q ∈ Q, p ≡i+1 q iff
p ≡i q and δ(p, a) ≡i δ(q, a), for every a ∈ Σ. Furthermore, if F ̸= ∅ and F ̸= Q, there is a
smallest integer i0 ≤ n− 2, such that

≡i0+1 =≡i0 =≡ .

Proof. By the definition of the relation ≡i,

p ≡i+1 q iff ∀w ∈ Σ∗, |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

112 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

The trick is to observe that the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

holds for all strings of length at most i+ 1 iff it holds for all strings of length at most i and
for all strings of length between 1 and i+ 1. This is expressed as

p ≡i+1 q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F)

and

∀w ∈ Σ∗, 1 ≤ |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

Obviously, the first condition in the conjunction is p ≡i q, and since every string w such
that 1 ≤ |w| ≤ i+1 can be written as au where a ∈ Σ and 0 ≤ |u| ≤ i, the second condition
in the conjunction can be written as

∀a ∈ Σ∀u ∈ Σ∗, |u| ≤ i (δ∗(p, au) ∈ F iff δ∗(q, au) ∈ F).

However, δ∗(p, au) = δ∗(δ(p, a), u) and δ∗(q, au) = δ∗(δ(q, a), u), so that the above condition
is really

∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

Thus, we showed that

p ≡i+1 q iff p ≡i q and ∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

Thus, if ≡i+1 = ≡i for some i ≥ 0, using induction, we also have ≡i+j = ≡i for all j ≥ 1.
Since

≡=
⋂

i≥0

≡i, ≡i+1 ⊆≡i,

and since we know that there is a smallest index say i0, such that ≡j =≡i0 , for all j ≥ i0+1,
we have ≡=≡i0 .

Using Proposition 5.18, we can compute ≡ inductively, starting from ≡0= (F,Q−F), and
computing ≡i+1 from ≡i, until the sequence of partitions associated with the ≡i stabilizes.

Note that if F = Q or F = ∅, then ≡ = ≡0, and the inductive characterization of
Proposition 5.18 holds trivially.

There are a number of algorithms for computing ≡, or to determine whether p ≡ q for
some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft and Ullman. The basic idea is
to propagate inequivalence, rather than equivalence.

The method consists in forming a triangular array corresponding to all unordered pairs
(p, q), with p ̸= q (the rows and the columns of this triangular array are indexed by the

5.10. STATE EQUIVALENCE AND MINIMAL DFA’S 113

states in Q, where the entries are below the descending diagonal). Initially, the entry (p, q)
is marked iff p and q are not 0-equivalent, which means that p and q are not both in F or
not both in Q− F .

Then, we process every unmarked entry on every row as follows: for any unmarked
pair (p, q), we consider pairs (δ(p, a), δ(q, a)), for all a ∈ Σ. If any pair (δ(p, a), δ(q, a)) is
already marked, this means that δ(p, a) and δ(q, a) are inequivalent, and thus p and q are
inequivalent, and we mark the pair (p, q). We continue in this fashion, until at the end of a
round during which all the rows are processed, nothing has changed. When the algorithm
stops, all marked pairs are inequivalent, and all unmarked pairs correspond to equivalent
states.

Let us illustrates the above method.

Example 5.16. Consider the following DFA accepting {a, b}∗{abb}:

a b

A B C

B B D

C B C

D B E

E B C

The start state is A, and the set of final states is F = {E}. (This is the DFA displayed
in Figure 5.10.)

The initial (half) array is as follows, using × to indicate that the corresponding pair (say,
(E,A)) consists of inequivalent states, and to indicate that nothing is known yet.

B

C

D

E × × × ×
A B C D

After the first round, we have

B

C

D × × ×
E × × × ×

A B C D

114 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

After the second round, we have

B ×
C ×
D × × ×
E × × × ×

A B C D

Finally, nothing changes during the third round, and thus, only A and C are equivalent,
and we get the four equivalence classes

({A,C}, {B}, {D}, {E}).

We obtain the minimal DFA showed in Figure 5.20.

0 1 2 3
a b

a

b

b a

b

a

Figure 5.20: A minimal DFA accepting {a, b}∗{abb}

There are ways of improving the efficiency of this algorithm, see Hopcroft and Ullman for
such improvements. Fast algorithms for testing whether p ≡ q for some given p, q ∈ Q also
exist. One of these algorithms is based on “forward closures,” following an idea of Knuth.
Such an algorithm is related to a fast unification algorithm; see Section 5.12.

5.11 The Pumping Lemma

Another useful tool for proving that languages are not regular is the so-called pumping
lemma.

Proposition 5.19. (Pumping lemma) Given any DFA D = (Q,Σ, δ, q0, F), there is some
m ≥ 1 such that for every w ∈ Σ∗, if w ∈ L(D) and |w| ≥ m, then there exists a decompo-
sition of w as w = uxv, where

5.11. THE PUMPING LEMMA 115

(1) x ̸= ϵ,

(2) uxiv ∈ L(D), for all i ≥ 0, and

(3) |ux| ≤ m.

Moreover, m can be chosen to be the number of states of the DFA D.

Proof. Let m be the number of states in Q, and let w = w1 . . . wn. Since Q contains the
start state q0, m ≥ 1. Since |w| ≥ m, we have n ≥ m. Since w ∈ L(D), let (q0, q1, . . . , qn),
be the sequence of states in the accepting computation of w (where qn ∈ F). Consider the
subsequence

(q0, q1, . . . , qm).

This sequence contains m + 1 states, but there are only m states in Q, and thus, we have
qi = qj, for some i, j such that 0 ≤ i < j ≤ m. Then, letting u = w1 . . . wi, x = wi+1 . . . wj,
and v = wj+1 . . . wn, it is clear that the conditions of the proposition hold.

An important consequence of the pumping lemma is that if a DFA D has m states and
if there is some string w ∈ L(D) such that |w| ≥ m, then L(D) is infinite.

Indeed, by the pumping lemma, w ∈ L(D) can be written as w = uxv with x ̸= ϵ, and

uxiv ∈ L(D) for all i ≥ 0.

Since x ̸= ϵ, we have |x| > 0, so for all i, j ≥ 0 with i < j we have

|uxiv| < |uxiv|+ (j − i)|x| = |uxjv|,

which implies that uxiv ̸= uxjv for all i < j, and the set of strings

{uxiv | i ≥ 0} ⊆ L(D)

is an infinite subset of L(D), which is itself infinite.

As a consequence, if L(D) is finite, there are no strings w in L(D) such that |w| ≥ m.
In this case, since the premise of the pumping lemma is false, the pumping lemma holds
vacuously; that is, if L(D) is finite, the pumping lemma yields no information.

Another corollary of the pumping lemma is that there is a test to decide whether a DFA
D accepts an infinite language L(D).

Proposition 5.20. Let D be a DFA with m states, The language L(D) accepted by D is
infinite iff there is some string w ∈ L(D) such that m ≤ |w| < 2m.

116 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

If L(D) is infinite, there are strings of length ≥ m in L(D), but a prirori there is no
guarantee that there are “short” strings w in L(D), that is, strings whose length is uniformly
bounded by some function of m independent of D. The pumping lemma ensures that there
are such strings, and the function is m ,→ 2m.

Typically, the pumping lemma is used to prove that a language is not regular. The
method is to proceed by contradiction, i.e., to assume (contrary to what we wish to prove)
that a language L is indeed regular, and derive a contradiction of the pumping lemma. Thus,
it would be helpful to see what the negation of the pumping lemma is, and for this, we first
state the pumping lemma as a logical formula. We will use the following abbreviations:

nat = {0, 1, 2, . . .},
pos = {1, 2, . . .},
A ≡ w = uxv,

B ≡ x ̸= ϵ,

C ≡ |ux| ≤ m,

P ≡ ∀i : nat (uxiv ∈ L(D)).

The pumping lemma can be stated as

∀D : DFA ∃m : pos ∀w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) ⊃ (∃u, x, v : Σ∗ A ∧B ∧ C ∧ P)

)
.

Recalling that

¬(A ∧ B ∧ C ∧ P) ≡ ¬(A ∧ B ∧ C) ∨ ¬P ≡ (A ∧ B ∧ C) ⊃ ¬P

and
¬(R ⊃ S) ≡ R ∧ ¬S,

the negation of the pumping lemma can be stated as

∃D : DFA ∀m : pos ∃w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) ∧ (∀u, x, v : Σ∗ (A ∧ B ∧ C) ⊃ ¬P)

)
.

Since
¬P ≡ ∃i : nat (uxiv /∈ L(D)),

in order to show that the pumping lemma is contradicted, one needs to show that for some
DFA D, for every m ≥ 1, there is some string w ∈ L(D) of length at least m, such that for
every possible decomposition w = uxv satisfying the constraints x ̸= ϵ and |ux| ≤ m, there
is some i ≥ 0 such that uxiv /∈ L(D).

When proceeding by contradiction, we have a language L that we are (wrongly) assuming
to be regular, and we can use any DFA D accepting L. The creative part of the argument
is to pick the right w ∈ L (not making any assumption on m ≤ |w|).

5.11. THE PUMPING LEMMA 117

As an illustration, let us use the pumping lemma to prove that L1 = {anbn | n ≥ 1} is
not regular. The usefulness of the condition |ux| ≤ m lies in the fact that it reduces the
number of legal decomposition uxv of w. We proceed by contradiction. Thus, let us assume
that L1 = {anbn | n ≥ 1} is regular. If so, it is accepted by some DFA D. Now, we wish to
contradict the pumping lemma. For every m ≥ 1, let w = ambm. Clearly, w = ambm ∈ L1

and |w| ≥ m. Then, every legal decomposition u, x, v of w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x ̸= ϵ and x ends within the a’s, since |ux| ≤ m. Since x ̸= ϵ, the string uxxv is of
the form anbm where n > m, and thus uxxv /∈ L1, contradicting the pumping lemma.

Let us consider two more examples. let L2 = {ambn | 1 ≤ m < n}. We claim that L2

is not regular. Our first proof uses the pumping lemma. For any m ≥ 1, pick w = ambm+1.
We have w ∈ L2 and |w| ≥ m so we need to contradict the pumping lemma. Every legal
decomposition u, x, v of w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x ̸= ϵ and x ends within the a’s, since |ux| ≤ m. Since x ̸= ϵ and x consists of a’s the
string ux2v = uxxv contains at least m+1 a’s and still m+1 b’s, so ux2v ̸∈ L2, contradicting
the pumping lemma.

Our second proof uses Myhill-Nerode. Let ≃ be a right-invariant equivalence relation of
finite index such that L2 is the union of classes of ≃. If we consider the infinite sequence

a, a2, . . . , an, . . .

since ≃ has a finite number of classes there are two strings am and an with m < n such that

am ≃ an.

By right-invariance by concatenating on the right with bn we obtain

ambn ≃ anbn,

and since m < n we have ambn ∈ L2 but anbn /∈ L2, a contradiction.

Let us now consider the language L3 = {ambn | m ̸= n}. This time let us begin by using
Myhill-Nerode to prove that L3 is not regular. The proof is the same as before, we obtain

ambn ≃ anbn,

and the contradiction is that ambn ∈ L3 and anbn /∈ L3.

118 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Let use now try to use the pumping lemma to prove that L3 is not regular. For any
m ≥ 1 pick w = ambm+1 ∈ L3. As in the previous case, every legal decomposition u, x, v of
w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x ̸= ϵ and x ends within the a’s, since |ux| ≤ m. However this time we have a problem,
namely that we know that x is a nonempty string of a’s but we don’t know how many, so
we can’t guarantee that pumping up x will yield exactly the string am+1bm+1. We made the
wrong choice for w. There is a choice that will work but it is a bit tricky.

Fortunately, there is another simpler approach. Recall that the regular languages are
closed under the boolean operations (union, intersection and complementation). Thus, L3

is not regular iff its complement L3 is not regular. Observe that L3 contains {anbn | n ≥ 1},
which we showed to be nonregular. But there is another problem, which is that L3 contains
other strings besides strings of the form anbn, for example strings of the form bman with
m,n > 0.

Again, we can take care of this difficulty using the closure operations of the regular
languages. If we can find a regular language R such that L3∩R is not regular, then L3 itself
is not regular, since otherwise as L3 and R are regular then L3 ∩ R is also regular. In our
case, we can use R = {a}+{b}+ to obtain

L3 ∩ {a}+{b}+ = {anbn | n ≥ 1}.

Since {anbn | n ≥ 1} is not regular, we reached our final contradiction. Observe how we use
the language R to “clean up” L3 by intersecting it with R.

To complete a direct proof using the pumping lemma, the reader should try w =
am!b(m+1)!.

The use of the closure operations of the regular languages is often a quick way of showing
that a language L is not regular by reducing the problem of proving that L is not regular to
the problem of proving that some well-known language is not regular.

5.12 A Fast Algorithm for Checking State Equivalence
Using a “Forward-Closure”

Given two states p, q ∈ Q, if p ≡ q, then we know that δ(p, a) ≡ δ(q, a), for all a ∈ Σ.
This suggests a method for testing whether two distinct states p, q are equivalent. Starting
with the relation R = {(p, q)}, construct the smallest equivalence relation R† containing R
with the property that whenever (r, s) ∈ R†, then (δ(r, a), δ(s, a)) ∈ R†, for all a ∈ Σ. If we
ever encounter a pair (r, s) such that r ∈ F and s ∈ F , or r ∈ F and s ∈ F , then r and
s are inequivalent, and so are p and q. Otherwise, it can be shown that p and q are indeed
equivalent. Thus, testing for the equivalence of two states reduces to finding an efficient

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 119

method for computing the “forward closure” of a relation defined on the set of states of a
DFA.

Such a method was worked out by John Hopcroft and Richard Karp and published in
a 1971 Cornell technical report. This method is based on an idea of Donald Knuth for
solving Exercise 11, in Section 2.3.5 of The Art of Computer Programming, Vol. 1, second
edition, 1973. A sketch of the solution for this exercise is given on page 594. As far as I
know, Hopcroft and Karp’s method was never published in a journal, but a simple recursive
algorithm does appear on page 144 of Aho, Hopcroft and Ullman’s The Design and Analysis
of Computer Algorithms, first edition, 1974. Essentially the same idea was used by Paterson
and Wegman to design a fast unification algorithm (in 1978). We make a few definitions.

A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and whenever
(r, s) ∈ S, then (δ(r, a), δ(s, a)) ∈ S, for all a ∈ Σ. The forward closure of a relation
R ⊆ Q×Q is the smallest equivalence relation R† containing R which is forward closed.

We say that a forward closure S is good iff whenever (r, s) ∈ S, then good(r, s), where
good(r, s) holds iff either both r, s ∈ F , or both r, s /∈ F . Obviously, bad(r, s) iff ¬good(r, s).

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing
R is the relation (R∪R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R∪R−1)∗ is the reflexive
and transitive closure of (R∪R−1)). The forward closure of R can be computed inductively
by defining the sequence of relations Ri ⊆ Q×Q as follows:

R0 = R≈

Ri+1 = (Ri ∪ {(δ(r, a), δ(s, a)) | (r, s) ∈ Ri, a ∈ Σ})≈.

It is not hard to prove that Ri0+1 = Ri0 for some least i0, and that R† = Ri0 is the
smallest forward closure containing R. The following two facts can also been established.

(a) if R† is good, then
R† ⊆≡ . (5.1)

(b) if p ≡ q, then
R† ⊆≡,

that is, equation (5.1) holds. This implies that R† is good.

As a consequence, we obtain the correctness of our procedure: p ≡ q iff the forward
closure R† of the relation R = {(p, q)} is good.

In practice, we maintain a partition Π representing the equivalence relation that we are
closing under forward closure. We add each new pair (δ(r, a), δ(s, a)) one at a time, and
immediately form the smallest equivalence relation containing the new relation. If δ(r, a)
and δ(s, a) already belong to the same block of Π, we consider another pair, else we merge
the blocks corresponding to δ(r, a) and δ(s, a), and then consider another pair.

120 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

The algorithm is recursive, but it can easily be implemented using a stack. To manipulate
partitions efficiently, we represent them as lists of trees (forests). Each equivalence class C
in the partition Π is represented by a tree structure consisting of nodes and parent pointers,
with the pointers from the sons of a node to the node itself. The root has a null pointer.
Each node also maintains a counter keeping track of the number of nodes in the subtree
rooted at that node.

Note that pointers can be avoided. We can represent a forest of n nodes as a list of n
pairs of the form (father , count). If (father , count) is the ith pair in the list, then father = 0
iff node i is a root node, otherwise, father is the index of the node in the list which is the
parent of node i. The number count is the total number of nodes in the tree rooted at the
ith node.

For example, the following list of nine nodes

((0, 3), (0, 2), (1, 1), (0, 2), (0, 2), (1, 1), (2, 1), (4, 1), (5, 1))

represents a forest consisting of the following four trees:

1

3 6

2

7

4

8

5

9

Figure 5.21: A forest of four trees

Two functions union and find are defined as follows. Given a state p, find(p,Π) finds the
root of the tree containing p as a node (not necessarily a leaf). Given two root nodes p, q,
union(p, q,Π) forms a new partition by merging the two trees with roots p and q as follows:
if the counter of p is smaller than that of q, then let the root of p point to q, else let the root
of q point to p.

For example, given the two trees shown on the left in Figure 5.22, find(6,Π) returns 3
and find(8,Π) returns 4. Then union(3, 4,Π) yields the tree shown on the right in Figure
5.22.

3

2 6 7

4

8

3

2 4 6 7

8

Figure 5.22: Applying the function union to the trees rooted at 3 and 4

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 121

In order to speed up the algorithm, using an idea due to Tarjan, we can modify find
as follows: during a call find(p,Π), as we follow the path from p to the root r of the tree
containing p, we redirect the parent pointer of every node q on the path from p (including
p itself) to r (we perform path compression). For example, applying find(8,Π) to the tree
shown on the right in Figure 5.22 yields the tree shown in Figure 5.23

3

2 4 6 7 8

Figure 5.23: The result of applying find with path compression

Then, the algorithm is as follows:

122 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

function unif [p, q,Π, dd]: flag ;

begin

trans := left(dd); ff := right(dd); pq := (p, q); st := (pq); flag := 1;

k := Length(first(trans));

while st ̸= () ∧ flag ̸= 0 do

uv := top(st); uu := left(uv); vv := right(uv);

pop(st);

if bad(ff , uv) = 1 then flag := 0

else

u := find(uu,Π); v := find(vv,Π);

if u ̸= v then

union(u, v,Π);

for i = 1 to k do

u1 := delta(trans, uu, k − i+ 1); v1 := delta(trans, vv, k − i+ 1);

uv := (u1, v1); push(st, uv)

endfor

endif

endif

endwhile

end

The initial partition Π is the identity relation on Q, i.e., it consists of blocks {q} for all
states q ∈ Q. The algorithm uses a stack st. We are assuming that the DFA dd is specified
by a list of two sublists, the first list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second one, denoted right(dd), the set
of final states. The transition function itself is a list of lists, where the i-th list represents
the i-th row of the transition table for dd. The function delta is such that delta(trans, i, j)
returns the j-th state in the i-th row of the transition table of dd. For example, we have the
DFA

dd = (((2, 3), (2, 4), (2, 3), (2, 5), (2, 3), (7, 6), (7, 8), (7, 9), (7, 6)), (5, 9))

consisting of 9 states labeled 1, . . . , 9, and two final states 5 and 9 shown in Figure 5.24.
Also, the alphabet has two letters, since every row in the transition table consists of two
entries. For example, the two transitions from state 3 are given by the pair (2, 3), which
indicates that δ(3, a) = 2 and δ(3, b) = 3.

The sequence of steps performed by the algorithm starting with p = 1 and q = 6 is shown
below. At every step, we show the current pair of states, the partition, and the stack.

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 123

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.24: Testing state equivalence in a DFA

p = 1, q = 6, Π = {{1, 6}, {2}, {3}, {4}, {5}, {7}, {8}, {9}}, st = {{1, 6}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.25: Testing state equivalence in a DFA

p = 2, q = 7, Π = {{1, 6}, {2, 7}, {3}, {4}, {5}, {8}, {9}}, st = {{3, 6}, {2, 7}}

124 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.26: Testing state equivalence in a DFA

p = 4, q = 8, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5}, {9}}, st = {{3, 6}, {4, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.27: Testing state equivalence in a DFA

p = 5, q = 9, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 9}}, st = {{3, 6}, {5, 9}}

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 125

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.28: Testing state equivalence in a DFA

p = 3, q = 6, Π = {{1, 3, 6}, {2, 7}, {4, 8}, {5, 9}}, st = {{3, 6}, {3, 6}}
Since states 3 and 6 belong to the first block of the partition, the algorithm terminates.

Since no block of the partition contains a bad pair, the states p = 1 and q = 6 are equivalent.

Let us now test whether the states p = 3 and q = 7 are equivalent.

1

2

3

4 5

a

b

a

b

a b

a

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.29: Testing state equivalence in a DFA

126 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

p = 3, q = 7, Π = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}, st = {{3, 7}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.30: Testing state equivalence in a DFA

p = 2, q = 7, Π = {{1}, {2, 3, 7}, {4}, {5}, {6}, {8}, {9}}, st = {{3, 8}, {2, 7}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.31: Testing state equivalence in a DFA

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 127

p = 4, q = 8, Π = {{1}, {2, 3, 7}, {4, 8}, {5}, {6}, {9}}, st = {{3, 8}, {4, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.32: Testing state equivalence in a DFA

p = 5, q = 9, Π = {{1}, {2, 3, 7}, {4, 8}, {5, 9}, {6}}, st = {{3, 8}, {5, 9}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.33: Testing state equivalence in a DFA

128 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

p = 3, q = 6, Π = {{1}, {2, 3, 6, 7}, {4, 8}, {5, 9}}, st = {{3, 8}, {3, 6}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.34: Testing state equivalence in a DFA

p = 3, q = 8, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = {{3, 8}}

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 5.35: Testing state equivalence in a DFA

5.12. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 129

p = 3, q = 9, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = {{3, 9}}
Since the pair (3, 9) is a bad pair, the algorithm stops, and the states p = 3 and q = 7

are inequivalent.

130 CHAPTER 5. REGULAR LANGUAGES, MINIMIZATION OF DFA’S

Chapter 6

Context-Free Grammars,
Context-Free Languages, Parse Trees
and Ogden’s Lemma

6.1 Context-Free Grammars

A context-free grammar basically consists of a finite set of grammar rules. In order to define
grammar rules, we assume that we have two kinds of symbols: the terminals, which are the
symbols of the alphabet underlying the languages under consideration, and the nonterminals,
which behave like variables ranging over strings of terminals. A rule is of the form A→ α,
where A is a single nonterminal, and the right-hand side α is a string of terminal and/or
nonterminal symbols. As usual, first we need to define what the object is (a context-free
grammar), and then we need to explain how it is used. Unlike automata, grammars are used
to generate strings, rather than recognize strings.

Definition 6.1. A context-free grammar (for short, CFG) is a quadruple G = (V,Σ, P, S),
where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

• P ⊆ (V − Σ)× V ∗ is a finite set of productions (or rewrite rules, or rules).

The set N = V −Σ is called the set of nonterminal symbols (for short, nonterminals). Thus,
P ⊆ N × V ∗, and every production ⟨A,α⟩ is also denoted as A → α. A production of the
form A→ ϵ is called an epsilon rule, or null rule.

131

132 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Remark : Context-free grammars are sometimes defined as G = (VN , VT , P, S). The
correspondence with our definition is that Σ = VT and N = VN , so that V = VN ∪VT . Thus,
in this other definition, it is necessary to assume that VT ∩ VN = ∅.

Example 1. G1 = ({E, a, b}, {a, b}, P, E), where P is the set of rules

E −→ aEb,

E −→ ab.

As we will see shortly, this grammar generates the language L1 = {anbn | n ≥ 1}, which
is not regular.

Example 2. G2 = ({E,+, ∗, (,), a}, {+, ∗, (,), a}, P, E), where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a.

This grammar generates a set of arithmetic expressions.

6.2 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings. In this process, the productions
are used as rewrite rules. Formally, we define the derivation relation associated with a
context-free grammar. First, let us review the concepts of transitive closure and reflexive
and transitive closure of a binary relation.

Given a set A, a binary relation R on A is any set of ordered pairs, i.e. R ⊆ A×A. For
short, instead of binary relation, we often simply say relation. Given any two relations R, S
on A, their composition R ◦ S is defined as

R ◦ S = {(x, y) ∈ A× A | ∃z ∈ A, (x, z) ∈ R and (z, y) ∈ S}.

The identity relation IA on A is the relation IA defined such that

IA = {(x, x) | x ∈ A}.

For short, we often denote IA as I. Note that

R ◦ I = I ◦R = R

for every relation R on A. Given a relation R on A, for any n ≥ 0 we define Rn as follows:

R0 = I,

Rn+1 = Rn ◦R.

6.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 133

It is obvious that R1 = R. It is also easily verified by induction that Rn ◦ R = R ◦ Rn.
The transitive closure R+ of the relation R is defined as

R+ =
⋃

n≥1

Rn.

It is easily verified that R+ is the smallest transitive relation containing R, and that
(x, y) ∈ R+ iff there is some n ≥ 1 and some x0, x1, . . . , xn ∈ A such that x0 = x, xn = y,
and (xi, xi+1) ∈ R for all i, 0 ≤ i ≤ n − 1. The transitive and reflexive closure R∗ of the
relation R is defined as

R∗ =
⋃

n≥0

Rn.

Clearly, R∗ = R+ ∪ I. It is easily verified that R∗ is the smallest transitive and reflexive
relation containing R.

Definition 6.2. Given a context-free grammar G = (V,Σ, P, S), the (one-step) derivation
relation =⇒G associated with G is the binary relation =⇒G ⊆ V ∗ × V ∗ defined as follows:
for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = λAρ and β = λγρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of
=⇒G is denoted as

∗
=⇒G.

When the grammar G is clear from the context, we usually omit the subscript G in =⇒G,
+

=⇒G, and
∗

=⇒G.

A string α ∈ V ∗ such that S
∗

=⇒ α is called a sentential form, and a string w ∈ Σ∗ such
that S

∗
=⇒ w is called a sentence. A derivation α

∗
=⇒ β involving n steps is denoted as

α
n

=⇒ β.

Note that a derivation step
α =⇒G β

is rather nondeterministic. Indeed, one can choose among various occurrences of nontermi-
nals A in α, and also among various productions A→ γ with left-hand side A.

For example, using the grammar G1 = ({E, a, b}, {a, b}, P, E), where P is the set of rules

E −→ aEb,

E −→ ab,

134 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

every derivation from E is of the form

E
∗

=⇒ anEbn =⇒ anabbn = an+1bn+1,

or
E

∗
=⇒ anEbn =⇒ anaEbbn = an+1Ebn+1,

where n ≥ 0.

Grammar G1 is very simple: every string anbn has a unique derivation. This is usually
not the case. For example, using the grammar G2 = ({E,+, ∗, (,), a}, {+, ∗, (,), a}, P, E),
where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a+ a ∗ a has the following distinct derivations, where the boldface indicates which
occurrence of E is rewritten:

E =⇒ E ∗ E =⇒ E+ E ∗ E
=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a,

and

E =⇒ E+ E =⇒ a + E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.

In the above derivations, the leftmost occurrence of a nonterminal is chosen at each step.
Such derivations are called leftmost derivations . We could systematically rewrite the right-
most occurrence of a nonterminal, getting rightmost derivations . The string a + a ∗ a also
has the following two rightmost derivations, where the boldface indicates which occurrence
of E is rewritten:

E =⇒ E + E =⇒ E + E ∗ E
=⇒ E + E ∗ a =⇒ E+ a ∗ a =⇒ a+ a ∗ a,

and

E =⇒ E ∗E =⇒ E ∗ a
=⇒ E + E ∗ a =⇒ E+ a ∗ a =⇒ a+ a ∗ a.

The language generated by a context-free grammar is defined as follows.

6.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 135

Definition 6.3. Given a context-free grammar G = (V,Σ, P, S), the language generated by
G is the set

L(G) = {w ∈ Σ∗ | S +
=⇒ w}.

A language L ⊆ Σ∗ is a context-free language (for short, CFL) iff L = L(G) for some
context-free grammar G.

It is technically very useful to consider derivations in which the leftmost nonterminal is
always selected for rewriting, and dually, derivations in which the rightmost nonterminal is
always selected for rewriting.

Definition 6.4. Given a context-free grammar G = (V,Σ, P, S), the (one-step) leftmost
derivation relation =⇒

lm
associated with G is the binary relation =⇒

lm
⊆ V ∗ × V ∗ defined as

follows: for all α, β ∈ V ∗, we have
α =⇒

lm
β

iff there exist u ∈ Σ∗, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = uAρ and β = uγρ.

The transitive closure of =⇒
lm

is denoted as
+
=⇒
lm

and the reflexive and transitive closure of

=⇒
lm

is denoted as
∗
=⇒
lm

. The (one-step) rightmost derivation relation =⇒
rm

associated with

G is the binary relation =⇒
rm
⊆ V ∗ × V ∗ defined as follows: for all α, β ∈ V ∗, we have

α =⇒
rm

β

iff there exist λ ∈ V ∗, v ∈ Σ∗, and some production (A→ γ) ∈ P , such that

α = λAv and β = λγv.

The transitive closure of =⇒
rm

is denoted as
+
=⇒
rm

and the reflexive and transitive closure of

=⇒
rm

is denoted as
∗
=⇒
rm

.

Remarks : It is customary to use the symbols a, b, c, d, e for terminal symbols, and the
symbols A,B,C,D,E for nonterminal symbols. The symbols u, v, w, x, y, z denote terminal
strings, and the symbols α, β, γ,λ, ρ, µ denote strings in V ∗. The symbols X, Y, Z usually
denote symbols in V .

Given a context-free grammar G = (V,Σ, P, S), parsing a string w consists in finding out
whether w ∈ L(G), and if so, in producing a derivation for w. The following proposition is
technically very important. It shows that leftmost and rightmost derivations are “universal”.
This has some important practical implications for the complexity of parsing algorithms.

136 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Proposition 6.1. Let G = (V,Σ, P, S) be a context-free grammar. For every w ∈ Σ∗, for

every derivation S
+

=⇒ w, there is a leftmost derivation S
+
=⇒
lm

w, and there is a rightmost

derivation S
+
=⇒
rm

w.

Proof. Of course, we have to somehow use induction on derivations, but this is a little
tricky, and it is necessary to prove a stronger fact. We treat leftmost derivations, rightmost
derivations being handled in a similar way.

Claim: For every w ∈ Σ∗, for every α ∈ V +, for every n ≥ 1, if α
n

=⇒ w, then there is a
leftmost derivation α

n
=⇒
lm

w.

The claim is proved by induction on n.

For n = 1, there exist some λ, ρ ∈ V ∗ and some production A → γ, such that α = λAρ
and w = λγρ. Since w is a terminal string, λ, ρ, and γ, are terminal strings. Thus, A is the

only nonterminal in α, and the derivation step α
1

=⇒ w is a leftmost step (and a rightmost
step!).

If n > 1, then the derivation α
n

=⇒ w is of the form

α =⇒ α1
n−1
=⇒ w.

There are two subcases.

Case 1. If the derivation step α =⇒ α1 is a leftmost step α =⇒
lm

α1, by the induction

hypothesis, there is a leftmost derivation α1
n−1
=⇒
lm

w, and we get the leftmost derivation

α =⇒
lm

α1
n−1
=⇒
lm

w.

Case 2. The derivation step α =⇒ α1 is a not a leftmost step. In this case, there must
be some u ∈ Σ∗, µ, ρ ∈ V ∗, some nonterminals A and B, and some production B → δ, such
that

α = uAµBρ and α1 = uAµδρ,

where A is the leftmost nonterminal in α. Since we have a derivation α1
n−1
=⇒ w of length

n− 1, by the induction hypothesis, there is a leftmost derivation

α1
n−1
=⇒
lm

w.

Since α1 = uAµδρ where A is the leftmost terminal in α1, the first step in the leftmost

derivation α1
n−1
=⇒
lm

w is of the form

uAµδρ =⇒
lm

uγµδρ,

6.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 137

for some production A→ γ. Thus, we have a derivation of the form

α = uAµBρ =⇒ uAµδρ =⇒
lm

uγµδρ
n−2
=⇒
lm

w.

We can commute the first two steps involving the productions B → δ and A → γ, and we
get the derivation

α = uAµBρ =⇒
lm

uγµBρ =⇒ uγµδρ
n−2
=⇒
lm

w.

This may no longer be a leftmost derivation, but the first step is leftmost, and we are
back in case 1. Thus, we conclude by applying the induction hypothesis to the derivation

uγµBρ
n−1
=⇒ w, as in case 1.

Proposition 6.1 implies that

L(G) = {w ∈ Σ∗ | S +
=⇒
lm

w} = {w ∈ Σ∗ | S +
=⇒
rm

w}.

We observed that if we consider the grammar G2 = ({E,+, ∗, (,), a}, {+, ∗, (,), a}, P, E),
where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a + a ∗ a has the following two distinct leftmost derivations, where the boldface
indicates which occurrence of E is rewritten:

E =⇒ E ∗ E =⇒ E+ E ∗ E
=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a,

and

E =⇒ E+ E =⇒ a + E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.
When this happens, we say that we have an ambiguous grammars. In some cases, it is
possible to modify a grammar to make it unambiguous. For example, the grammar G2 can
be modified as follows.

Let G3 = ({E, T, F,+, ∗, (,), a}, {+, ∗, (,), a}, P, E), where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,
T −→ F,

F −→ (E),

F −→ a.

138 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

We leave as an exercise to show that L(G3) = L(G2), and that every string in L(G3) has
a unique leftmost derivation. Unfortunately, it is not always possible to modify a context-
free grammar to make it unambiguous. There exist context-free languages that have no
unambiguous context-free grammars. For example, the language

L3 = {ambmcn | m,n ≥ 1} ∪ {ambncn | m,n ≥ 1}

is context-free, since it is generated by the following context-free grammar:

S → S1,

S → S2,

S1 → XC,

S2 → AY,

X → aXb,

X → ab,

Y → bY c,

Y → bc,

A→ aA,

A→ a,

C → cC,

C → c.

However, it can be shown that L3 has no unambiguous grammars. All this motivates the
following definition.

Definition 6.5. A context-free grammarG = (V,Σ, P, S) is ambiguous if there is some string
w ∈ L(G) that has two distinct leftmost derivations (or two distinct rightmost derivations).
Thus, a grammar G is unambiguous if every string w ∈ L(G) has a unique leftmost derivation
(or a unique rightmost derivation). A context-free language L is inherently ambiguous if every
CFG G for L is ambiguous.

Whether or not a grammar is ambiguous affects the complexity of parsing. Parsing algo-
rithms for unambiguous grammars are more efficient than parsing algorithms for ambiguous
grammars.

We now consider various normal forms for context-free grammars.

6.3 Normal Forms for Context-Free Grammars, Chom-
sky Normal Form

One of the main goals of this section is to show that every CFG G can be converted to an
equivalent grammar in Chomsky Normal Form (for short, CNF). A context-free grammar

6.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 139

G = (V,Σ, P, S) is in Chomsky Normal Form iff its productions are of the form

A→ BC,

A→ a, or

S → ϵ,

where A,B,C ∈ N , a ∈ Σ, S → ϵ is in P iff ϵ ∈ L(G), and S does not occur on the
right-hand side of any production.

Note that a grammar in Chomsky Normal Form does not have ϵ-rules, i.e., rules of the
form A→ ϵ, except when ϵ ∈ L(G), in which case S → ϵ is the only ϵ-rule. It also does not
have chain rules , i.e., rules of the form A→ B, where A,B ∈ N . Thus, in order to convert
a grammar to Chomsky Normal Form, we need to show how to eliminate ϵ-rules and chain
rules. This is not the end of the story, since we may still have rules of the form A→ α where
either |α| ≥ 3 or |α| ≥ 2 and α contains terminals. However, dealing with such rules is a
simple recoding matter, and we first focus on the elimination of ϵ-rules and chain rules. It
turns out that ϵ-rules must be eliminated first.

The first step to eliminate ϵ-rules is to compute the set E(G) of erasable (or nullable)
nonterminals

E(G) = {A ∈ N | A +
=⇒ ϵ}.

The set E(G) is computed using a sequence of approximations Ei defined as follows:

E0 = {A ∈ N | (A→ ϵ) ∈ P},
Ei+1 = Ei ∪ {A | ∃(A→ B1 . . . Bj . . . Bk) ∈ P, Bj ∈ Ei, 1 ≤ j ≤ k}.

Clearly, the Ei form an ascending chain

E0 ⊆ E1 ⊆ · · · ⊆ Ei ⊆ Ei+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that Ei0 = Ei0+1. We claim that
E(G) = Ei0 . Actually, we prove the following proposition.

Proposition 6.2. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) P ′ contains no ϵ-rules other than S ′ → ϵ, and S ′ → ϵ ∈ P ′ iff ϵ ∈ L(G);

(3) S ′ does not occur on the right-hand side of any production in P ′.

Proof. We begin by proving that E(G) = Ei0 . For this, we prove that E(G) ⊆ Ei0 and
Ei0 ⊆ E(G).

To prove that Ei0 ⊆ E(G), we proceed by induction on i. Since E0 = {A ∈ N | (A →
ϵ) ∈ P}, we have A

1
=⇒ ϵ, and thus A ∈ E(G). By the induction hypothesis, Ei ⊆

140 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

E(G). If A ∈ Ei+1, either A ∈ Ei and then A ∈ E(G), or there is some production
(A → B1 . . . Bj . . . Bk) ∈ P , such that Bj ∈ Ei for all j, 1 ≤ j ≤ k. By the induction

hypothesis, Bj
+

=⇒ ϵ for each j, 1 ≤ j ≤ k, and thus

A =⇒ B1 . . . Bj . . . Bk
+

=⇒ B2 . . . Bj . . . Bk
+

=⇒ Bj . . . Bk
+

=⇒ ϵ,

which shows that A ∈ E(G).

To prove that E(G) ⊆ Ei0 , we also proceed by induction, but on the length of a derivation

A
+

=⇒ ϵ. If A
1

=⇒ ϵ, then A→ ϵ ∈ P , and thus A ∈ E0 since E0 = {A ∈ N | (A→ ϵ) ∈ P}.
If A

n+1
=⇒ ϵ, then

A =⇒ α
n

=⇒ ϵ,

for some production A→ α ∈ P . If α contains terminals of nonterminals not in E(G), it is
impossible to derive ϵ from α, and thus, we must have α = B1 . . . Bj . . . Bk, with Bj ∈ E(G),

for all j, 1 ≤ j ≤ k. However, Bj
nj
=⇒ ϵ where nj ≤ n, and by the induction hypothesis,

Bj ∈ Ei0 . But then, we get A ∈ Ei0+1 = Ei0 , as desired.

Having shown that E(G) = Ei0 , we construct the grammar G′. Its set of production P ′

is defined as follows. First, we create the production S ′ → S where S ′ /∈ V , to make sure
that S ′ does not occur on the right-hand side of any rule in P ′. Let

P1 = {A→ α ∈ P | α ∈ V +} ∪ {S ′ → S},

and let P2 be the set of productions

P2 = {A→ α1α2 . . .αkαk+1 | ∃α1 ∈ V ∗, . . . , ∃αk+1 ∈ V ∗, ∃B1 ∈ E(G), . . . , ∃Bk ∈ E(G)

A→ α1B1α2 . . .αkBkαk+1 ∈ P, k ≥ 1, α1 . . .αk+1 ̸= ϵ}.

Note that ϵ ∈ L(G) iff S ∈ E(G). If S /∈ E(G), then let P ′ = P1∪P2, and if S ∈ E(G), then
let P ′ = P1 ∪ P2 ∪ {S ′ → ϵ}. We claim that L(G′) = L(G), which is proved by showing that
every derivation using G can be simulated by a derivation using G′, and vice-versa. All the
conditions of the proposition are now met.

From a practical point of view, the construction or Proposition 6.2 is very costly. For
example, given a grammar containing the productions

S → ABCDEF,

A→ ϵ,

B → ϵ,

C → ϵ,

D → ϵ,

E → ϵ,

F → ϵ,

. . .→ . . . ,

6.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 141

eliminating ϵ-rules will create 26 − 1 = 63 new rules corresponding to the 63 nonempty
subsets of the set {A,B,C,D,E, F}. We now turn to the elimination of chain rules.

It turns out that matters are greatly simplified if we first apply Proposition 6.2 to the
input grammar G, and we explain the construction assuming that G = (V,Σ, P, S) satisfies
the conditions of Proposition 6.2. For every nonterminal A ∈ N , we define the set

IA = {B ∈ N | A +
=⇒ B}.

The sets IA are computed using approximations IA,i defined as follows:

IA,0 = {B ∈ N | (A→ B) ∈ P},
IA,i+1 = IA,i ∪ {C ∈ N | ∃(B → C) ∈ P, andB ∈ IA,i}.

Clearly, for every A ∈ N , the IA,i form an ascending chain

IA,0 ⊆ IA,1 ⊆ · · · ⊆ IA,i ⊆ IA,i+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that IA,i0 = IA,i0+1. We claim that
IA = IA,i0 . Actually, we prove the following proposition.

Proposition 6.3. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) Every rule in P ′ is of the form A → α where |α| ≥ 2, or A → a where a ∈ Σ, or
S ′ → ϵ iff ϵ ∈ L(G);

(3) S ′ does not occur on the right-hand side of any production in P ′.

Proof. First, we apply Proposition 6.2 to the grammar G, obtaining a grammar G1 =
(V1,Σ, S1, P1). The proof that IA = IA,i0 is similar to the proof that E(G) = Ei0 . First,
we prove that IA,i ⊆ IA by induction on i. This is staightforward. Next, we prove that

IA ⊆ IA,i0 by induction on derivations of the form A
+

=⇒ B. In this part of the proof, we
use the fact that G1 has no ϵ-rules except perhaps S1 → ϵ, and that S1 does not occur on

the right-hand side of any rule. This implies that a derivation A
n+1
=⇒ C is necessarily of the

form A
n

=⇒ B =⇒ C for some B ∈ N . Then, in the induction step, we have B ∈ IA,i0, and
thus C ∈ IA,i0+1 = IA,i0.

We now define the following sets of rules. Let

P2 = P1 − {A→ B | A→ B ∈ P1},

and let
P3 = {A→ α | B → α ∈ P1, α /∈ N1, B ∈ IA}.

We claim that G′ = (V1,Σ, P2 ∪ P3, S1) satisfies the conditions of the proposition. For
example, S1 does not appear on the right-hand side of any production, since the productions
in P3 have right-hand sides from P1, and S1 does not appear on the right-hand side in P1.
It is also easily shown that L(G′) = L(G1) = L(G).

142 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Let us apply the method of Proposition 6.3 to the grammar

G3 = ({E, T, F,+, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,
T −→ F,

F −→ (E),

F −→ a.

We get IE = {T, F}, IT = {F}, and IF = ∅. The new grammar G′
3 has the set of rules

E −→ E + T,

E −→ T ∗ F,
E −→ (E),

E −→ a,

T −→ T ∗ F,
T −→ (E),

T −→ a,

F −→ (E),

F −→ a.

At this stage, the grammar obtained in Proposition 6.3 no longer has ϵ-rules (except
perhaps S ′ → ϵ iff ϵ ∈ L(G)) or chain rules. However, it may contain rules A → α with
|α| ≥ 3, or with |α| ≥ 2 and where α contains terminals(s). To obtain the Chomsky Normal
Form. we need to eliminate such rules. This is not difficult, but notationally a bit messy.

Proposition 6.4. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that L(G′) = L(G) and G′ is in Chomsky
Normal Form, that is, a grammar whose productions are of the form

A→ BC,

A→ a, or

S ′ → ϵ,

where A,B,C ∈ N ′, a ∈ Σ, S ′ → ϵ is in P ′ iff ϵ ∈ L(G), and S ′ does not occur on the
right-hand side of any production in P ′.

6.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 143

Proof. First, we apply Proposition 6.3, obtaining G1. Let Σr be the set of terminals occurring
on the right-hand side of rules A→ α ∈ P1, with |α| ≥ 2. For every a ∈ Σr, let Xa be a new
nonterminal not in V1. Let

P2 = {Xa → a | a ∈ Σr}.

Let P1,r be the set of productions

A→ α1a1α2 · · ·αkakαk+1,

where a1, . . . , ak ∈ Σr and αi ∈ N∗
1 . For every production

A→ α1a1α2 · · ·αkakαk+1

in P1,r, let

A→ α1Xa1α2 · · ·αkXakαk+1

be a new production, and let P3 be the set of all such productions. Let P4 = (P1 − P1,r) ∪
P2 ∪P3. Now, productions A→ α in P4 with |α| ≥ 2 do not contain terminals. However, we
may still have productions A→ α ∈ P4 with |α| ≥ 3. We can perform some recoding using
some new nonterminals. For every production of the form

A→ B1 · · ·Bk,

where k ≥ 3, create the new nonterminals

[B1 · · ·Bk−1], [B1 · · ·Bk−2], · · · , [B1B2B3], [B1B2],

and the new productions

A→ [B1 · · ·Bk−1]Bk,

[B1 · · ·Bk−1]→ [B1 · · ·Bk−2]Bk−1,

· · ·→ · · · ,
[B1B2B3]→ [B1B2]B3,

[B1B2]→ B1B2.

All the productions are now in Chomsky Normal Form, and it is clear that the same language
is generated.

Applying the first phase of the method of Proposition 6.4 to the grammar G′
3, we get the

144 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

rules

E −→ EX+T,

E −→ TX∗F,

E −→ X(EX),

E −→ a,

T −→ TX∗F,

T −→ X(EX),

T −→ a,

F −→ X(EX),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X(−→ (,

X) −→).

After applying the second phase of the method, we get the following grammar in Chomsky
Normal Form:

E −→ [EX+]T,

[EX+] −→ EX+,

E −→ [TX∗]F,

[TX∗] −→ TX∗,

E −→ [X(E]X),

[X(E] −→ X(E,

E −→ a,

T −→ [TX∗]F,

T −→ [X(E]X),

T −→ a,

F −→ [X(E]X),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X(−→ (,

X) −→).

For large grammars, it is often convenient to use the abbreviation which consists in group-
ing productions having a common left-hand side, and listing the right-hand sides separated

6.4. REGULAR LANGUAGES ARE CONTEXT-FREE 145

by the symbol |. Thus, a group of productions

A→ α1,

A→ α2,

· · ·→ · · · ,
A→ αk,

may be abbreviated as
A→ α1 | α2 | · · · | αk.

An interesting corollary of the CNF is the following decidability result. There is an
algorithm which, given a context-free grammar G, given any string w ∈ Σ∗, decides whether
w ∈ L(G). Indeed, we first convert G to a grammar G′ in Chomsky Normal Form. If w = ϵ,
we can test whether ϵ ∈ L(G), since this is the case iff S ′ → ϵ ∈ P ′. If w ̸= ϵ, letting n = |w|,
note that since the rules are of the form A → BC or A → a, where a ∈ Σ, any derivation
for w has n− 1 + n = 2n− 1 steps. Thus, we enumerate all (leftmost) derivations of length
2n− 1.

There are much better parsing algorithms than this naive algorithm. We now show that
every regular language is context-free.

6.4 Regular Languages are Context-Free

The regular languages can be characterized in terms of very special kinds of context-free
grammars, right-linear (and left-linear) context-free grammars.

Definition 6.6. A context-free grammar G = (V,Σ, P, S) is left-linear iff its productions
are of the form

A→ Ba,

A→ a,

A→ ϵ.

where A,B ∈ N , and a ∈ Σ. A context-free grammar G = (V,Σ, P, S) is right-linear iff its
productions are of the form

A→ aB,

A→ a,

A→ ϵ.

where A,B ∈ N , and a ∈ Σ.

The following proposition shows the equivalence between NFA’s and right-linear gram-
mars.

146 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Proposition 6.5. A language L is regular if and only if it is generated by some right-linear
grammar.

Proof. Let L = L(D) for some DFA D = (Q,Σ, δ, q0, F). We construct a right-linear gram-
mar G as follows. Let V = Q ∪ Σ, S = q0, and let P be defined as follows:

P = {p→ aq | q = δ(p, a), p, q ∈ Q, a ∈ Σ} ∪ {p→ ϵ | p ∈ F}.

It is easily shown by induction on the length of w that

p
∗

=⇒ wq iff q = δ∗(p, w),

and thus, L(D) = L(G).

Conversely, let G = (V,Σ, P, S) be a right-linear grammar. First, let G = (V ′,Σ, P ′, S) be
the right-linear grammar obtained from G by adding the new nonterminal E to N , replacing
every rule in P of the form A → a where a ∈ Σ by the rule A → aE, and adding the
rule E → ϵ. It is immediately verified that L(G′) = L(G). Next, we construct the NFA
M = (Q,Σ, δ, q0, F) as follows: Q = N ′ = N ∪ {E}, q0 = S, F = {A ∈ N ′ | A→ ϵ}, and

δ(A, a) = {B ∈ N ′ | A→ aB ∈ P ′},

for all A ∈ N and all a ∈ Σ. It is easily shown by induction on the length of w that

A
∗

=⇒ wB iff B ∈ δ∗(A,w),

and thus, L(M) = L(G′) = L(G).

A similar proposition holds for left-linear grammars. It is also easily shown that the
regular languages are exactly the languages generated by context-free grammars whose rules
are of the form

A→ Bu,

A→ u,

where A,B ∈ N , and u ∈ Σ∗.

6.5 Useless Productions in Context-Free Grammars

Given a context-free grammar G = (V,Σ, P, S), it may contain rules that are useless for
a number of reasons. For example, consider the grammar G3 = ({E,A, a, b}, {a, b}, P, E),
where P is the set of rules

E −→ aEb,

E −→ ab,

E −→ A,

A −→ bAa.

6.5. USELESS PRODUCTIONS IN CONTEXT-FREE GRAMMARS 147

The problem is that the nonterminal A does not derive any terminal strings, and thus, it
is useless, as well as the last two productions. Let us now consider the grammar G4 =
({E,A, a, b, c, d}, {a, b, c, d}, P, E), where P is the set of rules

E −→ aEb,

E −→ ab,

A −→ cAd,

A −→ cd.

This time, the nonterminal A generates strings of the form cndn, but there is no derivation

E
+

=⇒ α from E where A occurs in α. The nonterminal A is not connected to E, and the last
two rules are useless. Fortunately, it is possible to find such useless rules, and to eliminate
them.

Let T (G) be the set of nonterminals that actually derive some terminal string, i.e.

T (G) = {A ∈ (V − Σ) | ∃w ∈ Σ∗, A =⇒+ w}.

The set T (G) can be defined by stages. We define the sets Tn (n ≥ 1) as follows:

T1 = {A ∈ (V − Σ) | ∃(A −→ w) ∈ P, with w ∈ Σ∗},

and
Tn+1 = Tn ∪ {A ∈ (V − Σ) | ∃(A −→ β) ∈ P, with β ∈ (Tn ∪ Σ)∗}.

It is easy to prove that there is some least n such that Tn+1 = Tn, and that for this n,
T (G) = Tn.

If S /∈ T (G), then L(G) = ∅, and G is equivalent to the trivial grammar

G′ = ({S},Σ, ∅, S).

If S ∈ T (G), then let U(G) be the set of nonterminals that are actually useful, i.e.,

U(G) = {A ∈ T (G) | ∃α, β ∈ (T (G) ∪ Σ)∗, S =⇒∗ αAβ}.

The set U(G) can also be computed by stages. We define the sets Un (n ≥ 1) as follows:

U1 = {A ∈ T (G) | ∃(S −→ αAβ) ∈ P, with α, β ∈ (T (G) ∪ Σ)∗},

and

Un+1 = Un ∪ {B ∈ T (G) | ∃(A −→ αBβ) ∈ P, with A ∈ Un, α, β ∈ (T (G) ∪ Σ)∗}.

It is easy to prove that there is some least n such that Un+1 = Un, and that for this n,
U(G) = Un ∪ {S}. Then, we can use U(G) to transform G into an equivalent CFG in

148 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

which every nonterminal is useful (i.e., for which V − Σ = U(G)). Indeed, simply delete all
rules containing symbols not in U(G). The details are left as an exercise. We say that a
context-free grammar G is reduced if all its nonterminals are useful, i.e., N = U(G).

It should be noted than although dull, the above considerations are important in practice.
Certain algorithms for constructing parsers, for example, LR-parsers, may loop if useless
rules are not eliminated!

We now consider another normal form for context-free grammars, the Greibach Normal
Form.

6.6 The Greibach Normal Form

Every CFG G can also be converted to an equivalent grammar in Greibach Normal Form
(for short, GNF). A context-free grammar G = (V,Σ, P, S) is in Greibach Normal Form iff
its productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S → ϵ,

where A,B,C ∈ N , a ∈ Σ, S → ϵ is in P iff ϵ ∈ L(G), and S does not occur on the
right-hand side of any production.

Note that a grammar in Greibach Normal Form does not have ϵ-rules other than possibly
S → ϵ. More importantly, except for the special rule S → ϵ, every rule produces some
terminal symbol.

An important consequence of the Greibach Normal Form is that every nonterminal is

not left recursive. A nonterminal A is left recursive iff A
+

=⇒ Aα for some α ∈ V ∗. Left
recursive nonterminals cause top-down determinitic parsers to loop. The Greibach Normal
Form provides a way of avoiding this problem.

There are no easy proofs that every CFG can be converted to a Greibach Normal Form.
A particularly elegant method due to Rosenkrantz using least fixed-points and matrices will
be given in section 6.9.

Proposition 6.6. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that L(G′) = L(G) and G′ is in Greibach
Normal Form, that is, a grammar whose productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S ′ → ϵ,

6.7. LEAST FIXED-POINTS 149

where A,B,C ∈ N ′, a ∈ Σ, S ′ → ϵ is in P ′ iff ϵ ∈ L(G), and S ′ does not occur on the
right-hand side of any production in P ′.

6.7 Least Fixed-Points

Context-free languages can also be characterized as least fixed-points of certain functions
induced by grammars. This characterization yields a rather quick proof that every context-
free grammar can be converted to Greibach Normal Form. This characterization also reveals
very clearly the recursive nature of the context-free languages.

We begin by reviewing what we need from the theory of partially ordered sets.

Definition 6.7. Given a partially ordered set ⟨A,≤⟩, an ω-chain (an)n≥0 is a sequence such
that an ≤ an+1 for all n ≥ 0. The least-upper bound of an ω-chain (an) is an element a ∈ A
such that:

(1) an ≤ a, for all n ≥ 0;

(2) For any b ∈ A, if an ≤ b, for all n ≥ 0, then a ≤ b.

A partially ordered set ⟨A,≤⟩ is an ω-chain complete poset iff it has a least element ⊥, and
iff every ω-chain has a least upper bound denoted as

⊔
an.

Remark : The ω in ω-chain means that we are considering countable chains (ω is the
ordinal associated with the order-type of the set of natural numbers). This notation may
seem arcane, but is standard in denotational semantics.

For example, given any set X , the power set 2X ordered by inclusion is an ω-chain
complete poset with least element ∅. The Cartesian product 2X × · · ·× 2X︸ ︷︷ ︸

n

ordered such

that
(A1, . . . , An) ≤ (B1, . . . , Bn)

iff Ai ⊆ Bi (where Ai, Bi ∈ 2X) is an ω-chain complete poset with least element (∅, . . . , ∅).

We are interested in functions between partially ordered sets.

Definition 6.8. Given any two partially ordered sets ⟨A1,≤1⟩ and ⟨A2,≤2⟩, a function
f : A1 → A2 is monotonic iff for all x, y ∈ A1,

x ≤1 y implies that f(x) ≤2 f(y).

If ⟨A1,≤1⟩ and ⟨A2,≤2⟩ are ω-chain complete posets, a function f : A1 → A2 is ω-continuous
iff it is monotonic, and for every ω-chain (an),

f(
⊔

an) =
⊔

f(an).

150 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Remark : Note that we are not requiring that an ω-continuous function f : A1 → A2

preserve least elements, i.e., it is possible that f(⊥1) ̸=⊥2.

We now define the crucial concept of a least fixed-point.

Definition 6.9. Let ⟨A,≤⟩ be a partially ordered set, and let f : A → A be a function. A
fixed-point of f is an element a ∈ A such that f(a) = a. The least fixed-point of f is an
element a ∈ A such that f(a) = a, and for every b ∈ A such that f(b) = b, then a ≤ b.

The following proposition gives sufficient conditions for the existence of least fixed-points.
It is one of the key propositions in denotational semantics.

Proposition 6.7. Let ⟨A,≤⟩ be an ω-chain complete poset with least element ⊥. Every
ω-continuous function f : A→ A has a unique least fixed-point x0 given by

x0 =
⊔

fn(⊥).

Furthermore, for any b ∈ A such that f(b) ≤ b, then x0 ≤ b.

Proof. First, we prove that the sequence

⊥ , f(⊥) , f 2(⊥), . . . , fn(⊥), . . .

is an ω-chain. This is shown by induction on n. Since ⊥ is the least element of A, we have
⊥≤ f(⊥). Assuming by induction that fn(⊥) ≤ fn+1(⊥), since f is ω-continuous, it is
monotonic, and thus we get fn+1(⊥) ≤ fn+2(⊥), as desired.

Since A is an ω-chain complete poset, the ω-chain (fn(⊥)) has a least upper bound

x0 =
⊔

fn(⊥).

Since f is ω-continuous, we have

f(x0) = f(
⊔

fn(⊥)) =
⊔

f(fn(⊥)) =
⊔

fn+1(⊥) = x0,

and x0 is indeed a fixed-point of f .

Clearly, if f(b) ≤ b implies that x0 ≤ b, then f(b) = b implies that x0 ≤ b. Thus, assume
that f(b) ≤ b for some b ∈ A. We prove by induction of n that fn(⊥) ≤ b. Indeed, ⊥≤ b,
since ⊥ is the least element of A. Assuming by induction that fn(⊥) ≤ b, by monotonicity
of f , we get

f(fn(⊥)) ≤ f(b),

and since f(b) ≤ b, this yields
fn+1(⊥) ≤ b.

Since fn(⊥) ≤ b for all n ≥ 0, we have

x0 =
⊔

fn(⊥) ≤ b.

6.8. CONTEXT-FREE LANGUAGES AS LEAST FIXED-POINTS 151

The second part of Proposition 6.7 is very useful to prove that functions have the same
least fixed-point. For example, under the conditions of Proposition 6.7, if g : A → A is
another ω-chain continuous function, letting x0 be the least fixed-point of f and y0 be the
least fixed-point of g, if f(y0) ≤ y0 and g(x0) ≤ x0, we can deduce that x0 = y0. Indeed,
since f(y0) ≤ y0 and x0 is the least fixed-point of f , we get x0 ≤ y0, and since g(x0) ≤ x0

and y0 is the least fixed-point of g, we get y0 ≤ x0, and therefore x0 = y0.

Proposition 6.7 also shows that the least fixed-point x0 of f can be approximated as
much as desired, using the sequence (fn(⊥)). We will now apply this fact to context-free
grammars. For this, we need to show how a context-free grammar G = (V,Σ, P, S) with m
nonterminals induces an ω-continuous map

ΦG : 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

→ 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

.

6.8 Context-Free Languages as Least Fixed-Points

Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1, . . . Am, grouping all
the productions having the same left-hand side, the grammar G can be concisely written as

A1 → α1,1 + · · ·+ α1,n1,

· · ·→ · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · ·→ · · ·
Am → αm,1 + · · ·+ αm,nn .

Given any set A, let Pfin(A) be the set of finite subsets of A.

Definition 6.10. Let G = (V,Σ, P, S) be a context-free grammar with m nonterminals A1,
. . ., Am. For any m-tuple Λ = (L1, . . . , Lm) of languages Li ⊆ Σ∗, we define the function

Φ[Λ] : Pfin(V
∗)→ 2Σ

∗

inductively as follows:

Φ[Λ](∅) = ∅,
Φ[Λ]({ϵ}) = {ϵ},
Φ[Λ]({a}) = {a}, if a ∈ Σ,

Φ[Λ]({Ai}) = Li, if Ai ∈ N ,

Φ[Λ]({αX}) = Φ[Λ]({α})Φ[Λ]({X}), if α ∈ V +, X ∈ V,

Φ[Λ](Q ∪ {α}) = Φ[Λ](Q) ∪ Φ[Λ]({α}), if Q ∈ Pfin(V ∗), Q ̸= ∅, α ∈ V ∗, α /∈ Q.

152 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Then, writing the grammar G as

A1 → α1,1 + · · ·+ α1,n1,

· · ·→ · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · ·→ · · ·
Am → αm,1 + · · ·+ αm,nn ,

we define the map
ΦG : 2Σ

∗ × · · ·× 2Σ
∗

︸ ︷︷ ︸
m

→ 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

such that

ΦG(L1, . . . Lm) = (Φ[Λ]({α1,1, . . . ,α1,n1}), . . . ,Φ[Λ]({αm,1, . . . ,αm,nm}))

for all Λ = (L1, . . . , Lm) ∈ 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

.

One should verify that the map Φ[Λ] is well defined, but this is easy. The following
proposition is easily shown:

Proposition 6.8. Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1,
. . ., Am, the map

ΦG : 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

→ 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

is ω-continuous.

Now, 2Σ
∗ × · · ·× 2Σ

∗

︸ ︷︷ ︸
m

is an ω-chain complete poset, and the map ΦG is ω-continous. Thus,

by Proposition 6.7, the map ΦG has a least-fixed point. It turns out that the components
of this least fixed-point are precisely the languages generated by the grammars (V,Σ, P, Ai).
Before proving this fact, let us give an example illustrating it.

Example. Consider the grammar G = ({A,B, a, b}, {a, b}, P, A) defined by the rules

A→ BB + ab,

B → aBb+ ab.

The least fixed-point of ΦG is the least upper bound of the chain

(Φn
G(∅, ∅)) = ((Φn

G,A(∅, ∅),Φn
G,B(∅, ∅)),

where
Φ0

G,A(∅, ∅) = Φ0
G,B(∅, ∅) = ∅,

6.8. CONTEXT-FREE LANGUAGES AS LEAST FIXED-POINTS 153

and

Φn+1
G,A(∅, ∅) = Φn

G,B(∅, ∅)Φn
G,B(∅, ∅) ∪ {ab},

Φn+1
G,B(∅, ∅) = aΦn

G,B(∅, ∅)b ∪ {ab}.

It is easy to verify that

Φ1
G,A(∅, ∅) = {ab},

Φ1
G,B(∅, ∅) = {ab},

Φ2
G,A(∅, ∅) = {ab, abab},

Φ2
G,B(∅, ∅) = {ab, aabb},

Φ3
G,A(∅, ∅) = {ab, abab, abaabb, aabbab, aabbaabb},

Φ3
G,B(∅, ∅) = {ab, aabb, aaabbb}.

By induction, we can easily prove that the two components of the least fixed-point are
the languages

LA = {ambmanbn | m,n ≥ 1} ∪ {ab} and LB = {anbn | n ≥ 1}.

Letting GA = ({A,B, a, b}, {a, b}, P, A) and GB = ({A,B, a, b}, {a, b}, P, B), it is indeed
true that LA = L(GA) and LB = L(GB) .

We have the following theorem due to Ginsburg and Rice:

Theorem 6.9. Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1, . . .,
Am, the least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1), . . . , L(GAm)),

where GAi
= (V,Σ, P, Ai).

Proof. Writing G as

A1 → α1,1 + · · ·+ α1,n1,

· · ·→ · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · ·→ · · ·
Am → αm,1 + · · ·+ αm,nn ,

let M = max{|αi,j|} be the maximum length of right-hand sides of rules in P . Let

Φn
G(∅, . . . , ∅) = (Φn

G,1(∅, . . . , ∅), . . . ,Φn
G,m(∅, . . . , ∅)).

154 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Then, for any w ∈ Σ∗, observe that

w ∈ Φ1
G,i(∅, . . . , ∅)

iff there is some rule Ai → αi,j with w = αi,j, and that

w ∈ Φn
G,i(∅, . . . , ∅)

for some n ≥ 2 iff there is some rule Ai → αi,j with αi,j of the form

αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),

and
w = u1w1u2 · · ·ukwkuk+1.

We prove the following two claims.

Claim 1: For every w ∈ Σ∗, if Ai
n

=⇒ w, then w ∈ Φp
G,i(∅, . . . , ∅), for some p ≥ 1.

Claim 2: For every w ∈ Σ∗, if w ∈ Φn
G,i(∅, . . . , ∅), with n ≥ 1, then Ai

p
=⇒ w for some

p ≤ (M + 1)n−1.

Proof of Claim 1. We proceed by induction on n. If Ai
1

=⇒ w, then w = αi,j for some rule
A→ αi,j, and by the remark just before the claim, w ∈ Φ1

G,i(∅, . . . , ∅).

If Ai
n+1
=⇒ w with n ≥ 1, then

Ai
n

=⇒ αi,j =⇒ w

for some rule Ai → αi,j. If
αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, then Ajh
nh=⇒ wh, where nh ≤ n, and

w = u1w1u2 · · ·ukwkuk+1

for some w1, . . . , wk ∈ Σ∗. By the induction hypothesis,

wh ∈ Φph
G,jh

(∅, . . . , ∅),

for some ph ≥ 1, for every h, 1 ≤ h ≤ k. Letting p = max{p1, . . . , pk}, since each sequence
(Φq

G,i(∅, . . . , ∅)) is an ω-chain, we have wh ∈ Φp
G,jh

(∅, . . . , ∅) for every h, 1 ≤ h ≤ k, and by

the remark just before the claim, w ∈ Φp+1
G,i (∅, . . . , ∅).

6.9. LEAST FIXED-POINTS AND THE GREIBACH NORMAL FORM 155

Proof of Claim 2. We proceed by induction on n. If w ∈ Φ1
G,i(∅, . . . , ∅), by the remark just

before the claim, then w = αi,j for some rule A→ αi,j, and Ai
1

=⇒ w.

If w ∈ Φn
G,i(∅, . . . , ∅) for some n ≥ 2, then there is some rule Ai → αi,j with αi,j of the

form
αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),

and
w = u1w1u2 · · ·ukwkuk+1.

By the induction hypothesis, Ajh
ph=⇒ wh with ph ≤ (M + 1)n−2, and thus

Ai =⇒ u1Aj1u2 · · ·ukAjkuk+1
p1=⇒ · · · pk=⇒ w,

so that Ai
p

=⇒ w with

p ≤ p1 + · · ·+ pk + 1 ≤ M(M + 1)n−2 + 1 ≤ (M + 1)n−1,

since k ≤M .

Combining Claim 1 and Claim 2, we have

L(GAi
) =

⋃

n

Φn
G,i(∅, . . . , ∅),

which proves that the least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1), . . . , L(GAm)).

We now show how theorem 6.9 can be used to give a short proof that every context-free
grammar can be converted to Greibach Normal Form.

6.9 Least Fixed-Points and the Greibach Normal Form

The hard part in converting a grammar G = (V,Σ, P, S) to Greibach Normal Form is to
convert it to a grammar in so-called weak Greibach Normal Form, where the productions
are of the form

A→ aα, or

S → ϵ,

156 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

where a ∈ Σ, α ∈ V ∗, and if S → ϵ is a rule, then S does not occur on the right-hand side of
any rule. Indeed, if we first convert G to Chomsky Normal Form, it turns out that we will
get rules of the form A→ aBC, A→ aB or A→ a.

Using the algorithm for eliminating ϵ-rules and chain rules, we can first convert the
original grammar to a grammar with no chain rules and no ϵ-rules except possibly S → ϵ,
in which case, S does not appear on the right-hand side of rules. Thus, for the purpose
of converting to weak Greibach Normal Form, we can assume that we are dealing with
grammars without chain rules and without ϵ-rules. Let us also assume that we computed
the set T (G) of nonterminals that actually derive some terminal string, and that useless
productions involving symbols not in T (G) have been deleted.

Let us explain the idea of the conversion using the following grammar:

A→ AaB +BB + b.

B → Bd+BAa + aA + c.

The first step is to group the right-hand sides α into two categories: those whose leftmost
symbol is a terminal (α ∈ ΣV ∗) and those whose leftmost symbol is a nonterminal (α ∈
NV ∗). It is also convenient to adopt a matrix notation, and we can write the above grammar
as

(A,B) = (A,B)

(
aB ∅
B {d, Aa}

)

+ (b, {aA, c})

Thus, we are dealing with matrices (and row vectors) whose entries are finite subsets of
V ∗. For notational simplicity, braces around singleton sets are omitted. The finite subsets of
V ∗ form a semiring, where addition is union, and multiplication is concatenation. Addition
and multiplication of matrices are as usual, except that the semiring operations are used. We
will also consider matrices whose entries are languages over Σ. Again, the languages over Σ
form a semiring, where addition is union, and multiplication is concatenation. The identity
element for addition is ∅, and the identity element for multiplication is {ϵ}. As above,
addition and multiplication of matrices are as usual, except that the semiring operations are
used. For example, given any languages Ai,j and Bi,j over Σ, where i, j ∈ {1, 2}, we have

(
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)

=

(
A1,1B1,1 ∪A1,2B2,1 A1,1B1,2 ∪ A1,2B2,2

A2,1B1,1 ∪A2,2B2,1 A2,1B1,2 ∪ A2,2B2,2

)

Letting X = (A,B), K = (b, {aA, c}), and

H =

(
aB ∅
B {d, Aa}

)

6.9. LEAST FIXED-POINTS AND THE GREIBACH NORMAL FORM 157

the above grammar can be concisely written as

X = XH +K.

More generally, given any context-free grammar G = (V,Σ, P, S) with m nonterminals
A1, . . ., Am, assuming that there are no chain rules, no ϵ-rules, and that every nonterminal
belongs to T (G), letting

X = (A1, . . . , Am),

we can write G as
X = XH +K,

for some appropriate m×m matrix H in which every entry contains a set (possibly empty)
of strings in V +, and some row vector K in which every entry contains a set (possibly empty)
of strings α each beginning with a terminal (α ∈ ΣV ∗).

Given an m×m square matrix A = (Ai,j) of languages over Σ, we can define the matrix
A∗ whose entry A∗

i,j is given by

A∗
i,j =

⋃

n≥0

An
i,j,

where A0 = Idm, the identity matrix, and An is the n-th power of A. Similarly, we define
A+ where

A+
i,j =

⋃

n≥1

An
i,j.

Given a matrix A where the entries are finite subset of V ∗, where N = {A1, . . . , Am}, for
any m-tuple Λ = (L1, . . . , Lm) of languages over Σ, we let

Φ[Λ](A) = (Φ[Λ](Ai,j)).

Given a system X = XH +K where H is an m×m matrix and X,K are row matrices,
if H and K do not contain any nonterminals, we claim that the least fixed-point of the
grammar G associated with X = XH + K is KH∗. This is easily seen by computing the
approximations Xn = Φn

G(∅, . . . , ∅). Indeed, X0 = K, and

Xn = KHn +KHn−1 + · · ·+KH +K = K(Hn +Hn−1 + · · ·+H + Im).

Similarly, if Y is an m × m matrix of nonterminals, the least fixed-point of the grammar
associated with Y = HY +H is H+ (provided that H does not contain any nonterminals).

Given any context-free grammar G = (V,Σ, P, S) with m nonterminals A1, . . ., Am,
writing G as X = XH + K as explained earlier, we can form another grammar GH by
creating m2 new nonterminals Yi,j, where the rules of this new grammar are defined by the
system of two matrix equations

X = KY +K,

Y = HY +H,

158 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

where Y = (Yi,j).

The following proposition is the key to the Greibach Normal Form.

Proposition 6.10. Given any context-free grammar G = (V,Σ, P, S) with m nonterminals
A1, . . ., Am, writing G as

X = XH +K

as explained earlier, if GH is the grammar defined by the system of two matrix equations

X = KY +K,

Y = HY +H,

as explained above, then the components in X of the least-fixed points of the maps ΦG and
ΦGH are equal.

Proof. Let U be the least-fixed point of ΦG, and let (V,W) be the least fixed-point of ΦGH .
We shall prove that U = V . For notational simplicity, let us denote Φ[U](H) as H [U] and
Φ[U](K) as K[U].

Since U is the least fixed-point of X = XH +K, we have

U = UH [U] +K[U].

Since H [U] and K[U] do not contain any nonterminals, by a previous remark, K[U]H∗[U] is
the least-fixed point of X = XH [U] +K[U], and thus,

K[U]H∗[U] ≤ U.

On the other hand, by monotonicity,

K[U]H∗[U]H
[
K[U]H∗[U]

]
+K

[
K[U]H∗[U]

]
≤ K[U]H∗[U]H [U] +K[U] = K[U]H∗[U],

and since U is the least fixed-point of X = XH +K,

U ≤ K[U]H∗[U].

Therefore, U = K[U]H∗[U]. We can prove in a similar manner that W = H [V]+.

Let Z = H [U]+. We have

K[U]Z +K[U] = K[U]H [U]+ +K[U] = K[U]H [U]∗ = U,

and
H [U]Z +H [U] = H [U]H [U]+ +H [U] = H [U]+ = Z,

and since (V,W) is the least fixed-point of X = KY +K and Y = HY +H , we get V ≤ U
and W ≤ H [U]+.

6.9. LEAST FIXED-POINTS AND THE GREIBACH NORMAL FORM 159

We also have

V = K[V]W +K[V] = K[V]H [V]+ +K[V] = K[V]H [V]∗,

and
V H [V] +K[V] = K[V]H [V]∗H [V] +K[V] = K[V]H [V]∗ = V,

and since U is the least fixed-point of X = XH +K, we get U ≤ V . Therefore, U = V , as
claimed.

Note that the above proposition actually applies to any grammar. Applying Proposition
6.10 to our example grammar, we get the following new grammar:

(A,B) = (b, {aA, c})
(
Y1 Y2

Y3 Y4

)

+ (b, {aA, c}),

(
Y1 Y2

Y3 Y4

)

=

(
aB ∅
B {d, Aa}

)(
Y1 Y2

Y3 Y4

)

+

(
aB ∅
B {d, Aa}

)

There are still some nonterminals appearing as leftmost symbols, but using the equations
defining A and B, we can replace A with

{bY1, aAY3, cY3, b}

and B with
{bY2, aAY4, cY4, aA, c},

obtaining a system in weak Greibach Normal Form. This amounts to converting the matrix

H =

(
aB ∅
B {d, Aa}

)

to the matrix

L =

(
aB ∅

{bY2, aAY4, cY4, aA, c} {d, bY1a, aAY3a, cY3a, ba}

)

The weak Greibach Normal Form corresponds to the new system

X = KY +K,

Y = LY + L.

160 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

This method works in general for any input grammar with no ϵ-rules, no chain rules, and
such that every nonterminal belongs to T (G). Under these conditions, the row vector K
contains some nonempty entry, all strings in K are in ΣV ∗, and all strings in H are in V +.
After obtaining the grammar GH defined by the system

X = KY +K,

Y = HY +H,

we use the system X = KY + K to express every nonterminal Ai in terms of expressions
containing strings αi,j involving a terminal as the leftmost symbol (αi,j ∈ ΣV ∗), and we
replace all leftmost occurrences of nonterminals in H (occurrences Ai in strings of the form
Aiβ, where β ∈ V ∗) using the above expressions. In this fashion, we obtain a matrix L, and
it is immediately shown that the system

X = KY +K,

Y = LY + L,

generates the same tuple of languages. Furthermore, this last system corresponds to a weak
Greibach Normal Form.

It we start with a grammar in Chomsky Normal Form (with no production S → ϵ)
such that every nonterminal belongs to T (G), we actually get a Greibach Normal Form
(the entries in K are terminals, and the entries in H are nonterminals). Thus, we have
justified Proposition 6.6. The method is also quite economical, since it introduces only m2

new nonterminals. However, the resulting grammar may contain some useless nonterminals.

6.10 Tree Domains and Gorn Trees

Derivation trees play a very important role in parsing theory and in the proof of a strong
version of the pumping lemma for the context-free languages known as Ogden’s lemma.
Thus, it is important to define derivation trees rigorously. We do so using Gorn trees.

Let N+ = {1, 2, 3, . . .}.

Definition 6.11. A tree domain D is a nonempty subset of strings in N∗
+ satisfying the

conditions:

(1) For all u, v ∈ N∗
+, if uv ∈ D, then u ∈ D.

(2) For all u ∈ N∗
+, for every i ∈ N+, if ui ∈ D then uj ∈ D for every j, 1 ≤ j ≤ i.

The tree domain
D = {ϵ, 1, 2, 11, 21, 22, 221, 222, 2211}

is represented as follows:

6.10. TREE DOMAINS AND GORN TREES 161

ϵ

↙ ↘
1 2

↙ ↙ ↘
11 21 22

↙ ↘
221 222

↓
2211

A tree labeled with symbols from a set ∆ is defined as follows.

Definition 6.12. Given a set ∆ of labels, a ∆-tree (for short, a tree) is a total function
t : D → ∆, where D is a tree domain.

The domain of a tree t is denoted as dom(t). Every string u ∈ dom(t) is called a tree
address or a node.

Let ∆ = {f, g, h, a, b}. The tree t : D → ∆, where D is the tree domain of the previous
example and t is the function whose graph is

{(ϵ, f), (1, h), (2, g), (11, a), (21, a), (22, f), (221, h), (222, b), (2211, a)}

is represented as follows:

f

↙ ↘
h g

↙ ↙ ↘
a a f

↙ ↘
h b

↓
a

The outdegree (sometimes called ramification) r(u) of a node u is the cardinality of the
set

{i | ui ∈ dom(t)}.

162 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Note that the outdegree of a node can be infinite. Most of the trees that we shall consider
will be finite-branching , that is, for every node u, r(u) will be an integer, and hence finite.
If the outdegree of all nodes in a tree is bounded by n, then we can view the domain of the
tree as being defined over {1, 2, . . . , n}∗.

A node of outdegree 0 is called a leaf . The node whose address is ϵ is called the root of
the tree. A tree is finite if its domain dom(t) is finite. Given a node u in dom(t), every node
of the form ui in dom(t) with i ∈ N+ is called a son (or immediate successor) of u.

Tree addresses are totally ordered lexicographically : u ≤ v if either u is a prefix of v or,
there exist strings x, y, z ∈ N∗

+ and i, j ∈ N+, with i < j, such that u = xiy and v = xjz.

In the first case, we say that u is an ancestor (or predecessor) of v (or u dominates v)
and in the second case, that u is to the left of v.

If y = ϵ and z = ϵ, we say that xi is a left brother (or left sibling) of xj, (i < j). Two
tree addresses u and v are independent if u is not a prefix of v and v is not a prefix of u.

Given a finite tree t, the yield of t is the string

t(u1)t(u2) · · · t(uk),

where u1, u2, . . . , uk is the sequence of leaves of t in lexicographic order.
For example, the yield of the tree below is aaab:

f

↙ ↘
h g

↙ ↙ ↘
a a f

↙ ↘
h b

↓
a

Given a finite tree t, the depth of t is the integer

d(t) = max{|u| | u ∈ dom(t)}.

Given a tree t and a node u in dom(t), the subtree rooted at u is the tree t/u, whose
domain is the set

{v | uv ∈ dom(t)}
and such that t/u(v) = t(uv) for all v in dom(t/u).

Another important operation is the operation of tree replacement (or tree substitution).

6.10. TREE DOMAINS AND GORN TREES 163

Definition 6.13. Given two trees t1 and t2 and a tree address u in t1, the result of substituting
t2 at u in t1, denoted by t1[u← t2], is the function whose graph is the set of pairs

{(v, t1(v)) | v ∈ dom(t1), u is not a prefix of v} ∪ {(uv, t2(v)) | v ∈ dom(t2)}.

Let t1 and t2 be the trees defined by the following diagrams:

Tree t1

f

↙ ↘
h g

↙ ↙ ↘
a a f

↙ ↘
h b

↓
a

Tree t2

g

↙ ↘
a b

The tree t1[22← t2] is defined by the following diagram:

f

↙ ↘
h g

↙ ↙ ↘
a a g

↙ ↘
a b

We can now define derivation trees and relate derivations to derivation trees.

164 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

6.11 Derivations Trees

Definition 6.14. Given a context-free grammar G = (V,Σ, P, S), for any A ∈ N , an A-
derivation tree for G is a (V ∪ {ϵ})-tree t (a tree with set of labels (V ∪ {ϵ})) such that:

(1) t(ϵ) = A;

(2) For every nonleaf node u ∈ dom(t), if u1, . . . , uk are the successors of u, then either
there is a production B → X1 · · ·Xk in P such that t(u) = B and t(ui) = Xi for all
i, 1 ≤ i ≤ k, or B → ϵ ∈ P , t(u) = B and t(u1) = ϵ. A complete derivation (or parse
tree) is an S-tree whose yield belongs to Σ∗.

A derivation tree for the grammar

G3 = ({E, T, F,+, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,
T −→ F,

F −→ (E),

F −→ a,

is shown in Figure 6.1. The yield of the derivation tree is a+ a ∗ a.

a a

F

T

E

E

+
T

T ∗
F

F a

Figure 6.1: A complete derivation tree

Derivations trees are associated to derivations inductively as follows.

Definition 6.15. Given a context-free grammar G = (V,Σ, P, S), for any A ∈ N , if π :
A

n
=⇒ α is a derivation in G, we construct an A-derivation tree tπ with yield α as follows.

6.11. DERIVATIONS TREES 165

(1) If n = 0, then tπ is the one-node tree such that dom(tπ) = {ϵ} and tπ(ϵ) = A.

(2) If A
n−1
=⇒ λBρ =⇒ λγρ = α, then if t1 is the A-derivation tree with yield λBρ associated

with the derivation A
n−1
=⇒ λBρ, and if t2 is the tree associated with the production

B → γ (that is, if
γ = X1 · · ·Xk,

then dom(t2) = {ϵ, 1, . . . , k}, t2(ϵ) = B, and t2(i) = Xi for all i, 1 ≤ i ≤ k, or if γ = ϵ,
then dom(t2) = {ϵ, 1}, t2(ϵ) = B, and t2(1) = ϵ), then

tπ = t1[u← t2],

where u is the address of the leaf labeled B in t1.

The tree tπ is the A-derivation tree associated with the derivation A
n

=⇒ α.

Given the grammar

G2 = ({E,+, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the parse trees associated with two derivations of the string a + a ∗ a are shown in Figure
6.2:

a

a

E

E

+
E

E ∗
E

a a a

E
E

+

E

E
∗

E

a

Figure 6.2: Two derivation trees for a + a ∗ a

The following proposition is easily shown.

Proposition 6.11. Let G = (V,Σ, P, S) be a context-free grammar. For any derivation
A

n
=⇒ α, there is a unique A-derivation tree associated with this derivation, with yield α.

Conversely, for any A-derivation tree t with yield α, there is a unique leftmost derivation
A

∗
=⇒
lm

α in G having t as its associated derivation tree.

We will now prove a strong version of the pumping lemma for context-free languages due
to Bill Ogden (1968).

166 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

6.12 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of parse trees that are deep enough.
The yield w of such a parse tree can be split into 5 substrings u, v, x, y, z such that

w = uvxyz,

where u, v, x, y, z satisfy certain conditions. It turns out that we get a more powerful version
of the lemma if we allow ourselves to mark certain occurrences of symbols in w before
invoking the lemma. We can imagine that marked occurrences in a nonempty string w are
occurrences of symbols in w in boldface, or red, or any given color (but one color only). For
example, given w = aaababbbaa, we can mark the symbols of even index as follows:

aaababbbaa.

More rigorously, we can define a marking of a nonnull string w : {1, . . . , n} → Σ as any
function m : {1, . . . , n}→ {0, 1}. Then, a letter wi in w is a marked occurrence iff m(i) = 1,
and an unmarked occurrence if m(i) = 0. The number of marked occurrences in w is equal
to

n∑

i=1

m(i).

Ogden’s lemma only yields useful information for grammars G generating an infinite
language. We could make this hypothesis, but it seems more elegant to use the precondition
that the lemma only applies to strings w ∈ L(D) such that w contains at least K marked
occurrences, for a constant K large enough. If K is large enough, L(G) will indeed be
infinite.

Proposition 6.12. For every context-free grammar G, there is some integer K > 1 such
that, for every string w ∈ Σ+, for every marking of w, if w ∈ L(G) and w contains at least
K marked occurrences, then there exists some decomposition of w as w = uvxyz, and some
A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x contains some marked occurrence;

(3) Either (both u and v contain some marked occurrence), or (both y and z contain some
marked occurrence);

(4) vxy contains less than K marked occurrences.

6.12. OGDEN’S LEMMA 167

Proof. Let t be any parse tree for w. We call a leaf of t a marked leaf if its label is a marked
occurrence in the marked string w. The general idea is to make sure that K is large enough
so that parse trees with yield w contain enough repeated nonterminals along some path from
the root to some marked leaf. Let r = |N |, and let

p = max{2, max{|α| | (A→ α) ∈ P}}.

We claim that K = p2r+3 does the job.

The key concept in the proof is the notion of a B-node. Given a parse tree t, a B-node
is a node with at least two immediate successors u1, u2, such that for i = 1, 2, either ui is
a marked leaf, or ui has some marked leaf as a descendant. We construct a path from the
root to some marked leaf, so that for every B-node, we pick the leftmost successor with the
maximum number of marked leaves as descendants. Formally, define a path (s0, . . . , sn) from
the root to some marked leaf, so that:

(i) Every node si has some marked leaf as a descendant, and s0 is the root of t;

(ii) If sj is in the path, sj is not a leaf, and sj has a single immediate descendant which is
either a marked leaf or has marked leaves as its descendants, let sj+1 be that unique
immediate descendant of si.

(iii) If sj is a B-node in the path, then let sj+1 be the leftmost immediate successors of sj
with the maximum number of marked leaves as descendants (assuming that if sj+1 is
a marked leaf, then it is its own descendant).

(iv) If sj is a leaf, then it is a marked leaf and n = j.

We will show that the path (s0, . . . , sn) contains at least 2r + 3 B-nodes.

Claim: For every i, 0 ≤ i ≤ n, if the path (si, . . . , sn) contains b B-nodes, then si has at
most pb marked leaves as descendants.

Proof . We proceed by “backward induction”, i.e., by induction on n− i. For i = n, there
are no B-nodes, so that b = 0, and there is indeed p0 = 1 marked leaf sn. Assume that the
claim holds for the path (si+1, . . . , sn).

If si is not a B-node, then the number b of B-nodes in the path (si+1, . . . , sn) is the same
as the number of B-nodes in the path (si, . . . , sn), and si+1 is the only immediate successor
of si having a marked leaf as descendant. By the induction hypothesis, si+1 has at most pb

marked leaves as descendants, and this is also an upper bound on the number of marked
leaves which are descendants of si.

If si is a B-node, then if there are b B-nodes in the path (si+1, . . . , sn), there are b + 1
B-nodes in the path (si, . . . , sn). By the induction hypothesis, si+1 has at most pb marked
leaves as descendants. Since si is a B-node, si+1 was chosen to be the leftmost immediate
successor of si having the maximum number of marked leaves as descendants. Thus, since

168 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

the outdegree of si is at most p, and each of its immediate successors has at most pb marked
leaves as descendants, the node si has at most ppd = pd+1 marked leaves as descendants, as
desired.

Applying the claim to s0, since w has at least K = p2r+3 marked occurrences, we have
pb ≥ p2r+3, and since p ≥ 2, we have b ≥ 2r + 3, and the path (s0, . . . , sn) contains at least
2r + 3 B-nodes (Note that this would not follow if we had p = 1).

Let us now select the lowest 2r + 3 B-nodes in the path, (s0, . . . , sn), and denote them
(b1, . . . , b2r+3). Every B-node bi has at least two immediate successors ui < vi such that ui

or vi is on the path (s0, . . . , sn). If the path goes through ui, we say that bi is a right B-node
and if the path goes through vi, we say that bi is a left B-node. Since 2r+3 = r+2+ r+1,
either there are r+2 left B-nodes or there are r+2 right B-nodes in the path (b1, . . . , b2r+3).
Let us assume that there are r + 2 left B-nodes, the other case being similar.

Let (d1, . . . , dr+2) be the lowest r + 2 left B-nodes in the path. Since there are r + 1
B-nodes in the sequence (d2, . . . , dr+2), and there are only r distinct nonterminals, there are
two nodes di and dj, with 2 ≤ i < j ≤ r + 2, such that t(di) = t(dj) = A, for some A ∈ N .
We can assume that di is an ancestor of dj, and thus, dj = diα, for some α ̸= ϵ.

If we prune out the subtree t/di rooted at di from t, we get an S-derivation tree having

a yield of the form uAz, and we have a derivation of the form S
+

=⇒ uAz, since there are
at least r + 2 left B-nodes on the path, and we are looking at the lowest r + 1 left B-nodes.
Considering the subtree t/di, pruning out the subtree t/dj rooted at α in t/di, we get an
A-derivation tree having a yield of the form vAy, and we have a derivation of the form

A
+

=⇒ vAy. Finally, the subtree t/dj is an A-derivation tree with yield x, and we have a

derivation A
+

=⇒ x. This proves (1) of the lemma.

Since sn is a marked leaf and a descendant of dj, x contains some marked occurrence,
proving (2).

Since d1 is a left B-node, some left sibbling of the immediate successor of d1 on the path
has some distinguished leaf in u as a descendant. Similarly, since di is a left B-node, some
left sibbling of the immediate successor of di on the path has some distinguished leaf in v as
a descendant. This proves (3).

(dj, . . . , b2r+3) has at most 2r+1 B-nodes, and by the claim shown earlier, dj has at most
p2r+1 marked leaves as descendants. Since p2r+1 < p2r+3 = K, this proves (4).

Observe that condition (2) implies that x ̸= ϵ, and condition (3) implies that either
u ̸= ϵ and v ̸= ϵ, or y ̸= ϵ and z ̸= ϵ. Thus, the pumping condition (1) implies that the set
{uvnxynz | n ≥ 0} is an infinite subset of L(G), and L(G) is indeed infinite, as we mentioned
earlier. Note that K ≥ 3, and in fact, K ≥ 32. The “standard pumping lemma” due to
Bar-Hillel, Perles, and Shamir, is obtained by letting all occurrences be marked in w ∈ L(G).

6.12. OGDEN’S LEMMA 169

Proposition 6.13. For every context-free grammar G (without ϵ-rules), there is some integer
K > 1 such that, for every string w ∈ Σ+, if w ∈ L(G) and |w| ≥ K, then there exists some
decomposition of w as w = uvxyz, and some A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x ̸= ϵ;

(3) Either v ̸= ϵ or y ̸= ϵ;

(4) |vxy| ≤ K.

A stronger version could be stated, and we are just following tradition in stating this
standard version of the pumping lemma.

Ogden’s lemma or the pumping lemma can be used to show that certain languages are
not context-free. The method is to proceed by contradiction, i.e., to assume (contrary to
what we wish to prove) that a language L is indeed context-free, and derive a contradiction
of Ogden’s lemma (or of the pumping lemma). Thus, as in the case of the regular languages,
it would be helpful to see what the negation of Ogden’s lemma is, and for this, we first state
Ogden’s lemma as a logical formula.

For any nonnull string w : {1, . . . , n}→ Σ, for any marking m : {1, . . . , n}→ {0, 1} of w,
for any substring y of w, where w = xyz, with |x| = h and k = |y|, the number of marked
occurrences in y, denoted as |m(y)|, is defined as

|m(y)| =
i=h+k∑

i=h+1

m(i).

We will also use the following abbreviations:

nat = {0, 1, 2, . . .},
nat32 = {32, 33, . . .},

A ≡ w = uvxyz,

B ≡ |m(x)| ≥ 1,

C ≡ (|m(u)| ≥ 1 ∧ |m(v)| ≥ 1) ∨ (|m(y)| ≥ 1 ∧ |m(z)| ≥ 1),

D ≡ |m(vxy)| < K,

P ≡ ∀n : nat (uvnxynz ∈ L(D)).

170 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Ogden’s lemma can then be stated as

∀G : CFG ∃K : nat32 ∀w : Σ∗ ∀m : marking
(
(w ∈ L(D) ∧ |m(w)| ≥ K) ⊃ (∃u, v, x, y, z : Σ∗ A ∧B ∧ C ∧D ∧ P)

)
.

Recalling that

¬(A ∧B ∧ C ∧D ∧ P) ≡ ¬(A ∧ B ∧ C ∧D) ∨ ¬P ≡ (A ∧ B ∧ C ∧D) ⊃ ¬P

and
¬(P ⊃ Q) ≡ P ∧ ¬Q,

the negation of Ogden’s lemma can be stated as

∃G : CFG ∀K : nat32 ∃w : Σ∗ ∃m : marking
(
(w ∈ L(D) ∧ |m(w)| ≥ K) ∧ (∀u, v, x, y, z : Σ∗ (A ∧ B ∧ C ∧D) ⊃ ¬P)

)
.

Since
¬P ≡ ∃n : nat (uvnxynz /∈ L(D)),

in order to show that Ogden’s lemma is contradicted, one needs to show that for some
context-free grammar G, for every K ≥ 2, there is some string w ∈ L(D) and some marking
m of w with at least K marked occurrences in w, such that for every possible decomposition
w = uvxyz satisfying the constraints A ∧ B ∧ C ∧ D, there is some n ≥ 0 such that
uvnxynz /∈ L(D). When proceeding by contradiction, we have a language L that we are
(wrongly) assuming to be context-free and we can use any CFG grammar G generating L.
The creative part of the argument is to pick the right w ∈ L and the right marking of w
(not making any assumption on K).

As an illustration, we show that the language

L = {anbncn | n ≥ 1}

is not context-free. Since L is infinite, we will be able to use the pumping lemma.

The proof proceeds by contradiction. If L was context-free, there would be some context-
free grammar G such that L = L(G), and some constant K > 1 as in Ogden’s lemma. Let
w = aKbKcK , and choose the b′s as marked occurrences. Then by Ogden’s lemma, x contains
some marked occurrence, and either both u, v or both y, z contain some marked occurrence.
Assume that both u and v contain some b. We have the following situation:

a · · · ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · c︸ ︷︷ ︸
xyz

.

6.12. OGDEN’S LEMMA 171

If we consider the string uvvxyyz, the number of a’s is stillK, but the number of b’s is strictly
greater than K since v contains at least one b, and thus uvvxyyz /∈ L, a contradiction.

If both y and z contain some b we will also reach a contradiction because in the string
uvvxyyz, the number of c’s is still K, but the number of b’s is strictly greater than K.
Having reached a contradiction in all cases, we conclude that L is not context-free.

Let us now show that the language

L = {ambncmdn | m,n ≥ 1}

is not context-free.

Again, we proceed by contradiction. This time, let

w = aKbKcKdK ,

where the b’s and c’s are marked occurrences.

By Ogden’s lemma, either both u, v contain some marked occurrence, or both y, z contain
some marked occurrence, and x contains some marked occurrence. Let us first consider the
case where both u, v contain some marked occurrence.

If v contains some b, since uvvxyyz ∈ L, v must contain only b’s, since otherwise we
would have a bad string in L, and we have the following situation:

a · · · ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · cd · · ·d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L, the only way to preserve an equal number of b’s and d’s is to have
y ∈ d+. But then, vxy contains cK , which contradicts (4) of Ogden’s lemma.

If v contains some c, since x also contains some marked occurrence, it must be some c,
and v contains only c’s and we have the following situation:

a · · · ab · · · bc · · · c︸ ︷︷ ︸
u

c · · · c︸ ︷︷ ︸
v

c · · · cd · · ·d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L and the number of a’s is still K whereas the number of c’s is strictly
more than K, this case is impossible.

Let us now consider the case where both y, z contain some marked occurrence. Reasoning
as before, the only possibility is that v ∈ a+ and y ∈ c+:

a · · · a︸ ︷︷ ︸
u

a · · · a︸ ︷︷ ︸
v

a · · · ab · · · bc · · · c︸ ︷︷ ︸
x

c · · · c︸ ︷︷ ︸
y

c · · · cd · · ·d︸ ︷︷ ︸
z

.

But then, vxy contains bK , which contradicts (4) of Ogden’s Lemma. Since a contradiction
was obtained in all cases, L is not context-free.

172 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Ogden’s lemma can also be used to show that the context-free language

{ambncn | m,n ≥ 1} ∪ {ambmcn | m,n ≥ 1}

is inherently ambiguous. The proof is quite involved.

Another corollary of the pumping lemma is that it is decidable whether a context-free
grammar generates an infinite language.

Proposition 6.14. Given any context-free grammar, G, if K is the constant of Ogden’s
lemma, then the following equivalence holds:

L(G) is infinite iff there is some w ∈ L(G) such that K ≤ |w| < 2K.

Proof. Let K = p2r+3 be the constant from the proof of Proposition 6.12. If there is some
w ∈ L(G) such that |w| ≥ K, we already observed that the pumping lemma implies that
L(G) contains an infinite subset of the form {uvnxynz | n ≥ 0}. Conversely, assume that
L(G) is infinite. If |w| < K for all w ∈ L(G), then L(G) is finite. Thus, there is some
w ∈ L(G) such that |w| ≥ K. Let w ∈ L(G) be a minimal string such that |w| ≥ K. By the
pumping lemma, we can write w as w = uvxyxz, where x ̸= ϵ, vy ̸= ϵ, and |vxy| ≤ K. By
the pumping property, uxz ∈ L(G). If |w| ≥ 2K, then

|uxz| = |uvxyz|− |vy| > |uvxyz|− |vxy| ≥ 2K −K = K,

and |uxz| < |uvxyz|, contradicting the minimality of w. Thus, we must have |w| < 2K.

In particular, if G is in Chomsky Normal Form, it can be shown that we just have to
consider derivations of length at most 4K − 3.

6.13 Pushdown Automata

We have seen that the regular languages are exactly the languages accepted by DFA’s or
NFA’s. The context-free languages are exactly the languages accepted by pushdown au-
tomata, for short, PDA’s. However, although there are two versions of PDA’s, deterministic
and nondeterministic, contrary to the fact that every NFA can be converted to a DFA, non-
deterministic PDA’s are strictly more poweful than deterministic PDA’s (DPDA’s). Indeed,
there are context-free languages that cannot be accepted by DPDA’s.

Thus, the natural machine model for the context-free languages is nondeterministic,
and for this reason, we just use the abbreviation PDA, as opposed to NPDA. We adopt a
definition of a PDA in which the pushdown store, or stack, must not be empty for a move
to take place. Other authors allow PDA’s to make move when the stack is empty. Novices
seem to be confused by such moves, and this is why we do not allow moves with an empty
stack.

Intuitively, a PDA consists of an input tape, a nondeterministic finite-state control, and
a stack.

Given any set X possibly infinite, let Pfin(X) be the set of all finite subsets of X .

6.13. PUSHDOWN AUTOMATA 173

Definition 6.16. A pushdown automaton is a 7-tuple M = (Q,Σ,Γ, δ, q0, Z0, F), where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite pushdown store (or stack) alphabet ;

• q0 ∈ Q is the start state (or initial state);

• Z0 ∈ Γ is the initial stack symbol (or bottom marker);

• F ⊆ Q is the set of final (or accepting) states;

• δ : Q× (Σ ∪ {ϵ})× Γ→ Pfin(Q× Γ∗) is the transition function.

A transition is of the form (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, γ ∈ Γ∗ and
a ∈ Σ∪ {ϵ}. A transition of the form (q, γ) ∈ δ(p, ϵ, Z) is called an ϵ-transition (or ϵ-move).

The way a PDA operates is explained in terms of Instantaneous Descriptions , for short
ID’s. Intuitively, an Instantaneous Description is a snapshot of the PDA. An ID is a triple
of the form

(p, u,α) ∈ Q× Σ∗ × Γ∗.

The idea is that p is the current state, u is the remaining input, and α represents the stack.

It is important to note that we use the convention that the leftmost symbol in α repre-
sents the topmost stack symbol.

Given a PDA M , we define a relation ⊢M between pairs of ID’s. This is very similar to
the derivation relation =⇒G associated with a context-free grammar.

Intuitively, a PDA scans the input tape symbol by symbol from left to right, making
moves that cause a change of state, an update to the stack (but only at the top), and either
advancing the reading head to the next symbol, or not moving the reading head during an
ϵ-move.

Definition 6.17. Given a PDA

M = (Q,Σ,Γ, δ, q0, Z0, F),

the relation ⊢M is defined as follows:

(1) For any move (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, a ∈ Σ, for every ID of the
form (p, av, Zα), we have

(p, av, Zα) ⊢M (q, v, γα).

(2) For any move (q, γ) ∈ δ(p, ϵ, Z), where p, q ∈ Q, Z ∈ Γ, for every ID of the form
(p, u, Zα), we have

(p, u, Zα) ⊢M (q, u, γα).

174 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

As usual, ⊢+M is the transitive closure of ⊢M , and ⊢∗M is the reflexive and transitive closure
of ⊢M .

A move of the form
(p, au, Zα) ⊢M (q, u,α)

where a ∈ Σ ∪ {ϵ}, is called a pop move.

A move on a real input symbol a ∈ Σ causes this input symbol to be consumed, and the
reading head advances to the next input symbol. On the other hand, during an ϵ-move, the
reading head stays put.

When
(p, u,α) ⊢∗M (q, v, β)

we say that we have a computation.

There are several equivalent ways of defining acceptance by a PDA.

Definition 6.18. Given a PDA

M = (Q,Σ,Γ, δ, q0, Z0, F),

the following languages are defined:

(1) T (M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ϵ,α), where f ∈ F , and α ∈ Γ∗}.

We say that T (M) is the language accepted by M by final state.

(2) N(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (q, ϵ, ϵ), where q ∈ Q}.

We say that N(M) is the language accepted by M by empty stack .

(3) L(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ϵ, ϵ), where f ∈ F}.

We say that L(M) is the language accepted by M by final state and empty stack .

In all cases, note that the input w must be consumed entirely.

The following proposition shows that the acceptance mode does not matter for PDA’s.
As we will see shortly, it does matter for DPDAs.

Proposition 6.15. For any language L, the following facts hold.

(1) If L = T (M) for some PDA M , then L = L(M ′) for some PDA M ′.

(2) If L = N(M) for some PDA M , then L = L(M ′) for some PDA M ′.

(3) If L = L(M) for some PDA M , then L = T (M ′) for some PDA M ′.

6.13. PUSHDOWN AUTOMATA 175

(4) If L = L(M) for some PDA M , then L = N(M ′) for some PDA M ′.

In view of Proposition 6.15, the three acceptance modes T,N, L are equivalent.

The following PDA accepts the language

L = {anbn | n ≥ 1}

by empty stack.

Q = {1, 2}, Γ = {Z0, a};

(1, a) ∈ δ(1, a, Z0),

(1, aa) ∈ δ(1, a, a),

(2, ϵ) ∈ δ(1, b, a),

(2, ϵ) ∈ δ(2, b, a).

The following PDA accepts the language

L = {anbn | n ≥ 1}

by final state (and also by empty stack).

Q = {1, 2, 3}, Γ = {Z0, A, a}, F = {3};

(1, A) ∈ δ(1, a, Z0),

(1, aA) ∈ δ(1, a, A),

(1, aa) ∈ δ(1, a, a),

(2, ϵ) ∈ δ(1, b, a),

(2, ϵ) ∈ δ(2, b, a),

(3, ϵ) ∈ δ(1, b, A),

(3, ϵ) ∈ δ(2, b, A).

DPDA’s are defined as follows.

Definition 6.19. A PDA
M = (Q,Σ,Γ, δ, q0, Z0, F)

is a deterministic PDA (for short, DPDA), iff the following conditions hold for all (p, Z) ∈
Q× Γ: either

(1) |δ(p, a, Z)|= 1 for all a ∈ Σ, and δ(p, ϵ, Z) = ∅, or

(2) δ(p, a, Z) = ∅ for all a ∈ Σ, and |δ(p, ϵ, Z)|= 1.

176 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

A DPDA operates in realtime iff it has no ϵ-transitions.

It turns out that for DPDA’s the most general acceptance mode is by final state. Indeed,
there are language that can only be accepted deterministically as T (M). The language

L = {ambn | m ≥ n ≥ 1}

is such an example. The problem is that amb is a prefix of all strings ambn, with m ≥ n ≥ 2.

A language L is a deterministic context-free language iff L = T (M) for some DPDA M .

It is easily shown that if L = N(M) (or L = L(M)) for some DPDA M , then L = T (M ′)
for some DPDA M ′ easily constructed from M .

A PDA is unambiguous iff for every w ∈ Σ∗, there is at most one computation

(q0, w, Z0) ⊢∗ IDn,

where IDn is an accepting ID.

There are context-free languages that are not accepted by any DPDA. For example, it
can be shown that the languages

L1 = {anbn | n ≥ 1} ∪ {anb2n | n ≥ 1},

and
L2 = {wwR | w ∈ {a, b}∗},

are not accepted by any DPDA.

Also note that unambiguous grammars for these languages can be easily given.

We now show that every context-free language is accepted by a PDA.

6.14 From Context-Free Grammars To PDA’s

We show how a PDA can be easily constructed from a context-free grammar. Although
simple, the construction is not practical for parsing purposes, since the resulting PDA is
horribly nondeterministic.

Given a context-free grammar G = (V,Σ, P, S), we define a one-state PDA M as follows:

Q = {q0}; Γ = V ; Z0 = S; F = ∅;
For every rule (A→ α) ∈ P , there is a transition

(q0,α) ∈ δ(q0, ϵ, A).

For every a ∈ Σ, there is a transition

(q0, ϵ) ∈ δ(q0, a, a).

The intuition is that a computation of M mimics a leftmost derivation in G. One might
say that we have a “pop/expand” PDA.

6.15. FROM PDA’S TO CONTEXT-FREE GRAMMARS 177

Proposition 6.16. Given any context-free grammar G = (V,Σ, P, S), the PDA M just
described accepts L(G) by empty stack, i.e., L(G) = N(M).

Proof sketch. The following two claims are proved by induction.

Claim 1:

For all u, v ∈ Σ∗ and all α ∈ NV ∗ ∪ {ϵ}, if S ∗
=⇒
lm

uα, then

(q0, uv, S) ⊢∗ (q0, v,α).

Claim 2:

For all u, v ∈ Σ∗ and all α ∈ V ∗, if

(q0, uv, S) ⊢∗ (q0, v,α)

then S
∗
=⇒
lm

uα.

We now show how a PDA can be converted to a context-free grammar

6.15 From PDA’s To Context-Free Grammars

The construction of a context-free grammar from a PDA is not really difficult, but it is quite
messy. The construction is simplified if we first convert a PDA to an equivalent PDA such
that for every move (q, γ) ∈ δ(p, a, Z) (where a ∈ Σ ∪ {ϵ}), we have |γ| ≤ 2. In some sense,
we form a kind of PDA in Chomsky Normal Form.

Proposition 6.17. Given any PDA

M = (Q,Σ,Γ, δ, q0, Z0, F),

another PDA
M ′ = (Q′,Σ,Γ′, δ′, q′0, Z

′
0, F

′)

can be constructed, such that L(M) = L(M ′) and the following conditions hold:

(1) There is a one-to-one correspondence between accepting computations of M and M ′;

(2) If M has no ϵ-moves, then M ′ has no ϵ-moves; If M is unambiguous, then M ′ is
unambiguous;

(3) For all p ∈ Q′, all a ∈ Σ ∪ {ϵ}, and all Z ∈ Γ′, if (q, γ) ∈ δ′(p, a, Z), then q ̸= q′0 and
|γ| ≤ 2.

178 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

The crucial point of the construction is that accepting computations of a PDA accepting
by empty stack and final state can be decomposed into subcomputations of the form

(p, uv, Zα) ⊢∗ (q, v,α),

where for every intermediate ID (s, w, β), we have β = γα for some γ ̸= ϵ.

The nonterminals of the grammar constructed from the PDA M are triples of the form
[p, Z, q] such that

(p, u, Z) ⊢+ (q, ϵ, ϵ)

for some u ∈ Σ∗.

Given a PDA

M = (Q,Σ,Γ, δ, q0, Z0, F)

satisfying the conditions of Proposition 6.17, we construct a context-free grammar G =
(V,Σ, P, S) as follows:

V = {[p, Z, q] | p, q ∈ Q,Z ∈ Γ} ∪ Σ ∪ {S},

where S is a new symbol, and the productions are defined as follows: for all p, q ∈ Q, all
a ∈ Σ ∪ {ϵ}, all X, Y, Z ∈ Γ, we have:

(1) S → ϵ ∈ P , if q0 ∈ F ;

(2) S → a ∈ P , if (f, ϵ) ∈ δ(q0, a, Z0), and f ∈ F ;

(3) S → a[p,X, f] ∈ P , for every f ∈ F , if (p,X) ∈ δ(q0, a, Z0);

(4) S → a[p,X, s][s, Y, f] ∈ P , for every f ∈ F , for every s ∈ Q, if (p,XY) ∈ δ(q0, a, Z0);

(5) [p, Z, q]→ a ∈ P , if (q, ϵ) ∈ δ(p, a, Z) and p ̸= q0;

(6) [p, Z, s]→ a[q,X, s] ∈ P , for every s ∈ Q, if (q,X) ∈ δ(p, a, Z) and p ̸= q0;

(7) [p, Z, t]→ a[q,X, s][s, Y, t] ∈ P , for every s, t ∈ Q, if (q,XY) ∈ δ(p, a, Z) and p ̸= q0.

Proposition 6.18. Given any PDA

M = (Q,Σ,Γ, δ, q0, Z0, F)

satisfying the conditions of Proposition 6.17, the context-free grammar G = (V,Σ, P, S)
constructed as above generates L(M), i.e., L(G) = L(M). Furthermore, G is unambiguous
iff M is unambiguous.

6.16. THE CHOMSKY-SCHUTZENBERGER THEOREM 179

Proof skecth. We have to prove that

L(G) = {w ∈ Σ+ | (q0, w, Z0) ⊢+ (f, ϵ, ϵ), f ∈ F}
∪ {ϵ | q0 ∈ F}.

For this, the following claim is proved by induction.

Claim:

For all p, q ∈ Q, all Z ∈ Γ, all k ≥ 1, and all w ∈ Σ∗,

[p, Z, q]
k
=⇒
lm

w iff (p, w, Z) ⊢+ (q, ϵ, ϵ).

Using the claim, it is possible to prove that L(G) = L(M).

In view of Propositions 6.16 and 6.18, the family of context-free languages is exactly the
family of languages accepted by PDA’s. It is harder to give a grammatical characterization
of the deterministic context-free languages. One method is to use Knuth LR(k)-grammars.

Another characterization can be given in terms of strict deterministic grammars due to
Harrison and Havel.

6.16 The Chomsky-Schutzenberger Theorem

Unfortunately, there is no characterization of the context-free languages analogous to the
characterization of the regular languages in terms of closure properties (R(Σ)).

However, there is a famous theorem due to Chomsky and Schutzenberger showing that
every context-free language can be obtained from a special language, the Dyck set , in terms
of homomorphisms, inverse homomorphisms and intersection with the regular languages.

Definition 6.20. Given the alphabet Σ2 = {a, b, a, b}, define the relation ≃ on Σ∗
2 as follows:

For all u, v ∈ Σ∗
2,

u ≃ v iff ∃x, y ∈ Σ∗
2, u = xaay, v = xy or

u = xbby, v = xy.

Let ≃∗ be the reflexive and transitive closure of ≃, and let D2 = {w ∈ Σ∗
2 | w ≃∗ ϵ}. This is

the Dyck set on two letters.

It is not hard to prove that D2 is context-free.

Theorem 6.19. (Chomsky-Schutzenberger) For every PDA, M = (Q,Σ,Γ, δ, q0, Z0, F),
there is a regular language R and two homomorphisms g, h such that

L(M) = h(g−1(D2) ∩ R).

180 CHAPTER 6. CONTEXT-FREE GRAMMARS AND LANGUAGES

Observe that Theorem 6.19 yields another proof of the fact that the language accepted
a PDA is context-free.

Indeed, the context-free languages are closed under, homomorphisms, inverse homomor-
phisms, intersection with the regular languages, and D2 is context-free.

From the characterization of a-transducers in terms of homomorphisms, inverse homo-
morphisms, and intersection with regular languages, we deduce that every context-free lan-
guage is the image of D2 under some a-transduction.

Chapter 7

A Survey of LR-Parsing Methods

In this chapter, we give a brief survey on LR-parsing methods. We begin with the definition
of characteristic strings and the construction of Knuth’s LR(0)-characteristic automaton.
Next, we describe the shift/reduce algorithm. The need for lookahead sets is motivated by
the resolution of conflicts. A unified method for computing FIRST, FOLLOW and LALR(1)
lookahead sets is presented. The method uses a same graph algorithm Traverse which
finds all nodes reachable from a given node and computes the union of predefined sets
assigned to these nodes. Hence, the only difference between the various algorithms for
computing FIRST, FOLLOW and LALR(1) lookahead sets lies in the fact that the initial
sets and the graphs are computed in different ways. The method can be viewed as an
efficient way for solving a set of simultaneously recursive equations with set variables. The
method is inspired by DeRemer and Pennello’s method for computing LALR(1) lookahead
sets. However, DeRemer and Pennello use a more sophisticated graph algorithm for finding
strongly connected components. We use a slightly less efficient but simpler algorithm (a
depth-first search). We conclude with a brief presentation of LR(1) parsers.

7.1 LR(0)-Characteristic Automata

The purpose of LR-parsing , invented by D. Knuth in the mid sixties, is the following: Given
a context-free grammar G, for any terminal string w ∈ Σ∗, find out whether w belongs
to the language L(G) generated by G, and if so, construct a rightmost derivation of w, in
a deterministic fashion. Of course, this is not possible for all context-free grammars, but
only for those that correspond to languages that can be recognized by a deterministic PDA
(DPDA). Knuth’s major discovery was that for a certain type of grammars, the LR(k)-
grammars, a certain kind of DPDA could be constructed from the grammar (shift/reduce
parsers). The k in LR(k) refers to the amount of lookahead that is necessary in order to
proceed deterministically. It turns out that k = 1 is sufficient, but even in this case, Knuth
construction produces very large DPDA’s, and his original LR(1) method is not practical.
Fortunately, around 1969, Frank DeRemer, in his MIT Ph.D. thesis, investigated a practical
restriction of Knuth’s method, known as SLR(k), and soon after, the LALR(k) method was

181

182 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

discovered. The SLR(k) and the LALR(k) methods are both based on the construction of
the LR(0)-characteristic automaton from a grammar G, and we begin by explaining this
construction. The additional ingredient needed to obtain an SLR(k) or an LALR(k) parser
from an LR(0) parser is the computation of lookahead sets. In the SLR case, the FOLLOW
sets are needed, and in the LALR case, a more sophisticated version of the FOLLOW sets
is needed. We will consider the construction of these sets in the case k = 1. We will discuss
the shift/reduce algorithm and consider briefly ways of building LR(1)-parsing tables.

For simplicity of exposition, we first assume that grammars have no ϵ-rules. This restric-
tion will be lifted in Section 7.10. Given a reduced context-free grammar G = (V,Σ, P, S ′)
augmented with start production S ′ → S, where S ′ does not appear in any other produc-
tions, the set CG of characteristic strings of G is the following subset of V ∗ (watch out, not
Σ∗):

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential forms obtained in rightmost deriva-
tions: Those obtained by truncating the part of the sentential form immediately following
the rightmost symbol in the righthand side of the production applied at the last step.

The fundamental property of LR-parsing, due to D. Knuth, is that CG is a regular
language. Furthermore, a DFA, DCG, accepting CG, can be constructed from G.

Conceptually, it is simpler to construct the DFA accepting CG in two steps:

(1) First, construct a nondeterministic automaton with ϵ-rules, NCG, accepting CG.

(2) Apply the subset construction (Rabin and Scott’s method) to NCG to obtain the DFA
DCG.

In fact, careful inspection of the two steps of this construction reveals that it is possible
to construct DCG directly in a single step, and this is the construction usually found in
most textbooks on parsing.

The nondeterministic automaton NCG accepting CG is defined as follows:

The states of NCG
are “marked productions”, where a marked production is a string of

the form A → α“.”β, where A → αβ is a production, and “.” is a symbol not in V called
the “dot” and which can appear anywhere within αβ.

The start state is S ′ → “.”S, and the transitions are defined as follows:

(a) For every terminal a ∈ Σ, if A→ α“.”aβ is a marked production, with α, β ∈ V ∗, then
there is a transition on input a from state A→ α“.”aβ to state A→ αa“.”β obtained
by “shifting the dot.” Such a transition is shown in Figure 7.1.

7.1. LR(0)-CHARACTERISTIC AUTOMATA 183

A→ α“.”aβ

A→ αa“.”β

a

Figure 7.1: Transition on terminal input a

A→ α“.”Bβ

B → “.”γ1A→ αB“.”β B → “.”γm

B ϵ ϵ

Figure 7.2: Transitions from a state A→ α“.”Bβ

(b) For every nonterminal B ∈ N , if A→ α“.”Bβ is a marked production, with α, β ∈ V ∗,
then there is a transition on input B from state A → α“.”Bβ to state A → αB“.”β
(obtained by “shifting the dot”), and transitions on input ϵ (the empty string) to all
states B → “.”γi, for all productions B → γi with left-hand side B. Such transitions
are shown in Figure 7.2.

(c) A state is final if and only if it is of the form A → β“.” (that is, the dot is in the
rightmost position).

The above construction is illustrated by the following example:

184 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

Example 1. Consider the grammar G1 given by:

S −→ E

E −→ aEb

E −→ ab

The NFA for CG1 is shown in Figure 7.3. The result of making the NFA for CG1 deter-
ministic is shown in Figure 7.4 (where transitions to the “dead state” have been omitted).
The internal structure of the states 1, . . . , 6 is shown below:

1 : S −→ .E

E −→ .aEb

E −→ .ab

2 : E −→ a.Eb

E −→ a.b

E −→ .aEb

E −→ .ab

3 : E −→ aE.b

4 : S −→ E.

5 : E −→ ab.

6 : E −→ aEb.

The next example is slightly more complicated.

Example 2. Consider the grammar G2 given by:

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a
T −→ a

The result of making the NFA for CG2 deterministic is shown in Figure 7.5 (where tran-
sitions to the “dead state” have been omitted). The internal structure of the states 1, . . . , 8

7.1. LR(0)-CHARACTERISTIC AUTOMATA 185

S → .E

E → .aEb

E → a.Eb

E → aE.b

E → aEb.

S → E. E → .ab

E → a.b

E → ab.

E
ϵ

ϵ

E

b

a

b

ϵa ϵ

Figure 7.3: NFA for CG1

1 2 3

4 5 6

a E

E b b
a

Figure 7.4: DFA for CG1

186 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

1 2 5 7

3 6 8

4

E + T

∗ a

T
∗

a a

Figure 7.5: DFA for CG2

is shown below:

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a
T −→ .a

2 : E −→ E.+ T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a
4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a
T −→ .a

6 : T −→ T ∗ .a
7 : E −→ E + T.

T −→ T. ∗ a
8 : T −→ T ∗ a.

Note that some of the marked productions are more important than others. For example,
in state 5, the marked production E −→ E + .T determines the state. The other two items
T −→ .T ∗ a and T −→ .a are obtained by ϵ-closure.

We call a marked production of the form A −→ α.β, where α ̸= ϵ, a core item. A marked
production of the form A −→ β. is called a reduce item. Reduce items only appear in final

7.1. LR(0)-CHARACTERISTIC AUTOMATA 187

states.

If we also call S ′ −→ .S a core item, we observe that every state is completely determined
by its subset of core items. The other items in the state are obtained via ϵ-closure. We can
take advantage of this fact to write a more efficient algorithm to construct in a single pass
the LR(0)-automaton.

Also observe the so-called spelling property : All the transitions entering any given state
have the same label.

Given a state s, if s contains both a reduce item A −→ γ. and a shift item B −→ α.aβ,
where a ∈ Σ, we say that there is a shift/reduce conflict in state s on input a. If s contains
two (distinct) reduce items A1 −→ γ1. and A2 −→ γ2., we say that there is a reduce/reduce
conflict in state s.

A grammar is said to be LR(0) if the DFA DCG has no conflicts. This is the case for
the grammar G1. However, it should be emphasized that this is extremely rare in practice.
The grammar G1 is just very nice, and a toy example. In fact, G2 is not LR(0).

To eliminate conflicts, one can either compute SLR(1)-lookahead sets, using FOLLOW
sets (see Section 7.6), or sharper lookahead sets, the LALR(1) sets (see Section 7.9). For
example, the computation of SLR(1)-lookahead sets for G2 will eliminate the conflicts.

We will describe methods for computing SLR(1)-lookahead sets and LALR(1)-lookahead
sets in Sections 7.6, 7.9, and 7.10. A more drastic measure is to compute the LR(1)-
automaton, in which the states incoporate lookahead symbols (see Section 7.11). However,
as we said before, this is not a practical methods for large grammars.

In order to motivate the construction of a shift/reduce parser from the DFA accepting
CG, let us consider a rightmost derivation for w = aaabbb in reverse order for the grammar

0: S −→ E

1: E −→ aEb

2: E −→ ab

aaabbb α1β1v1
aaEbb α1B1v1 E −→ ab

aaEbb α2β2v2
aEb α2B2v2 E −→ aEb

aEb α3β3v3 α3 = v3 = ϵ

E α3B3v3 α3 = v3 = ϵ E −→ aEb

E α4β4v4 α4 = v4 = ϵ

S α4B4v4 α4 = v4 = ϵ S −→ E

188 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

1 2 3

4 5 6

a E

E b b
a

Figure 7.6: DFA for CG

Observe that the strings αiβi for i = 1, 2, 3, 4 are all accepted by the DFA for CG shown
in Figure 7.6.

Also, every step from αiβivi to αiBivi is the inverse of the derivation step using the
production Bi −→ βi, and the marked production Bi −→ βi“ .” is one of the reduce items
in the final state reached after processing αiβi with the DFA for CG.

This suggests that we can parse w = aaabbb by recursively running the DFA for CG.

The first time (which correspond to step 1) we run the DFA for CG on w, some string
α1β1 is accepted and the remaining input in v1.

Then, we “reduce” β1 to B1 using a production B1 −→ β1 corresponding to some reduce
item B1 −→ β1“ .” in the final state s1 reached on input α1β1.

We now run the DFA for CG on input α1B1v1. The string α2β2 is accepted, and we have

α1B1v1 = α2β2v2.

We reduce β2 to B2 using a production B2 −→ β2 corresponding to some reduce item
B2 −→ β2“ .” in the final state s2 reached on input α2β2.

We now run the DFA for CG on input α2B2v2, and so on.

At the (i+1)th step (i ≥ 1), we run the DFA for CG on input αiBivi. The string αi+1βi+1

is accepted, and we have

αiBivi = αi+1βi+1vi+1.

We reduce βi+1 to Bi+1 using a production Bi+1 −→ βi+1 corresponding to some reduce
item Bi+1 −→ βi+1“ .” in the final state si+1 reached on input αi+1βi+1.

The string βi+1 in αi+1βi+1vi+1 if often called a handle.

Then we run again the DFA for CG on input αi+1Bi+1vi+1.

Now, because the DFA for CG is deterministic there is no need to rerun it on the entire
string αi+1Bi+1vi+1, because on input αi+1 it will take us to the same state, say pi+1, that it
reached on input αi+1βi+1vi+1!

7.1. LR(0)-CHARACTERISTIC AUTOMATA 189

The trick is that we can use a stack to keep track of the sequence of states used to process
αi+1βi+1.

Then, to perform the reduction of αi+1βi+1 to αi+1Bi+1, we simply pop a number of
states equal to |βi+1|, encovering a new state pi+1 on top of the stack, and from state pi+1 we
perform the transition on input Bi+1 to a state qi+1 (in the DFA for CG), so we push state
qi+1 on the stack which now contains the sequence of states on input αi+1Bi+1 that takes us
to qi+1.

Then we resume scanning vi+1 using the DGA for CG, pushing each state being traversed
on the stack until we hit a final state.

At this point we find the new string αi+2βi+2 that leads to a final state and we continue
as before.

The process stops when the remaining input vi+1 becomes empty and when the reduce
item S ′ −→ S. (here, S −→ E.) belongs to the final state si+1.

1 2 3

4 5 6

a E

E b b
a

Figure 7.7: DFA for CG

For example, on input α2β2 = aaEbb, we have the sequence of states:

1 2 2 3 6

State 6 contains the marked production E −→ aEb“.”, so we pop the three topmost
states 2 3 6 obtaining the stack

1 2

and then we make the transition from state 2 on input E, which takes us to state 3, so
we push 3 on top of the stack, obtaining

1 2 3

We continue from state 3 on input b.

Basically, the recursive calls to the DFA for CG are implemented using a stack.

190 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

What is not clear is, during step i+1, when reaching a final state si+1, how do we know
which production Bi+1 −→ βi+1 to use in the reduction step?

Indeed, state si+1 could contain several reduce items Bi+1 −→ βi+1“.”.

This is where we assume that we were able to compute some lookahead information, that
is, for every final state s and every input a, we know which unique production n : Bi+1 −→
βi+1 applies. This is recorded in a table name “action,” such that action(s, a) = rn, where
“r” stands for reduce.

Typically we compute SLR(1) or LALR(1) lookahead sets. Otherwise, we could pick
some reducing production nondeterministicallly and use backtracking. This works but the
running time may be exponential.

The DFA for CG and the action table giving us the reductions can be combined to form
a bigger action table which specifies completely how the parser using a stack works.

This kind of parser called a shift-reduce parser is discussed in the next section.

In order to make it easier to compute the reduce entries in the parsing table, we assume
that the end of the input w is signalled by a special endmarker traditionally denoted by $.

7.2 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA. Firstly, push moves, called shift moves ,
are restricted so that exactly one symbol is pushed on top of the stack. Secondly, more
powerful kinds of pop moves, called reduce moves , are allowed. During a reduce move, a
finite number of stack symbols may be popped off the stack, and the last step of a reduce
move, called a goto move, consists of pushing one symbol on top of new topmost symbol in
the stack. Shift/reduce parsers use parsing tables constructed from the LR(0)-characteristic
automaton DCG associated with the grammar. The shift and goto moves come directly
from the transition table of DCG, but the determination of the reduce moves requires the
computation of lookahead sets. The SLR(1) lookahead sets are obtained from some sets
called the FOLLOW sets (see Section 7.6), and the LALR(1) lookahead sets LA(s, A −→ γ)
require fancier FOLLOW sets (see Section 7.9).

The construction of shift/reduce parsers is made simpler by assuming that the end of
input strings w ∈ Σ∗ is indicated by the presence of an endmarker , usually denoted $, and
assumed not to belong to Σ.

Consider the grammar G1 of Example 1, where we have numbered the productions 0, 1, 2:

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab

The parsing tables associated with the grammar G1 are shown below:

7.2. SHIFT/REDUCE PARSERS 191

a b $ E

1 s2 4

2 s2 s5 3

3 s6

4 acc

5 r2 r2 r2

6 r1 r1 r1

1 2 3

4 5 6

a E

E b b
a

Figure 7.8: DFA for CG

Entries of the form si are shift actions, where i denotes one of the states, and entries of
the form rn are reduce actions, where n denotes a production number (not a state). The
special action acc means accept, and signals the successful completion of the parse. Entries
of the form i, in the rightmost column, are goto actions . All blank entries are error entries,
and mean that the parse should be aborted.

We will use the notation action(s, a) for the entry corresponding to state s and terminal
a ∈ Σ ∪ {$}, and goto(s, A) for the entry corresponding to state s and nonterminal A ∈
N − {S ′}.

Assuming that the input is w$, we now describe in more detail how a shift/reduce parser
proceeds. The parser uses a stack in which states are pushed and popped. Initially, the stack
contains state 1 and the cursor pointing to the input is positioned on the leftmost symbol.
There are four possibilities:

(1) If action(s, a) = sj, then push state j on top of the stack, and advance to the next
input symbol in w$. This is a shift move.

(2) If action(s, a) = rn, then do the following: First, determine the length k = |γ| of the
righthand side of the production n : A −→ γ. Then, pop the topmost k symbols off
the stack (if k = 0, no symbols are popped). If p is the new top state on the stack
(after the k pop moves), push the state goto(p, A) on top of the stack, where A is the

192 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

lefthand side of the “reducing production” A −→ γ. Do not advance the cursor in the
current input. This is a reduce move.

(3) If action(s, $) = acc, then accept. The input string w belongs to L(G).

(4) In all other cases, error, abort the parse. The input string w does not belong to L(G).

Observe that no explicit state control is needed. The current state is always the current
topmost state in the stack. We illustrate below a parse of the input aaabbb$.

stack remaining input action

1 aaabbb$ s2

12 aabbb$ s2

122 abbb$ s2

1222 bbb$ s5

12225 bb$ r2

1223 bb$ s6

12236 b$ r1

123 b$ s6

1236 $ r1

14 $ acc

Observe that the sequence of reductions read from bottom-up yields a rightmost deriva-
tion of aaabbb from E (or from S, if we view the action acc as the reduction by the production
S −→ E). This is a general property of LR-parsers.

The SLR(1) reduce entries in the parsing tables are determined as follows: For every state
s containing a reduce item B −→ γ., if B −→ γ is the production number n, enter the action
rn for state s and every terminal a ∈ FOLLOW(B). If the resulting shift/reduce parser has
no conflicts, we say that the grammar is SLR(1). For the LALR(1) reduce entries, enter
the action rn for state s and production n : B −→ γ, for all a ∈ LA(s, B −→ γ). Similarly,
if the shift/reduce parser obtained using LALR(1)-lookahead sets has no conflicts, we say
that the grammar is LALR(1).

7.3 Computation of FIRST

In order to compute the FOLLOW sets, we first need to to compute the FIRST sets! For
simplicity of exposition, we first assume that grammars have no ϵ-rules. The general case
will be treated in Section 7.10.

7.4. THE INTUITION BEHIND THE SHIFT/REDUCE ALGORITHM 193

Given a context-free grammar G = (V,Σ, P, S ′) (augmented with a start production
S ′ −→ S), for every nonterminal A ∈ N = V − Σ, let

FIRST(A) = {a | a ∈ Σ, A
+

=⇒ aα, for some α ∈ V ∗}.

For a terminal a ∈ Σ, let FIRST(a) = {a}. The key to the computation of FIRST(A) is the
following observation: a is in FIRST(A) if either a is in

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, for some α ∈ V ∗},

or a is in
{a | a ∈ FIRST(B), A −→ Bα ∈ P, for some α ∈ V ∗, B ̸= A}.

Note that the second assertion is true because, if B
+

=⇒ aδ, then A =⇒ Bα
+

=⇒ aδα, and
so, FIRST(B) ⊆ FIRST(A) whenever A −→ Bα ∈ P , with A ̸= B. Hence, the FIRST sets
are the least solution of the following set of recursive equations: For each nonterminal A,

FIRST(A) = INITFIRST(A) ∪
⋃

{FIRST(B) | A −→ Bα ∈ P, A ̸= B}.

In order to explain the method for solving such systems, we will formulate the problem in
more general terms, but first, we describe a “naive” version of the shift/reduce algorithm
that hopefully demystifies the “‘optimized version” described in Section 7.2.

7.4 The Intuition Behind the Shift/Reduce Algorithm

Let DCG = (K, V, δ, q0, F) be the DFA accepting the regular language CG, and let δ∗ be the
extension of δ to K×V ∗. Let us assume that the grammar G is either SLR(1) or LALR(1),
which implies that it has no shift/reduce or reduce/reduce conflicts. We can use the DFA
DCG accepting CG recursively to parse L(G). The function CG is defined as follows: Given
any string µ ∈ V ∗,

CG(µ) =

⎧
⎨

⎩

error if δ∗(q0, µ) = error;
(δ∗(q0, θ), θ, v) if δ∗(q0, θ) ∈ F , µ = θv and θ is the

shortest prefix of µ s.t. δ∗(q0, θ) ∈ F .

The naive shift-reduce algorithm is shown below:

begin

accept := true;

stop := false;

µ := w$; {input string}
while ¬stop do

if CG(µ) = error then

194 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

stop := true; accept := false

else

Let (q, θ, v) = CG(µ)

Let B → β be the production so that

action(q,FIRST(v)) = B → β and let θ = αβ

if B → β = S ′ → S then

stop := true

else

µ := αBv {reduction}
endif

endif

endwhile

end

The idea is to recursively run the DFA DCG on the sentential form µ, until the first final
state q is hit. Then, the sentential form µ must be of the form αβv, where v is a terminal
string ending in $, and the final state q contains a reduce item of the form B −→ β, with
action(q,FIRST(v)) = B −→ β. Thus, we can reduce µ = αβv to αBv, since we have found
a rightmost derivation step, and repeat the process.

Note that the major inefficiency of the algorithm is that when a reduction is performed,
the prefix α of µ is reparsed entirely by DCG. Since DCG is deterministic, the sequence
of states obtained on input α is uniquely determined. If we keep the sequence of states
produced on input θ by DCG in a stack, then it is possible to avoid reparsing α. Indeed, all
we have to do is update the stack so that just before applying DCG to αAv, the sequence
of states in the stack is the sequence obtained after parsing α. This stack is obtained by
popping the |β| topmost states and performing an update which is just a goto move. This
is the standard version of the shift/reduce algorithm!

7.5 The Graph Method for Computing Fixed Points

Let X be a finite set representing the domain of the problem (in Section 7.3 above, X = Σ),
let F (1), . . . , F (N) be N sets to be computed and let I(1), . . . , I(N) be N given subsets of
X . The sets I(1), . . . , I(N) are the initial sets. We also have a directed graph G whose
set of nodes is {1, . . . , N} and which represents relationships among the sets F (i), where
1 ≤ i ≤ N . The graph G has no parallel edges and no loops, but it may have cycles. If there
is an edge from i to j, this is denoted by iGj (note that the absense of loops means that
iGi never holds). Also, the existence of a path from i to j is denoted by iG+j. The graph
G represents a relation, and G+ is the graph of the transitive closure of this relation. The
existence of a path from i to j, including the null path, is denoted by iG∗j. Hence, G∗ is the

7.5. THE GRAPH METHOD FOR COMPUTING FIXED POINTS 195

reflexive and transitive closure of G. We want to solve for the least solution of the system
of recursive equations:

F (i) = I(i) ∪ {F (j) | iGj, i ̸= j}, 1 ≤ i ≤ N.

Since (2X)N is a complete lattice under the inclusion ordering (which means that ev-
ery family of subsets has a least upper bound, namely, the union of this family), it is an
ω-complete poset, and since the function F : (2X)N → (2X)N induced by the system of
equations is easily seen to preserve least upper bounds of ω-chains, the least solution of the
system can be computed by the standard fixed point technique (as explained in Section 3.7
of the class notes). We simply compute the sequence of approximations (F k(1), . . . , F k(N)),
where

F 0(i) = ∅, 1 ≤ i ≤ N,

and
F k+1(i) = I(i) ∪

⋃
{F k(j) | iGj, i ̸= j}, 1 ≤ i ≤ N.

It is easily seen that we can stop at k = N − 1, and the least solution is given by

F (i) = F 1(i) ∪ F 2(i) ∪ · · · ∪ FN(i), 1 ≤ i ≤ N.

However, the above expression can be simplified to

F (i) =
⋃

{I(j) | iG∗j}, 1 ≤ i ≤ N.

This last expression shows that in order to compute F (i), it is necessary to compute the
union of all the initial sets I(j) reachable from i (including i). Hence, any transitive closure
algorithm or graph traversal algorithm will do. For simplicity and for pedagogical reasons,
we use a depth-first search algorithm.

Going back to FIRST, we see that all we have to do is to compute the INITFIRST sets,
the graph GFIRST, and then use the graph traversal algorithm. The graph GFIRST is
computed as follows: The nodes are the nonterminals and there is an edge from A to B
(A ̸= B) if and only if there is a production of the form A −→ Bα, for some α ∈ V ∗.

Example 1. Computation of the FIRST sets for the grammar G1 given by the rules:

S −→ E$

E −→ E + T

E −→ T

T −→ T ∗ F
T −→ F

F −→ (E)

F −→ −T
F −→ a.

196 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

E

T F

Figure 7.9: Graph GFIRST for G1

We get

INITFIRST(E) = ∅, INITFIRST(T) = ∅, INITFIRST(F) = {(,−, a}.

The graph GFIRST is shown in Figure 7.9.
We obtain the following FIRST sets:

FIRST(E) = FIRST(T) = FIRST(F) = {(,−, a}.

7.6 Computation of FOLLOW

Recall the definition of FOLLOW(A) for a nonterminal A:

FOLLOW(A) = {a | a ∈ Σ, S
+

=⇒ αAaβ, for some α, β ∈ V ∗}.

Note that a is in FOLLOW(A) if either a is in

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAXβ ∈ P, a ∈ FIRST(X), α, β ∈ V ∗}

or a is in
{a | a ∈ FOLLOW(B), B −→ αA ∈ P, α ∈ V ∗, A ̸= B}.

Indeed, if S
+

=⇒ λBaρ, then S
+

=⇒ λBaρ =⇒ λαAaρ, and so,

FOLLOW(B) ⊆ FOLLOW(A)

whenever B −→ αA is in P , with A ̸= B. Hence, the FOLLOW sets are the least solution
of the set of recursive equations: For all nonterminals A,

FOLLOW(A) = INITFOLLOW(A) ∪
⋃

{FOLLOW(B) | B −→ αA ∈ P, α ∈ V ∗, A ̸= B}.

According to the method explained above, we just have to compute the INITFOLLOW sets
(using FIRST) and the graph GFOLLOW, which is computed as follows: The nodes are the
nonterminals and there is an edge from A to B (A ̸= B) if and only if there is a production

7.7. ALGORITHM TRAV ERSE 197

E

T F

Figure 7.10: Graph GFOLLOW for G1

of the form B −→ αA in P , for some α ∈ V ∗. Note the duality between the construction of
the graph GFIRST and the graph GFOLLOW.

Example 2. Computation of the FOLLOW sets for the grammar G1.

INITFOLLOW(E) = {+,), $}, INITFOLLOW(T) = {∗}, INITFOLLOW(F) = ∅.

The graph GFOLLOW is shown in Figure 7.10. We have

FOLLOW(E) = INITFOLLOW(E),

FOLLOW(T) = INITFOLLOW(T) ∪ INITFOLLOW(E) ∪ INITFOLLOW(F),

FOLLOW(F) = INITFOLLOW(F) ∪ INITFOLLOW(T) ∪ INITFOLLOW(E),

and so

FOLLOW(E) = {+,), $}, FOLLOW(T) = {+, ∗,), $}, FOLLOW(F) = {+, ∗,), $}.

7.7 Algorithm Traverse

The input is a directed graph Gr having N nodes, and a family of initial sets I[i], 1 ≤ i ≤ N .
We assume that a function successors is available, which returns for each node n in the graph,
the list successors[n] of all immediate successors of n. The output is the list of sets F [i],
1 ≤ i ≤ N , solution of the system of recursive equations of Section 7.5. Hence,

F [i] =
⋃

{I[j] | iG∗j}, 1 ≤ i ≤ N.

The procedure Reachable visits all nodes reachable from a given node. It uses a stack
STACK and a boolean array V ISITED to keep track of which nodes have been visited.
The procedures Reachable and traverse are shown in Figure 7.11.

198 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

Procedure Reachable(Gr : graph; startnode : node; I : listofsets;

varF : listofsets);

var currentnode, succnode, i : node;STACK : stack;

V ISITED : array[1..N] of boolean;

begin

for i := 1 to N do

V ISITED[i] := false;

STACK := EMPTY ;

push(STACK, startnode);

while STACK ̸= EMPTY do

begin

currentnode := top(STACK); pop(STACK);

V ISITED[currentnode] := true;

for each succnode ∈ successors(currentnode) do

if ¬V ISITED[succnode] then

begin

push(STACK, succnode);

F [startnode] := F [startnode] ∪ I[succnode]

end

end

end

The sets F [i], 1 ≤ i ≤ N , are computed as follows:

begin

for i := 1 to N do

F [i] := I[i];

for startnode := 1 to N do

Reachable(Gr, startnode, I, F)

end

Figure 7.11: Algorithm traverse

7.8. MORE ON LR(0)-CHARACTERISTIC AUTOMATA 199

7.8 More on LR(0)-Characteristic Automata

Let G = (V,Σ, P, S ′) be an augmented context-free grammar with augmented start produc-
tion S ′ −→ S$ (where S ′ only occurs in the augmented production). The righmost derivation
relation is denoted by =⇒

rm
.

Recall that the set CG of characteristic strings for the grammar G is defined by

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αAv =⇒
rm

αβv, αβ ∈ V ∗, v ∈ Σ∗}.

The fundamental property of LR-parsing, due to D. Knuth, is stated in the following
theorem:

Theorem 7.1. Let G be a context-free grammar and assume that every nonterminal derives
some terminal string. The language CG (over V ∗) is a regular language. Furthermore, a
deterministic automaton DCG accepting CG can be constructed from G.

The construction ofDCG can be found in various places, including the book on Compilers
by Aho, Sethi and Ullman. We explained this construction in Section 7.1. The proof that the
NFA NCG constructed as indicated in Section 7.1 is correct, i.e., that it accepts precisely CG,
is nontrivial, but not really hard either. This will be the object of a homework assignment!
However, note a subtle point: The construction of NCG is only correct under the assumption
that every nonterminal derives some terminal string. Otherwise, the construction could yield
an NFA NCG accepting strings not in CG.

Recall that the states of the characteristic automaton CGA are sets of items (or marked
productions), where an item is a production with a dot anywhere in its right-hand side.
Note that in constructing CGA, it is not necessary to include the state {S ′ −→ S$.} (the
endmarker $ is only needed to compute the lookahead sets). If a state p contains a marked
production of the form A −→ β., where the dot is the rightmost symbol, state p is called a
reduce state and A −→ β is called a reducing production for p. Given any state q, we say
that a string β ∈ V ∗ accesses q if there is a path from some state p to the state q on input
β in the automaton CGA. Given any two states p, q ∈ CGA, for any β ∈ V ∗, if there is a
sequence of transitions in CGA from p to q on input β, this is denoted by

p
β−→ q.

The initial state which is the closure of the item S ′ −→ .S$ is denoted by 1. The LALR(1)-
lookahead sets are defined in the next section.

7.9 LALR(1)-Lookahead Sets

For any reduce state q and any reducing production A −→ β for q, let

LA(q, A −→ β) = {a | a ∈ Σ, S ′ ∗
=⇒
rm

αAav =⇒
rm

αβav, α, β ∈ V ∗, v ∈ Σ∗, αβ accesses q}.

200 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

In words, LA(q, A −→ β) consists of the terminal symbols for which the reduction by
production A −→ β in state q is the correct action (that is, for which the parse will terminate
successfully). The LA sets can be computed using the FOLLOW sets defined below.

For any state p and any nonterminal A, let

FOLLOW(p, A) = {a | a ∈ Σ, S ′ ∗
=⇒
rm

αAav, α ∈ V ∗, v ∈ Σ∗ and α accesses p}.

Since for any derivation
S ′ ∗

=⇒
rm

αAav =⇒
rm

αβav

where αβ accesses q, there is a state p such that p
β−→ q and α accesses p, it is easy to see

that the following result holds:

Proposition 7.2. For every reduce state q and any reducing production A −→ β for q, we
have

LA(q, A −→ β) =
⋃

{FOLLOW(p, A) | p β−→ q}.

Also, we let
LA({S ′ −→ S.$}, S ′ −→ S$) = FOLLOW(1, S).

Intuitively, when the parser makes the reduction by production A −→ β in state q, each
state p as above is a possible top of stack after the states corresponding to β are popped.
Then the parser must read A in state p, and the next input symbol will be one of the symbols
in FOLLOW(p, A).

The computation of FOLLOW(p, A) is similar to that of FOLLOW(A). First, we compute
INITFOLLOW(p, A), given by

INITFOLLOW(p, A) = {a | a ∈ Σ, ∃q, r, p A−→ q
a−→ r}.

These are the terminals that can be read in CGA after the “goto transition” on nonterminal
A has been performed from p. These sets can be easily computed from CGA.

Note that for the state p whose core item is S ′ −→ S.$, we have

INITFOLLOW(p, S) = {$}.

Next, observe that if B −→ αA is a production and if

S ′ ∗
=⇒
rm

λBav

where λ accesses p′, then
S ′ ∗

=⇒
rm

λBav =⇒
rm

λαAav

7.10. COMPUTING FIRST, FOLLOW, ETC. IN THE PRESENCE OF ϵ-RULES 201

where λ accesses p′ and p′
α−→ p. Hence λα accesses p and

FOLLOW(p′, B) ⊆ FOLLOW(p, A)

whenever there is a production B −→ αA and p′
α−→ p. From this, the following recursive

equations are easily obtained: For all p and all A,

FOLLOW(p, A) = INITFOLLOW(p, A) ∪
⋃

{FOLLOW(p′, B) | B −→ αA ∈ P, α ∈ V ∗ and p′
α−→ p}.

From Section 7.5, we know that these sets can be computed by using the algorithm
traverse. All we need is to compute the graph GLA.

The nodes of the graphGLA are the pairs (p, A), where p is a state andA is a nonterminal.
There is an edge from (p, A) to (p′, B) if and only if there is a production of the form
B −→ αA in P for some α ∈ V ∗ and p′

α−→ p in CGA. Note that it is only necessary to
consider nodes (p, A) for which there is a nonterminal transition on A from p. Such pairs
can be obtained from the parsing table. Also, using the spelling property , that is, the fact
that all transitions entering a given state have the same label, it is possible to compute the
relation lookback defined as follows:

(q, A) lookback (p, A) iff p
β−→ q

for some reduce state q and reducing production A −→ β. The above considerations show
that the FOLLOW sets of Section 7.6 are obtained by ignoring the state component from
FOLLOW(p, A). We now consider the changes that have to be made when ϵ-rules are allowed.

7.10 Computing FIRST, FOLLOW, etc. in the Presence
of ϵ-Rules

[Computing FIRST, FOLLOW and LA(q, A −→ β) in the Presence of ϵ-Rules] First, it is
necessary to compute the set E of erasable nonterminals , that is, the set of nonterminals A

such that A
+

=⇒ ϵ.

We let E be a boolean array and change be a boolean flag. An algorithm for computing
E is shown in Figure 7.12. Then, in order to compute FIRST, we compute

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, or

A −→ A1 · · ·Akaα ∈ P, for some α ∈ V ∗, and E(A1) = · · · = E(Ak) = true}.

The graph GFIRST is obtained as follows: The nodes are the nonterminals, and there is
an edge from A to B if and only if either there is a production A −→ Bα, or a production
A −→ A1 · · ·AkBα, for some α ∈ V ∗, with E(A1) = · · · = E(Ak) = true. Then, we extend

202 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

begin

for each nonterminal A do

E(A) := false;

for each nonterminal A such that A −→ ϵ ∈ P do

E(A) := true;

change := true;

while change do

begin

change := false;

for each A −→ A1 · · ·An ∈ P

s.t. E(A1) = · · · = E(An) = true do

if E(A) = false then

begin

E(A) := true;

change := true

end

end

end

Figure 7.12: Algorithm for computing E

7.10. COMPUTING FIRST, FOLLOW, ETC. IN THE PRESENCE OF ϵ-RULES 203

FIRST to strings in V +, in the obvious way. Given any string α ∈ V +, if |α| = 1, then
β = X for some X ∈ V , and

FIRST(β) = FIRST(X)

as before, else if β = X1 · · ·Xn with n ≥ 2 and Xi ∈ V , then

FIRST(β) = FIRST(X1) ∪ · · · ∪ FIRST(Xk),

where k, 1 ≤ k ≤ n, is the largest integer so that

E(X1) = · · · = E(Xk) = true.

To compute FOLLOW, we first compute

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAβ ∈ P, α ∈ V ∗, β ∈ V +, and a ∈ FIRST(β)}.

The graph GFOLLOW is computed as follows: The nodes are the nonterminals. There is an
edge from A to B if either there is a production of the form B −→ αA, or B −→ αAA1 · · ·Ak,
for some α ∈ V ∗, and with E(A1) = · · · = E(Ak) = true.

The computation of the LALR(1) lookahead sets is also more complicated because an-
other graph is needed in order to compute INITFOLLOW(p, A). First, the graph GLA is
defined in the following way: The nodes are still the pairs (p, A), as before, but there is an
edge from (p, A) to (p′, B) if and only if either there is some production B −→ αA, for some

α ∈ V ∗ and p′
α−→ p, or a production B −→ αAβ, for some α ∈ V ∗, β ∈ V +, β

+
=⇒ ϵ, and

p′
α−→ p. The sets INITFOLLOW(p, A) are computed in the following way: First, let

DR(p, A) = {a | a ∈ Σ, ∃q, r, p A−→ q
a−→ r}.

The sets DR(p, A) are the direct read sets. Note that for the state p whose core item is
S ′ −→ S.$, we have

DR(p, S) = {$}.
Then,

INITFOLLOW(p, A) = DR(p,A) ∪
⋃

{a | a ∈ Σ, S ′ ∗
=⇒
rm

αAβav =⇒
rm

αAav, α ∈ V ∗, β ∈ V +, β
+

=⇒ ϵ, α accesses p}.

The set INITFOLLOW(p, A) is the set of terminals that can be read before any handle
containing A is reduced. The graph GREAD is defined as follows: The nodes are the pairs

(p, A), and there is an edge from (p, A) to (r, C) if and only if p
A−→ r and r

C−→ s, for some
s, with E(C) = true.

Then, it is not difficult to show that the INITFOLLOW sets are the least solution of the
set of recursive equations:

INITFOLLOW(p, A) = DR(p, A) ∪
⋃

{INITFOLLOW(r, C) | (p, A)GREAD (r, C)}.

204 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

Hence the INITFOLLOW sets can be computed using the algorithm traverse on the graph
GREAD and the setsDR(p, A), and then, the FOLLOW sets can be computed using traverse
again, with the graph GLA and sets INITFOLLOW. Finally, the sets LA(q, A −→ β) are
computed from the FOLLOW sets using the graph lookback.

From section 7.5, we note that F (i) = F (j) whenever there is a path from i to j and a
path from j to i, that is, whenever i and j are strongly connected . Hence, the solution of
the system of recursive equations can be computed more efficiently by finding the maximal
strongly connected components of the graph G, since F has a same value on each strongly
connected component. This is the approach followed by DeRemer and Pennello in: Efficient
Computation of LALR(1) Lookahead sets, by F. DeRemer and T. Pennello, TOPLAS, Vol.
4, No. 4, October 1982, pp. 615-649.

We now give an example of grammar which is LALR(1) but not SLR(1).

Example 3. The grammar G2 is given by:

S ′ −→ S$

S −→ L = R

S −→ R

L −→ ∗R
L −→ id

R −→ L

7.10. COMPUTING FIRST, FOLLOW, ETC. IN THE PRESENCE OF ϵ-RULES 205

The states of the characteristic automaton CGA2 are:

1 : S ′ −→ .S$

S −→ .L = R

S −→ .R

L −→ . ∗R
L −→ .id

R −→ .L

2 : S ′ −→ S.$

3 : S −→ L. = R

R −→ L.

4 : S −→ R.

5 : L −→ ∗.R
R −→ .L

L −→ . ∗R
L −→ .id

6 : L −→ id.

7 : S −→ L = .R

R −→ .L

L −→ . ∗R
L −→ .id

8 : L −→ ∗R.

9 : R −→ L.

10 : S −→ L = R.

We find that

INITFIRST(S) = ∅
INITFIRST(L) = {∗, id}
INITFIRST(R) = ∅.

The graph GFIRST is shown in Figure 7.13.
Then, we find that

FIRST(S) = {∗, id}
FIRST(L) = {∗, id}
FIRST(R) = {∗, id}.

206 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

S

RL

Figure 7.13: The graph GFIRST

S

RL

Figure 7.14: The graph GFOLLOW

We also have

INITFOLLOW(S) = {$}
INITFOLLOW(L) = {=}
INITFOLLOW(R) = ∅.

The graph GFOLLOW is shown in Figure 7.14.

Then, we find that

FOLLOW(S) = {$}
FOLLOW(L) = {=, $}
FOLLOW(R) = {=, $}.

Note that there is a shift/reduce conflict in state 3 on input =, since there is a shift
on input = (since S −→ L. = R is in state 3), and a reduce for R → L, since = is in
FOLLOW(R). However, as we shall see, the conflict is resolved if the LALR(1) lookahead
sets are computed.

The graph GLA is shown in Figure 7.15.

7.10. COMPUTING FIRST, FOLLOW, ETC. IN THE PRESENCE OF ϵ-RULES 207

(1, S)

(1, R)

(1, L)

(5, R)

(5, L)

(7, R)

(7, L)

Figure 7.15: The graph GLA

We get the following INITFOLLOW and FOLLOW sets:

INITFOLLOW(1, S) = {$} INITFOLLOW(1, S) = {$}
INITFOLLOW(1, R) = ∅ INITFOLLOW(1, R) = {$}
INITFOLLOW(1, L) = {=} INITFOLLOW(1, L) = {=, $}
INITFOLLOW(5, R) = ∅ INITFOLLOW(5, R) = {=, $}
INITFOLLOW(5, L) = ∅ INITFOLLOW(5, L) = {=, $}
INITFOLLOW(7, R) = ∅ INITFOLLOW(7, R) = {$}
INITFOLLOW(7, L) = ∅ INITFOLLOW(7, L) = {$}.

Thus, we get

LA(2, S ′ −→ S$) = FOLLOW(1, S) = {$}
LA(3, R −→ L) = FOLLOW(1, R) = {$}
LA(4, S −→ R) = FOLLOW(1, S) = {$}
LA(6, L −→ id) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}
LA(8, L −→ ∗R) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}
LA(9, R −→ L) = FOLLOW(5, R) ∪ FOLLOW(7, R) = {=, $}

LA(10, S −→ L = R) = FOLLOW(1, S) = {$}.

Since LA(3, R −→ L) does not contain =, the conflict is resolved.

208 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

(A→ α.aβ, b)

(A→ αa.β, b)

a

Figure 7.16: Transition on terminal input a

7.11 LR(1)-Characteristic Automata

We conclude this brief survey on LR-parsing by describing the construction of LR(1)-parsers.
The new ingredient is that when we construct an NFA accepting CG, we incorporate looka-
head symbols into the states. Thus, a state is a pair (A −→ α.β, b), where A −→ α.β is a
marked production, as before, and b ∈ Σ ∪ {$} is a lookahead symbol . The new twist in the
construction of the nondeterministic characteristic automaton is the following:

The start state is (S ′ → .S, $), and the transitions are defined as follows:

(a) For every terminal a ∈ Σ, then there is a transition on input a from state (A→ α.aβ, b)
to the state (A → αa.β, b) obtained by “shifting the dot” (where a = b is possible).
Such a transition is shown in Figure 7.16.

(b) For every nonterminal B ∈ N , there is a transition on inputB from state (A→ α.Bβ, b)
to state (A → αB.β, b) (obtained by “shifting the dot”), and transitions on input ϵ
(the empty string) to all states (B → .γ, a), for all productions B → γ with left-hand
side B and all a ∈ FIRST(βb). Such transitions are shown in Figure 7.17.

(c) A state is final if and only if it is of the form (A → β., b) (that is, the dot is in the
rightmost position).

Example 3. Consider the grammar G3 given by:

0 : S −→ E

1: E −→ aEb

2: E −→ ϵ

7.11. LR(1)-CHARACTERISTIC AUTOMATA 209

(A→ α.Bβ, b)

(A→ αB.β, b) (B → .γ, a)

B ϵ ϵ ϵ

Figure 7.17: Transitions from a state (A→ α.Bβ, b)

The result of making the NFA for CG3 deterministic is shown in Figure 7.18 (where
transitions to the “dead state” have been omitted). The internal structure of the states
1, . . . , 8 is shown below:

1 : S −→ .E, $

E −→ .aEb, $

E −→ ., $

2 : E −→ a.Eb, $

E −→ .aEb, b

E −→ ., b

3 : E −→ a.Eb, b

E −→ .aEb, b

E −→ ., b

4 : E −→ aE.b, $

5 : E −→ aEb., $

6 : E −→ aE.b, b

7 : E −→ aEb., b

8 : S −→ E., $

The LR(1)-shift/reduce parser associated with DCG is built as follows: The shift and
goto entries come directly from the transitions of DCG, and for every state s, for every item

210 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

1 2 3

4

5

6

7

8

a a

E E E

b b

a

Figure 7.18: DFA for CG3

(A −→ γ, b) in s, enter an entry rn for state s and input b, where A −→ γ is production
number n. If the resulting parser has no conflicts, we say that the grammar is an LR(1)
grammar. The LR(1)-shift/reduce parser for G3 is shown below:

a b $ E

1 s2 r2 8

2 s3 r2 4

3 s3 r2 6

4 r5

5 r1

6 r1 s7

7 r1

8 acc

Observe that there are three pairs of states, (2, 3), (4, 6), and (5, 7), where both states in
a common pair only differ by the lookahead symbols. We can merge the states corresponding
to each pair, because the marked items are the same, but now, we have to allow lookahead
sets. Thus, the merging of (2, 3) yields

2′ : E −→ a.Eb, {b, $}
E −→ .aEb, {b}
E −→ ., {b},

the merging of (4, 6) yields
3′ : E −→ aE.b, {b, $},

7.11. LR(1)-CHARACTERISTIC AUTOMATA 211

the merging of (5, 7) yields
4′ : E −→ aEb., {b, $}.

We obtain a merged DFA with only five states, and the corresponding shift/reduce parser is
given below:

a b $ E

1 s2′ r2 8

2′ s2′ r2 3′

3′ s4′

4′ r1 r1

8 acc

The reader should verify that this is the LALR(1)-parser. The reader should also check
that that the SLR(1)-parser is given below:

a b $ E

1 s2 r2 r2 5

2 s2 r2 r2 3

3 s4

4 r1 r1

5 acc

The difference between the two parsing tables is that the LALR(1)-lookahead sets are
sharper than the SLR(1)-lookahead sets. This is because the computation of the LALR(1)-
lookahead sets uses a sharper version of FOLLOW sets. It can also be shown that if a
grammar is LALR(1), then the merging of states of an LR(1)-parser always succeeds and
yields the LALR(1) parser. Of course, this is a very inefficient way of producing LALR(1)
parsers, and much better methods exist, such as the graph method described in these notes.
However, there are cases where the merging fails. Sufficient conditions for successful merging
have been investigated, but there is still room for research in this area.

212 CHAPTER 7. A SURVEY OF LR-PARSING METHODS

Chapter 8

RAM Programs, Turing Machines,
and the Partial Recursive Functions

See the scanned version of this chapter found in the web page for CIS511:

http://www.cis.upenn.edu/~jean/old511/html/tcbookpdf3a.pdf

8.1 Partial Functions and RAM Programs

We define an abstract machine model for computing functions

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗,

where Σ = {a1, . . . , ak} s some input alphabet.

Numerical functions f : Nn → N can be viewed as functions defined over the one-letter
alphabet {a1}, using the bijection m ,→ am1 .

Let us recall the definition of a partial function.

Definition 8.1. A binary relation R ⊆ A × B between two sets A and B is functional iff,
for all x ∈ A and y, z ∈ B,

(x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f = ⟨A,G,B⟩, where A and B are arbitrary sets (possibly
empty) and G is a functional relation (possibly empty) between A and B, called the graph
of f .

213

214 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

Hence, a partial function is a functional relation such that every argument has at most
one image under f .

The graph of a function f is denoted as graph(f). When no confusion can arise, a
function f and its graph are usually identified.

A partial function f = ⟨A,G,B⟩ is often denoted as f : A→ B.

The domain dom(f) of a partial function f = ⟨A,G,B⟩ is the set

dom(f) = {x ∈ A | ∃y ∈ B, (x, y) ∈ G}.

For every element x ∈ dom(f), the unique element y ∈ B such that (x, y) ∈ graph(f) is
denoted as f(x). We say that f(x) converges , also denoted as f(x) ↓.

If x ∈ A and x /∈ dom(f), we say that f(x) diverges , also denoted as f(x) ↑.

Intuitively, if a function is partial, it does not return any output for any input not in its
domain. This corresponds to an infinite computation.

A partial function f : A→ B is a total function iff dom(f) = A. It is customary to call
a total function simply a function.

We now define a model of computation know as the RAM programs , or Post machines .

RAM programs are written in a sort of assembly language involving simple instructions
manipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers denoted as R1, . . . , Rp,
with no limitation on the size of strings held in the registers.

RAM programs can be defined either in flowchart form or in linear form. Since the linear
form is more convenient for coding purposes, we present RAM programs in linear form.

A RAM program P (in linear form) consists of a finite sequence of instructions using a
finite number of registers R1, . . . , Rp.

Instructions may optionally be labeled with line numbers denoted as N1, . . . , Nq.

It is neither mandatory to label all instructions, nor to use distinct line numbers!

Thus, the same line number can be used in more than one line. As we will see later on,
this makes it easier to concatenate two different programs without performing a renumbering
of line numbers.

Every instruction has four fields, not necessarily all used. The main field is the op-code.
Here is an example of a RAM program to concatenate two strings x1 and x2.

8.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 215

R3 ← R1

R4 ← R2

N0 R4 jmpa N1b

R4 jmpb N2b

jmp N3b

N1 adda R3

tail R4

jmp N0a

N2 addb R3

tail R4

jmp N0a

N3 R1 ← R3

continue

Definition 8.2. RAM programs are constructed from seven types of instructions shown
below:

(1j) N addj Y

(2) N tail Y

(3) N clr Y

(4) N Y ← X

(5a) N jmp N1a

(5b) N jmp N1b

(6ja) N Y jmpj N1a

(6jb) N Y jmpj N1b

(7) N continue

1. An instruction of type (1j) concatenates the letter aj to the right of the string held by
register Y (1 ≤ j ≤ k). The effect is the assignment

Y := Y aj .

2. An instruction of type (2) deletes the leftmost letter of the string held by the register
Y . This corresponds to the function tail, defined such that

216 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

tail(ϵ) = ϵ,

tail(aju) = u.

The effect is the assignment

Y := tail(Y).

3. An instruction of type (3) clears register Y , i.e., sets its value to the empty string ϵ.
The effect is the assignment

Y := ϵ.

4. An instruction of type (4) assigns the value of register X to register Y . The effect is
the assignment

Y := X.

5. An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1 occurring above the in-
struction being executed, and the effect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.

6. An instruction of type (6ja) or (6jb) is a conditional jump. Let head be the function
defined as follows:

head(ϵ) = ϵ,

head(aju) = aj .

The effect of (6ja) is to jump to the closest line number N1 occurring above the
instruction being executed iff head(Y) = aj , else to execute the next instruction (the
one immediately following the instruction being executed).

The effect of (6jb) is to jump to the closest line number N1 occurring below the
instruction being executed iff head(Y) = aj , else to execute the next instruction.

When computing over N, instructions of type (6jb) jump to the closest N1 above or
below iff Y is nonnull.

8.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 217

7. An instruction of type (7) is a no-op, i.e., the registers are unaffected. If there is a
next instruction, then it is executed, else, the program stops.

Obviously, a program is syntactically correct only if certain conditions hold.

Definition 8.3. A RAM program P is a finite sequence of instructions as in Definition 8.2,
and satisfying the following conditions:

(1) For every jump instruction (conditional or not), the line number to be jumped to must
exist in P .

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line numbers is to make it easier to con-
catenate programs without having to perform a renaming of line numbers.

The technical choice of jumping to the closest address N1 above or below comes from
the fact that it is easy to search up or down using primitive recursion, as we will see later
on.

For the purpose of computing a function f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗ using a RAM program

P , we assume that P has at least n registers called input registers , and that these registers
R1, . . . , Rn are initialized with the input values of the function f .

We also assume that the output is returned in register R1.

The following RAM program concatenates two strings x1 and x2 held in registers R1 and
R2.

R3 ← R1

R4 ← R2

N0 R4 jmpa N1b

R4 jmpb N2b

jmp N3b

N1 adda R3

tail R4

jmp N0a

N2 addb R3

tail R4

jmp N0a

N3 R1 ← R3

continue

218 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

Since Σ = {a, b}, for more clarity, we wrote jmpa instead of jmp1, jmpb instead of jmp2,
adda instead of add1, and addb instead of add2.

Definition 8.4. A RAM program P computes the partial function ϕ : (Σ∗)n → Σ∗ if the
following conditions hold: For every input (x1, . . . , xn) ∈ (Σ∗)n, having initialized the input
registers R1, . . . , Rn with x1, . . . , xn, the program eventually halts iff ϕ(x1, . . . , xn) converges,
and if and when P halts, the value of R1 is equal to ϕ(x1, . . . , xn). A partial function ϕ is
RAM-computable iff it is computed by some RAM program.

For example, the following program computes the erase function E defined such that

E(u) = ϵ

for all u ∈ Σ∗:

clr R1

continue

The following program computes the jth successor function Sj defined such that

Sj(u) = uaj

for all u ∈ Σ∗:

addj R1

continue

The following program (with n input variables) computes the projection function P n
i

defined such that

P n
i (u1, . . . , un) = ui,

where n ≥ 1, and 1 ≤ i ≤ n:

R1 ← Ri

continue

Note that P 1
1 is the identity function.

Having a programming language, we would like to know how powerful it is, that is, we
would like to know what kind of functions are RAM-computable.

At first glance, RAM programs don’t do much, but this is not so. Indeed, we will see
shortly that the class of RAM-computable functions is quite extensive.

8.2. DEFINITION OF A TURING MACHINE 219

One way of getting new programs from previous ones is via composition. Another one is
by primitive recursion.

We will investigate these constructions after introducing another model of computation,
Turing machines.

Remarkably, the classes of (partial) functions computed by RAM programs and by Turing
machines are identical.

This is the class of partial computable functions , also called partial recursive functions ,
a term which is now considered old-fashion.

This class can be given several other definitions. We will present the definition of the
so-called µ-recursive functions (due to Kleene).

The following proposition will be needed to simplify the encoding of RAM programs as
numbers.

Proposition 8.1. Every RAM program can be converted to an equivalent program only using
the following type of instructions:

(1j) N addj Y

(2) N tail Y

(6ja) N Y jmpj N1a

(6jb) N Y jmpj N1b

(7) N continue

The proof is fairly simple. For example, instructions of the form

Ri← Rj

can be eliminated by transferring the contents of Rj into an auxiliary register Rk, and then
by transferring the contents of Rk into Ri and Rj.

8.2 Definition of a Turing Machine

We define a Turing machine model for computing functions

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗,

where Σ = {a1, . . . , aN} is some input alphabet. We only consider deterministic Turing
machines.

A Turing machine also uses a tape alphabet Γ such that Σ ⊆ Γ. The tape alphabet
contains some special symbol B /∈ Σ, the blank .

220 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

In this model, a Turing machine uses a single tape. This tape can be viewed as a string
over Γ. The tape is both an input tape and a storage mechanism.

Symbols on the tape can be overwritten, and the tape can grow either on the left or on
the right. There is a read/write head pointing to some symbol on the tape.

Definition 8.5. A (deterministic) Turing machine (or TM) M is a sextuple M = (K,Σ,Γ,
{L,R}, δ, q0), where

• K is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊆ Γ, K ∩ Γ = ∅, and with blank B /∈ Σ;

• q0 ∈ K is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R}×K,

such that for all (p, a) ∈ K × Γ, there is at most one triple (b,m, q) ∈ Γ× {L,R}×K
such that (p, a, b,m, q) ∈ δ.

A quintuple (p, a, b,m, q) ∈ δ is called an instruction. It is also denoted as

p, a→ b,m, q.

The effect of an instruction is to switch from state p to state q, overwrite the symbol
currently scanned a with b, and move the read/write head either left or right, according to
m.

Here is an example of a Turing machine.

K = {q0, q1, q2, q3};

Σ = {a, b};

Γ = {a, b, B};

The instructions in δ are:

8.3. COMPUTATIONS OF TURING MACHINES 221

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a, R, q1,

q1, a→ b, R, q1,

q1, b→ a, R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

8.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on Instantaneous descriptions .
We take advantage of the fact that K ∩ Γ = ∅ to define instantaneous descriptions.

Definition 8.6. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty) string in Γ∗KΓ+, that is, a
string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM in the current state p,
whose tape contains the string uav, and with the read/write head pointing to the symbol a.

Thus, in upav, the state p is just to the left of the symbol presently scanned by the
read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 8.7. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

the yield relation (or compute relation) ⊢ is a binary relation defined on the set of ID’s as
follows. For any two ID’s ID1 and ID2, we have ID1 ⊢ ID2 iff either

(1) (p, a, b, R, q) ∈ δ, and either

222 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or

(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.

Note how the tape is extended by one blank after the rightmost symbol in case (1)(b),
and by one blank before the leftmost symbol in case (2)(b).

As usual, we let ⊢+ denote the transitive closure of ⊢, and we let ⊢∗ denote the reflexive
and transitive closure of ⊢.

We can now explain how a Turing machine computes a partial function

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗.

Since we allow functions taking n ≥ 1 input strings, we assume that Γ contains the
special delimiter , not in Σ, used to separate the various input strings.

It is convenient to assume that a Turing machine “cleans up” its tape when it halts,
before returning its output. For this, we will define proper ID’s.

Definition 8.8. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the blank B, a starting ID is of
the form

q0w1,w2, . . . ,wn

where w1, . . . , wn ∈ Σ∗ and n ≥ 2, or q0w with w ∈ Σ+, or q0B.

A blocking (or halting) ID is an ID upav such that there are no instructions (p, a, b,m, q) ∈
δ for any (b,m, q) ∈ Γ× {L,R}×K.

A proper ID is a halting ID of the form

BkpwBl,

where w ∈ Σ∗, and k, l ≥ 0 (with l ≥ 1 when w = ϵ).

Computation sequences are defined as follows.

8.3. COMPUTATIONS OF TURING MACHINES 223

Definition 8.9. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

a computation sequence (or computation) is a finite or infinite sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi ⊢ IDi+1 for all i ≥ 0.

A computation sequence halts iff it is a finite sequence of ID’s, so that

ID0 ⊢∗ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.

Definition 8.10. A Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0)

computes the partial function
f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗

iff the following conditions hold:

(1) For every w1, . . . , wn ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w ∈ Σ+, or q0B, the computation sequence of M from ID0 halts in a
proper ID
iff f(w1, . . . , wn) is defined.

(2) If f(w1, . . . , wn) is defined, then M halts in a proper ID of the form

IDn = Bkpf(w1, . . . , wn)B
h,

which means that it computes the right value.

A function f (over Σ∗) is Turing computable iff it is computed by some Turing machine
M .

224 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

Note that by (1), the TM M may halt in an improper ID, in which case f(w1, . . . , wn)
must be undefined. This corresponds to the fact that we only accept to retrieve the output
of a computation if the TM has cleaned up its tape, i.e., produced a proper ID. In particular,
intermediate calculations have to be erased before halting.

Example.

K = {q0, q1, q2, q3};
Σ = {a, b};
Γ = {a, b, B};
The instructions in δ are:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a, R, q1,

q1, a→ b, R, q1,

q1, b→ a, R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The reader can easily verify that this machine exchanges the a’s and b’s in a string. For
example, on input w = aaababb, the output is bbbabaa.

8.4 RAM-computable functions are
Turing-computable

Turing machines can simulate RAM programs, and as a result, we have the following Theo-
rem.

Theorem 8.2. Every RAM-computable function is Turing-computable. Furthermore, given
a RAM program P , we can effectively construct a Turing machine M computing the same
function.

The idea of the proof is to represent the contents of the registers R1, . . . Rp on the Turing
machine tape by the string

#r1#r2# · · ·#rp#,

8.5. TURING-COMPUTABLE FUNCTIONS ARE RAM-COMPUTABLE 225

Where # is a special marker and ri represents the string held by Ri, We also use Propo-
sition 8.1 to reduce the number of instructions to be dealt with.

The Turing machine M is built of blocks, each block simulating the effect of some in-
struction of the program P . The details are a bit tedious, and can be found in the notes or
in Machtey and Young.

8.5 Turing-computable functions are
RAM-computable

RAM programs can also simulate Turing machines.

Theorem 8.3. Every Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M , one can effectively construct a RAM program P computing the same
function.

The idea of the proof is to design a RAM program containing an encoding of the current
ID of the Turing machine M in register R1, and to use other registers R2, R3 to simulate
the effect of executing an instruction of M by updating the ID of M in R1.

The details are tedious and can be found in the notes.

Another proof can be obtained by proving that the class of Turing computable functions
coincides with the class of partial computable functions (formerly called partial recursive
functions).

Indeed, it turns out that both RAM programs and Turing machines compute precisely
the class of partial recursive functions. For this, we need to define the primitive recursive
functions.

Informally, a primitive recursive function is a total recursive function that can be com-
puted using only for loops, that is, loops in which the number of iterations is fixed (unlike
a while loop).

A formal definition of the primitive functions is given in Section 8.7.

Definition 8.11. Let Σ = {a1, . . . , aN}. The class of partial computable functions also called
partial recursive functions is the class of partial functions (over Σ∗) that can be computed
by RAM programs (or equivalently by Turing machines).

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

We can also deal with languages.

226 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

8.6 Computably Enumerable Languages and
Computable Languages

We define the computably enumerable languages, also called listable languages, and the
computable languages.

The old-fashion terminology for computably enumerable languages is recursively enumer-
able languages, and for computable languages is recursive languages.

We assume that the TM’s under consideration have a tape alphabet containing the special
symbols 0 and 1.

Definition 8.12. Let Σ = {a1, . . . , aN}. A language L ⊆ Σ∗ is (Turing) computably enu-
merable (for short, a c.e. set), or (Turing) listable (or recursively enumerable (for short, a
r.e. set)) iff there is some TM M such that for every w ∈ L, M halts in a proper ID with
the output 1, and for every w /∈ L, either M halts in a proper ID with the output 0, or it
runs forever.

A language L ⊆ Σ∗ is (Turing) computable (or recursive) iff there is some TM M such
that for every w ∈ L, M halts in a proper ID with the output 1, and for every w /∈ L, M
halts in a proper ID with the output 0.

Thus, given a computably enumerable language L, for some w /∈ L, it is possible that a
TM accepting L runs forever on input w. On the other hand, for a computable (recursive)
language L, a TM accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider nondeterministic Turing ma-
chines . Such machines are defined just like deterministic Turing machines, except that their
transition function δ is just a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R}×K,

with no particular extra condition.

It can be shown that every nondeterministic Turing machine can be simulated by a
deterministic Turing machine, and thus, nondeterministic Turing machines also accept the
class of c.e. sets.

It can be shown that a computably enumerable language is the range of some computable
(recursive) function. It can also be shown that a language L is computable (recursive) iff
both L and its complement are computably enumerable. There are computably enumerable
languages that are not computable (recursive).

Turing machines were invented by Turing around 1935. The primitive recursive functions
were known to Hilbert circa 1890. Gödel formalized their definition in 1929. The partial
recursive functions were defined by Kleene around 1934.

8.7. THE PRIMITIVE RECURSIVE FUNCTIONS 227

Church also introduced the λ-calculus as a model of computation around 1934. Other
models: Post systems, Markov systems. The equivalence of the various models of computa-
tion was shown around 1935/36. RAM programs were only defined around 1963 (they are a
slight generalization of Post system).

A further study of the partial recursive functions requires the notions of pairing functions
and of universal functions (or universal Turing machines).

8.7 The Primitive Recursive Functions

The class of primitive recursive functions is defined in terms of base functions and closure
operations.

Definition 8.13. Let Σ = {a1, . . . , aN}. The base functions over Σ are the following func-
tions:

(1) The erase function E, defined such that E(w) = ϵ, for all w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ N , the j-successor function Sj , defined such that Sj(w) = waj,
for all w ∈ Σ∗;

(3) The projection functions P n
i , defined such that

P n
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection functions can be used to permute

the arguments of another function.

A crucial closure operation is (extended) composition.

Definition 8.14. Let Σ = {a1, . . . , aN}. For any function

g : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m

→ Σ∗,

and any m functions
hi : Σ∗ × · · ·× Σ∗

︸ ︷︷ ︸
n

→ Σ∗,

the composition of g and the hi is the function

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗.

228 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

As an example, f = g ◦ (P 2
2 , P

2
1) is such that

f(w1, w2) = g(P 2
2 (w1, w2), P

2
1 (w1, w2)) = g(w2, w1).

Another crucial closure operation is primitive recursion.

Definition 8.15. Let Σ = {a1, . . . , aN}. For any function

g : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m−1

→ Σ∗,

where m ≥ 2, and any N functions

hi : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m+1

→ Σ∗,

the function
f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hN , if

f(ϵ, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u, w2, . . . , wm), w2, . . . , wm),

· · · = · · ·
f(uaN , w2, . . . , wm) = hN (u, f(u, w2, . . . , wm), w2, . . . , wm),

for all u, w2, . . . , wm ∈ Σ∗.

When m = 1, for some fixed w ∈ Σ∗, we have

f(ϵ) = w,

f(ua1) = h1(u, f(u)),

· · · = · · ·
f(uaN) = hN(u, f(u)),

for all u ∈ Σ∗.

For numerical functions (i.e., when Σ = {a1}), the scheme of primitive recursion is
simpler:

f(0, x2, . . . , xm) = g(x2, . . . , xm),

f(x+ 1, x2, . . . , xm) = h1(x, f(x, x2, . . . , xm), x2, . . . , xm),

8.7. THE PRIMITIVE RECURSIVE FUNCTIONS 229

for all x, x2, . . . , xm ∈ N.

The successor function S is the function

S(x) = x+ 1.

Addition, multiplication, exponentiation, and super-exponentiation, can be defined by
primitive recursion as follows (being a bit loose, we should use some projections ...):

add(0, n) = P 1
1 (n) = n,

add(m+ 1, n) = S ◦ P 3
2 (m, add(m,n), n)

= S(add(m,n))

mult(0, n) = E(n) = 0,

mult(m+ 1, n) = add ◦ (P 3
2 , P

3
3)(m,mult(m,n), n)

= add(mult(m,n), n),

rexp(0, n) = S ◦ E(n) = 1,

rexp(m+ 1, n) = mult(rexp(m,n), n),

exp(m,n) = rexp ◦ (P 2
2 , P

2
1)(m,n),

supexp(0, n) = 1,

supexp(m+ 1, n) = exp(n, supexp(m,n)).

We usually write m + n for add(m,n), m ∗ n or even mn for mult(m,n), and mn for
exp(m,n).

There is a minus operation on N named monus. This operation denoted by
.
− is defined

by

m
.
− n =

{
m− n if m ≥ n

0 if m < n.

To show that it is primitive recursive, we define the function pred. Let pred be the
primitive recursive function given by

pred(0) = 0

pred(m+ 1) = P 2
1 (m, pred(m)) = m.

Then monus is defined by

monus(m, 0) = m

monus(m,n+ 1) = pred(monus(m,n)),

except that the above is not a legal primitive recursion. It is left as an exercise to give a
proper primitive recursive definition of monus.

230 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

As an example over {a, b}∗, the following function
g : Σ∗ × Σ∗ → Σ∗, is defined by primitive recursion:

g(ϵ, v) = P 1
1 (v),

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ N . It is easily verified that g(u, v) = vu. Then,

f = g ◦ (P 2
2 , P

2
1)

computes the concatenation function, i.e. f(u, v) = uv.

The following functions are also primitive recursive:

sg(n) =

{
1 if n > 0

0 if n = 0,

sg(n) =

{
0 if n > 0

1 if n = 0,

as well as
abs(m,n) = |m−m| = m

.
− n + n

.
− m,

and

eq(m,n) =

{
1 if m = n

0 if m ̸= n.

Indeed

sg(0) = 0

sg(n+ 1) = S ◦ E ◦ P 2
1 (n, sg(n)),

sg(n) = S(E(n))
.
− sg(n) = 1

.
− sg(n),

and
eq(m,n) = sg(|m− n|).

Finally, the function

cond(m,n, p, q) =

{
p if m = n

q if m ̸= n,

is primitive recursive since

cond(m,n, p, q) = eq(m,n) ∗ p+ sg(eq(m,n)) ∗ q.

8.7. THE PRIMITIVE RECURSIVE FUNCTIONS 231

We can also design more general version of cond. For example, define compare≤ as

compare≤(m,n) =

{
1 if m ≤ n

0 if m > n,

which is given by
compare≤(m,n) = 1

.
− sg(m

.
− n).

Then we can define

cond≤(m,n, p, q) =

{
p if m ≤ n

q if m > n,

with
cond≤(m,n, n, p) = compare≤(m,n) ∗ p+ sg(compare≤(m,n)) ∗ q.

The above allows to define functions by cases.

Definition 8.16. Let Σ = {a1, . . . , aN}. The class of primitive recursive functions is the
smallest class of functions (over Σ∗) which contains the base functions and is closed under
composition and primitive recursion.

We leave as an exercise to show that every primitive recursive function is a total function.
The class of primitive recursive functions may not seem very big, but it contains all the total
functions that we would ever want to compute.

Although it is rather tedious to prove, the following theorem can be shown.

Theorem 8.4. For an alphabet Σ = {a1, . . . , aN}, every primitive recursive function is
Turing computable.

The best way to prove the above theorem is to use the computation model of RAM
programs. Indeed, it was shown in Theorem 8.2 that every RAM program can be converted
to a Turing machine.

It is also rather easy to show that the primitive recursive functions are RAM-computable.

In order to define new functions it is also useful to use predicates.

Definition 8.17. An n-ary predicate P (over Σ∗) is any subset of (Σ∗)n. We write that
a tuple (x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The characteristic
function of a predicate P is the function CP : (Σ∗)n → {a1}∗ defined by

Cp(x1, . . . , xn) =

{
a1 iff P (x1, . . . , xn)
ϵ iff not P (x1, . . . , xn).

A predicate P is primitive recursive iff its characteristic function CP is primitive recursive.

232 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

We leave to the reader the obvious adaptation of the the notion of primitive recursive
predicate to functions defined over N. In this case, 0 plays the role of ϵ and 1 plays the role
of a1.

It is easily shown that if P and Q are primitive recursive predicates (over (Σ∗)n), then
P ∨Q, P ∧Q and ¬P are also primitive recursive.

As an exercise, the reader may want to prove that the predicate (defined over N):
prime(n) iff n is a prime number, is a primitive recursive predicate.

For any fixed k ≥ 1, the function:
ord(k, n) = exponent of the kth prime in the prime factorization of n, is a primitive recursive
function.

We can also define functions by cases.

Proposition 8.5. If P1, . . . , Pn are pairwise disjoint primitive recursive predicates (which
means that Pi ∩ Pj = ∅ for all i ̸= j) and f1, . . . , fn+1 are primitive recursive functions, the
function g defined below is also primitive recursive:

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) iff P1(x)
...
fn(x) iff Pn(x)
fn+1(x) otherwise.

(writing x for (x1, . . . , xn).)

It is also useful to have bounded quantification and bounded minimization.

Definition 8.18. If P is an (n + 1)-ary predicate, then the bounded existential predicate
∃y/xP (y, z) holds iff some prefix y of x makes P (y, z) true.

The bounded universal predicate ∀y/xP (y, z) holds iff every prefix y of x makes P (y, z)
true.

Proposition 8.6. If P is an (n+1)-ary primitive recursive predicate, then ∃y/xP (y, z) and
∀y/xP (y, z) are also primitive recursive predicates.

As an application, we can show that the equality predicate, u = v?, is primitive recursive.

Definition 8.19. If P is an (n + 1)-ary predicate, then the bounded minimization of P ,
min y/xP (y, z), is the function defined such that min y/xP (y, z) is the shortest prefix of x
such that P (y, z) if such a y exists, xa1 otherwise.

The bounded maximization of P , max y/xP (y, z), is the function defined such that
max y/xP (y, z) is the longest prefix of x such that P (y, z) if such a y exists, xa1 other-
wise.

8.8. THE PARTIAL COMPUTABLE FUNCTIONS 233

Proposition 8.7. If P is an (n+ 1)-ary primitive recursive predicate, then min y/xP (y, z)
and max y/xP (y, z) are primitive recursive functions.

So far, the primitive recursive functions do not yield all the Turing-computable func-
tions. In order to get a larger class of functions, we need the closure operation known as
minimization.

8.8 The Partial Computable Functions

Minimization can be viewed as an abstract version of a while loop.

Let Σ = {a1, . . . , aN}. For any function

g : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m

→ Σ∗

looks for the shortest string u over a∗j (for a given j) such that

g(u, w1, . . . , wm) = ϵ :

u := ϵ;
while g(u, w1, . . . , wm) ̸= ϵ do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

The operation of minimization (sometimes called minimalization) is defined as follows.

Definition 8.20. Let Σ = {a1, . . . , aN}. For any function

g : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · ·× Σ∗
︸ ︷︷ ︸

m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following conditions hold for all w1, . . .,
wm ∈ Σ∗:

234 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that g(apj , w1, . . . , wm) is defined
for all p, 0 ≤ p ≤ n, and

g(anj , w1, . . . , wm) = ϵ.

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is such that
g(anj , w1, . . . , wm) = ϵ

and
g(apj , w1, . . . , wm) ̸= ϵ

for every p, 0 ≤ p ≤ n− 1.

We also write
f(w1, . . . , wm) = minju[g(u, w1, . . . , wm) = ϵ].

Note: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is the smallest integer such that condition (1) holds. It is very important to re-
quire that all the values g(apj , w1, . . . , wm) be defined for all p, 0 ≤ p ≤ n, when defining
f(w1, . . . , wm). Failure to do so allows non-computable functions.

Remark : Kleene used the µ-notation:

f(w1, . . . , wm) = µju[g(u, w1, . . . , wm) = ϵ],

actually, its numerical form:

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0].

The class of partial computable functions is defined as follows.

Definition 8.21. Let Σ = {a1, . . . , aN}. The class of partial computable functions also called
partial recursive functions is the smallest class of partial functions (over Σ∗) which contains
the base functions and is closed under composition, primitive recursion, and minimization.

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

One of the major results of computability theory is the following theorem.

8.8. THE PARTIAL COMPUTABLE FUNCTIONS 235

Theorem 8.8. For an alphabet Σ = {a1, . . . , aN}, every partial computable function (partial
recursive function) is Turing-computable. Conversely, every Turing-computable function is
a partial computable function (partial recursive function). Similarly, the class of computable
functions (recursive functions) is equal to the class of Turing-computable functions that halt
in a proper ID for every input.

To prove that every partial computable function is indeed Turing-computable, since by
Theorem 8.2, every RAM program can be converted to a Turing machine, the simplest thing
to do is to show that every partial computable function is RAM-computable.

For the converse, one can show that given a Turing machine, there is a primitive recursive
function describing how to go from one ID to the next. Then, minimization is used to guess
whether a computation halts. The proof shows that every partial computable function needs
minimization at most once. The characterization of the computable functions in terms of
TM’s follows easily.

There are computable functions (recursive functions) that are not primitive recursive.
Such an example is given by Ackermann’s function.

Ackermann’s function.

This is a function A : N× N→ N which is defined by the following recursive clauses:

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A(x, A(x+ 1, y)).

It turns out that A is a computable function which is not primitive recursive.

It can be shown that:

A(0, x) = x+ 1,

A(1, x) = x+ 2,

A(2, x) = 2x+ 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22
·
·
·
216
}
x − 3,

with A(4, 0) = 16− 3 = 13.

For example

A(4, 1) = 216 − 3, A(4, 2) = 22
16 − 3.

236 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

Actually, it is not so obvious that A is a total function. This can be shown by induction,
using the lexicographic ordering ≼ on N× N, which is defined as follows:

(m,n) ≼ (m′, n′) iff either

m = m′ and n = n′, or

m < m′, or

m = m′ and n < n′.

We write (m,n) ≺ (m′, n′) when (m,n) ≼ (m′, n′) and (m,n) ̸= (m′, n′).

We prove that A(m,n) is defined for all (m,n) ∈ N× N by complete induction over the
lexicographic ordering on N× N.

In the base case, (m,n) = (0, 0), and since A(0, n) = n + 1, we have A(0, 0) = 1, and
A(0, 0) is defined.

For (m,n) ̸= (0, 0), the induction hypothesis is that A(m′, n′) is defined for all (m′, n′) ≺
(m,n). We need to conclude that A(m,n) is defined.

If m = 0, since A(0, n) = n+ 1, A(0, n) is defined.

If m ̸= 0 and n = 0, since
(m− 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m − 1, 1) is defined, but A(m, 0) = A(m − 1, 1), and thus
A(m, 0) is defined.

If m ̸= 0 and n ̸= 0, since
(m,n− 1) ≺ (m,n),

by the induction hypothesis, A(m,n− 1) is defined. Since

(m− 1, A(m,n− 1)) ≺ (m,n),

by the induction hypothesis, A(m − 1, A(m,n − 1)) is defined. But A(m,n) = A(m −
1, A(m,n− 1)), and thus A(m,n) is defined.

Thus, A(m,n) is defined for all (m,n) ∈ N×N. It is possible to show that A is a recursive
function, although the quickest way to prove it requires some fancy machinery (the recursion
theorem).

Proving that A is not primitive recursive is harder.

The following proposition shows that restricting ourselves to total functions is too limit-
ing.

Let F be any set of total functions that contains the base functions and is closed un-
der composition and primitive recursion (and thus, F contains all the primitive recursive
functions).

8.8. THE PARTIAL COMPUTABLE FUNCTIONS 237

Definition 8.22. We say that a function f : Σ∗×Σ∗ → Σ∗ is universal for the one-argument
functions in F iff for every function g : Σ∗ → Σ∗ in F , there is some n ∈ N such that

f(an1 , u) = g(u)

for all u ∈ Σ∗.

Proposition 8.9. For any countable set F of total functions containing the base functions
and closed under composition and primitive recursion, if f is a universal function for the
functions g : Σ∗ → Σ∗ in F , then f /∈ F .

Proof. Assume that the universal function f is in F . Let g be the function such that

g(u) = f(a|u|1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F . It it enough to prove that the function h such that

h(u) = a|u|1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am1 , u)

for all u ∈ Σ∗. Letting u = am1 , we get

g(am1) = f(am1 , a
m
1) = f(am1 , a

m
1)a1,

a contradiction.

Thus, either a universal function for F is partial, or it is not in F .

238 CHAPTER 8. RAM PROGRAMS, TURING MACHINES

Chapter 9

Universal RAM Programs and
Undecidability of the Halting Problem

9.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or more generally,
finite sequences of integers into single integers. We begin by exhibiting a bijective pairing
function J : N2 → N. The function J has the graph partially showed below:

y

4 10

↘
3 6 11

↘ ↘
2 3 7 12

↘ ↘ ↘
1 1 4 8 13

↘ ↘ ↘ ↘
0 0 2 5 9 14

0 1 2 3 4 x

The function J corresponds to a certain way of enumerating pairs of integers (x, y). Note
that the value of x + y is constant along each descending diagonal, and consequently, we
have

J(x, y) = 1 + 2 + · · ·+ (x+ y) + x,

= ((x+ y)(x+ y + 1) + 2x)/2,

= ((x+ y)2 + 3x+ y)/2,

239

240 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

that is,
J(x, y) = ((x+ y)2 + 3x+ y)/2.

For example, J(0, 3) = 6, J(1, 2) = 7, J(2, 2) = 12, J(3, 1) = 13, J(4, 0) = 14.

Let K : N → N and L : N → N be the projection functions onto the axes, that is, the
unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N. For example, K(11) = 1, and L(11) = 3; K(12) = 2, and L(12) = 2;
K(13) = 3 and L(13) = 1.

The functions J,K, L are called Cantor’s pairing functions . They were used by Cantor
to prove that the set Q of rational numbers is countable.

Clearly, J is primitive recursive, since it is given by a polynomial. It is not hard to
prove that J is injective and surjective, and that it is strictly monotonic in each argument,
which means that for all x, x′, y, y′ ∈ N, if x < x′ then J(x, y) < J(x′, y), and if y < y′ then
J(x, y) < J(x, y′).

The projection functions can be computed explicitly, although this is a bit tricky. We
only need to observe that by monotonicity of J ,

x ≤ J(x, y) and y ≤ J(x, y),

and thus,
K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and
L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].

Therefore, K and L are primitive recursive. It can be verified that J(K(z), L(z)) = z, for
all z ∈ N.

More explicit formulae can be given for K and L. If we define

Q1(z) = ⌊(⌊
√
8z + 1⌋+ 1)/2⌋ − 1

Q2(z) = 2z − (Q1(z))
2,

then it can be shown that

K(z) =
1

2
(Q2(z)−Q1(z))

L(z) = Q1(z)−
1

2
(Q2(z)−Q1(z)).

In the above formula, the function m ,→ ⌊
√
m⌋ yields the largest integer s such that

s2 ≤ m. It can be computed by a RAM program.

9.1. PAIRING FUNCTIONS 241

The pairing function J(x, y) is also denoted as ⟨x, y⟩, and K and L are also denoted as
Π1 and Π2.

By induction, we can define bijections between Nn and N for all n ≥ 1. We let ⟨z⟩1 = z,

⟨x1, x2⟩2 = ⟨x1, x2⟩,

and
⟨x1, . . . , xn, xn+1⟩n+1 = ⟨x1, . . . , xn−1, ⟨xn, xn+1⟩⟩n.

For example.

⟨x1, x2, x3⟩3 = ⟨x1, ⟨x2, x3⟩⟩2
= ⟨x1, ⟨x2, x3⟩⟩

⟨x1, x2, x3, x4⟩4 = ⟨x1, x2, ⟨x3, x4⟩⟩3
= ⟨x1, ⟨x2, ⟨x3, x4⟩⟩⟩

⟨x1, x2, x3, x4, x5⟩5 = ⟨x1, x2, x3, ⟨x4, x5⟩⟩4
= ⟨x1, ⟨x2, ⟨x3, ⟨x4, x5⟩⟩⟩⟩.

It can be shown by induction on n that

⟨x1, . . . , xn, xn+1⟩n+1 = ⟨x1, ⟨x2, . . . , xn+1⟩n⟩.

The function ⟨−, . . . ,−⟩n : Nn → N is called an extended pairing function.

Observe that if z = ⟨x1, . . . , xn⟩n, then x1 = Π1(z), x2 = Π1(Π2(z)), x3 = Π1(Π2(Π2(z)),
x4 = Π1(Π2(Π2(Π2(z)))), x5 = Π2(Π2(Π2(Π2(z)))).

We can also define a uniform projection function Π with the following property:
if z = ⟨x1, . . . , xn⟩, with n ≥ 2, then

Π(i, n, z) = xi

for all i, where 1 ≤ i ≤ n. The idea is to view z as a n-tuple, and Π(i, n, z) as the i-th
component of that n-tuple. The function Π is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n+ 1, z) =

⎧
⎨

⎩

Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.

242 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

By a previous exercise, this is a legitimate primitive recursive definition.

Some basic properties of Π are given as exercises. In particular, the following properties
are easily shown:

(a) ⟨0, . . . , 0⟩n = 0, ⟨x, 0⟩ = ⟨x, 0, . . . , 0⟩n;
(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all i ≥ n and all n, z ∈ N;

(c) ⟨Π(1, n, z), . . . ,Π(n, n, z)⟩n = z, for all n ≥ 1 and all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n + 1,Large(n+ 1, z)) = z,

for i, n, z ∈ N.

As a first application, we observe that we need only consider partial computable functions
(partial recursive functions)1 of a single argument. Indeed, let ϕ : Nn → N be a partial
computable function of n ≥ 2 arguments. Let

ϕ(z) = ϕ(Π(1, n, z), . . . ,Π(n, n, z)),

for all z ∈ N. Then, ϕ is a partial computable function of a single argument, and ϕ can be
recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(⟨x1, . . . , xn⟩).
Thus, using ⟨−,−⟩ and Π as coding and decoding functions, we can restrict our attention
to functions of a single argument.

Next, we show that there exist coding and decoding functions between Σ∗ and {a1}∗, and
that partial computable functions over Σ∗ can be recoded as partial computable functions
over {a1}∗. Since {a1}∗ is isomorphic to N, this shows that we can restrict out attention to
functions defined over N.

9.2 Equivalence of Alphabets

Given an alphabet Σ = {a1, . . . , ak}, strings over Σ can be ordered by viewing strings as
numbers in a number system where the digits are a1, . . . , ak. In this number system, which
is almost the number system with base k, the string a1 corresponds to zero, and ak to k− 1.
Hence, we have a kind of shifted number system in base k. For example, if Σ = {a, b, c}, a
listing of Σ∗ in the ordering corresponding to the number system begins with

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,

aaa, aab, aac, aba, abb, abc,

1The term partial recursive is now considered old-fashion. Many researchers have switched to the term
partial computable.

9.2. EQUIVALENCE OF ALPHABETS 243

Clearly, there is an ordering function from Σ∗ to N which is a bijection. Indeed, if u =
ai1 · · ·ain , this function f : Σ∗ → N is given by

f(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in.

Since we also want a decoding function, we define the coding function Ck : Σ∗ → Σ∗ as
follows:

Ck(ϵ) = ϵ, and if u = ai1 · · · ain, then

Ck(u) = ai1k
n−1+i2kn−2+···+in−1k+in

1 .

The function Ck is primitive recursive, because

Ck(ϵ) = ϵ,

Ck(xai) = Ck(x)
kai1.

The inverse of Ck is a function Dk : {a1}∗ → Σ∗. However, primitive recursive functions are
total, and we need to extend Dk to Σ∗. This is easily done by letting

Dk(x) = Dk(a
|x|
1)

for all x ∈ Σ∗. It remains to define Dk by primitive recursion over {a1}∗. For this, we
introduce three auxiliary functions p, q, r, defined as follows. Let

p(ϵ) = ϵ,

p(xai) = xai, if i ̸= k,

p(xak) = p(x).

Note that p(x) is the result of deteting consecutive ak’s in the tail of x. Let

q(ϵ) = ϵ,

q(xai) = q(x)a1.

Note that q(x) = a|x|1 . Finally, let

r(ϵ) = a1,

r(xai) = xai+1, if i ̸= k,

r(xak) = xak.

The function r is almost the successor function, for the ordering. Then, the trick is that
Dk(xai) is the successor of Dk(x) in the ordering, and if

Dk(x) = yaja
n
k

244 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

with j ̸= k, since the successor of yajank is yaj+1ank , we can use r. Thus, we have

Dk(ϵ) = ϵ,

Dk(xai) = r(p(Dk(x)))q(Dk(x)− p(Dk(x))).

Then, both Ck and Dk are primitive recursive, and Ck ◦Dk = Dk ◦ Ck = id.

Let ϕ : Σ∗ → Σ∗ be a partial function over Σ∗, and let

ϕ+(x1, . . . , xn) = Ck(ϕ(Dk(x1), . . . , Dk(xn))).

The function ϕ+ is defined over {a1}∗. Also, for any partial function ψ over {a1}∗, let

ψ♯(x1, . . . , xn) = Dk(ψ(Ck(x1), . . . , Ck(xn))).

We claim that if ψ is a partial computable function over {a1}∗, then ψ♯ is partial computable
over Σ∗, and that if ϕ is a partial computable function over Σ∗, then ϕ+ is partial computable
over {a1}∗.

First, ψ can be extended to Σ∗ by letting

ψ(x) = ψ(a|x|1)

for all x ∈ Σ∗, and so, if ψ is partial computable, then so is ψ♯ by composition. This seems
equally obvious for ϕ and ϕ+, but there is a difficulty. The problem is that ϕ+ is defined as
a composition of functions over Σ∗. We have to show how ϕ+ can be defined directly over
{a1}∗ without using any additional alphabet symbols. This is done in Machtey and Young
[13], see Section 2.2, Lemma 2.2.3.

Pairing functions can also be used to prove that certain functions are primitive recursive,
even though their definition is not a legal primitive recursive definition. For example, consider
the Fibonacci function defined as follows:

f(0) = 1,

f(1) = 1,

f(n+ 2) = f(n+ 1) + f(n),

for all n ∈ N. This is not a legal primitive recursive definition, since f(n+ 2) depends both
on f(n+1) and f(n). In a primitive recursive definition, g(y+1, x) is only allowed to depend
upon g(y, x).

Definition 9.1. Given any function f : Nn → N, the function f : Nn+1 → N defined such
that

f(y, x) = ⟨f(0, x), . . . , f(y, x)⟩y+1

is called the course-of-value function for f .

9.2. EQUIVALENCE OF ALPHABETS 245

The following lemma holds.

Proposition 9.1. Given any function f : Nn → N, if f is primitive recursive, then so is f .

Proof. First, it is necessary to define a function con such that if x = ⟨x1, . . . , xm⟩ and
y = ⟨y1, . . . , yn⟩, where m,n ≥ 1, then

con(m, x, y) = ⟨x1, . . . , xm, y1, . . . , yn⟩.

This fact is left as an exercise. Now, if f is primitive recursive, let

f(0, x) = f(0, x),

f(y + 1, x) = con(y + 1, f(y, x), f(y + 1, x)),

showing that f is primitive recursive. Conversely, if f is primitive recursive, then

f(y, x) = Π(y + 1, y + 1, f(y, x)),

and so, f is primitive recursive.

Remark : Why is it that

f(y + 1, x) = ⟨f(y, x), f(y + 1, x)⟩

does not work?

We define course-of-value recursion as follows.

Definition 9.2. Given any two functions g : Nn → N and h : Nn+2 → N, the function
f : Nn+1 → N is defined by course-of-value recursion from g and h if

f(0, x) = g(x),

f(y + 1, x) = h(y, f(y, x), x).

The following lemma holds.

Proposition 9.2. If f : Nn+1 → N is defined by course-of-value recursion from g and h and
g, h are primitive recursive, then f is primitive recursive.

Proof. We prove that f is primitive recursive. Then, by Proposition 9.1, f is also primitive
recursive. To prove that f is primitive recursive, observe that

f(0, x) = g(x),

f(y + 1, x) = con(y + 1, f(y, x), h(y, f(y, x), x)).

When we use Proposition 9.2 to prove that a function is primitive recursive, we rarely
bother to construct a formal course-of-value recursion. Instead, we simply indicate how the
value of f(y + 1, x) can be obtained in a primitive recursive manner from f(0, x) through
f(y, x). Thus, an informal use of Proposition 9.2 shows that the Fibonacci function is
primitive recursive. A rigorous proof of this fact is left as an exercise.

246 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

9.3 Coding of RAM Programs

In this Section, we present a specific encoding of RAM programs which allows us to treat
programs as integers. Encoding programs as integers also allows us to have programs that
take other programs as input, and we obtain a universal program. Universal programs have
the property that given two inputs, the first one being the code of a program and the second
one an input data, the universal program simulates the actions of the encoded program on
the input data. A coding scheme is also called an indexing or a Gödel numbering, in honor
to Gödel, who invented this technique.

From results of the previous Chapter, without loss of generality, we can restrict out atten-
tion to RAM programs computing partial functions of one argument over N. Furthermore,
we only need the following kinds of instructions, each instruction being coded as shown be-
low. Since we are considering functions over the natural numbers, which corresponds to a
one-letter alphabet, there is only one kind of instruction of the form add and jmp (and add
increments by 1 the contents of the specified register Rj).

Ni add Rj code = ⟨1, i, j, 0⟩
Ni tail Rj code = ⟨2, i, j, 0⟩
Ni continue code = ⟨3, i, 1, 0⟩
Ni Rj jmp Nka code = ⟨4, i, j, k⟩
Ni Rj jmp Nkb code = ⟨5, i, j, k⟩

Recall that a conditional jump causes a jump to the closest address Nk above or below
iff Rj is nonzero, and if Rj is null, the next instruction is executed. We assume that all lines
in a RAM program are numbered. This is always feasible, by labeling unnamed instructions
with a new and unused line number.

The code of an instruction I is denoted as #I. To simplify the notation, we introduce
the following decoding primitive recursive functions Typ, Nam, Reg, and Jmp, defined as
follows:

Typ(x) = Π(1, 4, x),

Nam(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and line number jumped to, if any,
for an instruction coded by x. Note that we have no need to interpret the values of these
functions if x does not code an instruction.

We can define the primitive recursive predicate INST, such that INST(x) holds iff x codes
an instruction. First, we need the connective ⊃ (implies), defined such that

P ⊃ Q iff ¬P ∨Q.

9.3. CODING OF RAM PROGRAMS 247

Then, INST(x) holds iff:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3 ⊃ Jmp(x) = 0]∧
[Typ(x) = 3 ⊃ Reg(x) = 1].

Program are coded as follows. If P is a RAM program composed of the n instructions
I1, . . . , In, the code of P , denoted as #P , is

#P = ⟨n,#I1, . . . ,#In⟩.

Recall from a previous exercise that

⟨n,#I1, . . . ,#In⟩ = ⟨n, ⟨#I1, . . . ,#In⟩⟩.

Also recall that
⟨x, y⟩ = ((x+ y)2 + 3x+ y)/2.

Consider the following program Padd2 computing the function add2: N→ N given by

add2(n) = n+ 2.

I1 : 1 add R1

I2 : 2 add R1

I3 : 3 continue

We have

#I1 = ⟨1, 1, 1, 0⟩4 = ⟨1, ⟨1, ⟨1, 0⟩⟩⟩ = 37

#I2 = ⟨1, 2, 1, 0⟩4 = ⟨1, ⟨2, ⟨1, 0⟩⟩⟩ = 92

#I3 = ⟨3, 3, 1, 0⟩4 = ⟨3, ⟨3, ⟨1, 0⟩⟩⟩ = 234

and

#Padd2 = ⟨3,#I1,#I2,#I3⟩4 = ⟨3, ⟨37, ⟨92, 234⟩⟩
= 1 018 748 519 973 070 618.

The codes get big fast!

We define the primitive recursive functions Ln, Pg, and Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i,Ln(x),Pg(x)).

248 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The function Ln yields the length of the program (the number of instructions), Pg yields
the sequence of instructions in the program (really, a code for the sequence), and Line(i, x)
yields the code of the ith instruction in the program. Again, if x does not code a program,
there is no need to interpret these functions. However, note that by a previous exercise, it
happens that

Line(0, x) = Line(1, x), and

Line(Ln(x), x) = Line(i, x), for all i ≥ x.

The primitive recursive predicate PROG is defined such that PROG(x) holds iff x codes
a program. Thus, PROG(x) holds if each line codes an instruction, each jump has an
instruction to jump to, and the last instruction is a continue. Thus, PROG(x) holds iff

∀i ≤ Ln(x)[i ≥ 1 ⊃
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧ [Typ(Line(i, x)) = 4 ⊃
∃j ≤ i− 1[j ≥ 1 ∧Nam(Line(j, x)) = Jmp(Line(i, x))]]∧
[Typ(Line(i, x)) = 5 ⊃
∃j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]]]

Note that we have used the fact proved as an exercise that if f is a primitive recursive
function and P is a primitive recursive predicate, then ∃x ≤ f(y)P (x) is primitive recursive.

We are now ready to prove a fundamental result in the theory of algorithms. This result
points out some of the limitations of the notion of algorithm.

Theorem 9.3. (Undecidability of the halting problem) There is no RAM program Decider
which halts for all inputs and has the following property when started with input x in register
R1 and with input i in register R2 (the other registers being set to zero):

(1) Decider halts with output 1 iff i codes a program that eventually halts when started
on input x (all other registers set to zero).

(2) Decider halts with output 0 in R1 iff i codes a program that runs forever when started
on input x in R1 (all other registers set to zero).

(3) If i does not code a program, then Decider halts with output 2 in R1.

Proof. Assume that Decider is such a RAM program, and let Q be the following program
with a single input:

ProgramQ (code q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R2 ← R1

P

N1 continue

R1 jmp N1a

continue

9.3. CODING OF RAM PROGRAMS 249

Let i be the code of some program P . The key point is that the termination behavior of
Q on input i is exactly the opposite of the termination behavior of Decider on input i and
code i.

(1) If Decider says that program P coded by i halts on input i, then R1 just after the
continue in line N1 contains 1, and Q loops forever.

(2) If Decider says that program P coded by i loops forever on input i, then R1 just after
continue in line N1 contains 0, and Q halts.

The program Q can be translated into a program using only instructions of type 1, 2, 3,
4, 5, described previously, and let q be the code of the program Q.

Let us see what happens if we run the program Q on input q in R1 (all other registers set
to zero).

Just after execution of the assignment R2 ← R1, the program Decider is started with
q in both R1 and R2. Since Decider is supposed to halt for all inputs, it eventually halts
with output 0 or 1 in R1. If Decider halts with output 1 in R1, then Q goes into an infinite
loop, while if Decider halts with output 0 in R1, then Q halts. But then, because of the
definition of Decider, we see that Decider says that Q halts when started on input q iff
Q loops forever on input q, and that Q loops forever on input q iff Q halts on input q, a
contradiction. Therefore, Decider cannot exist.

If we identify the notion of algorithm with that of a RAM program which halts for all
inputs, the above theorem says that there is no algorithm for deciding whether a RAM
program eventually halts for a given input. We say that the halting problem for RAM
programs is undecidable (or unsolvable).

The above theorem also implies that the halting problem for Turing machines is unde-
cidable. Indeed, if we had an algorithm for solving the halting problem for Turing machines,
we could solve the halting problem for RAM programs as follows: first, apply the algorithm
for translating a RAM program into an equivalent Turing machine, and then apply the
algorithm solving the halting problem for Turing machines.

The argument is typical in computability theory and is called a “reducibility argument.”

Our next goal is to define a primitive recursive function that describes the computation
of RAM programs. Assume that we have a RAM program P using n registers R1, . . . , Rn,
whose contents are denoted as r1, . . . , rn. We can code r1, . . . , rn into a single integer
⟨r1, . . . , rn⟩. Conversely, every integer x can be viewed as coding the contents of R1, . . . , Rn,
by taking the sequence Π(1, n, x), . . . ,Π(n, n, x).

Actually, it is not necessary to know n, the number of registers, if we make the following
observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x)

250 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

for all i, x ∈ N. Then, if x codes a program, then R1, . . . , Rx certainly include all the
registers in the program. Also note that from a previous exercise,

⟨r1, . . . , rn, 0, . . . , 0⟩ = ⟨r1, . . . , rn, 0⟩.

We now define the primitive recursive functions Nextline, Nextcont, and Comp, describing
the computation of RAM programs.

Definition 9.3. Let x code a program and let i be such that 1 ≤ i ≤ Ln(x). The following
functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to be executed after executing
the ith instruction in the program coded by x, where the contents of the registers is coded
by y.

(2) Nextcont(i, x, y) is the code of the contents of the registers after executing the ith
instruction in the program coded by x, where the contents of the registers is coded by y.

(3) Comp(x, y,m) = ⟨i, z⟩, where i and z are defined such that after running the program
coded by x for m steps, where the initial contents of the program registers are coded by y,
the next instruction to be executed is the ith one, and z is the code of the current contents
of the registers.

Proposition 9.4. The functions Nextline, Nextcont, and Comp, are primitive recursive.

Proof. (1) Nextline(i, x, y) = i + 1, unless the ith instruction is a jump and the contents of
the register being tested is nonzero:

Nextline(i, x, y) =

max j ≤ Ln(x)[j < i ∧Nam(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 4 ∧Π(Reg(Line(i, x)), x, y) ̸= 0

min j ≤ Ln(x)[j > i ∧Nam(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 5 ∧Π(Reg(Line(i, x)), x, y) ̸= 0

i+ 1 otherwise.

Note that according to this definition, if the ith line is the final continue, then Nextline
signals that the program has halted by yielding

Nextline(i, x, y) > Ln(x).

(2) We need two auxiliary functions Add and Sub defined as follows.

Add(j, x, y) is the number coding the contents of the registers used by the program coded
by x after register Rj coded by Π(j, x, y) has been increased by 1, and

9.3. CODING OF RAM PROGRAMS 251

Sub(j, x, y) codes the contents of the registers after register Rj has been decremented by
1 (y codes the previous contents of the registers). It is easy to see that

Sub(j, x, y) = min z ≤ y[Π(j, x, z) = Π(j, x, y)− 1

∧ ∀k ≤ x[0 < k ̸= j ⊃ Π(k, x, z) = Π(k, x, y)]].

The definition of Add is slightly more tricky. We leave as an exercise to the reader to prove
that:

Add(j, x, y) = min z ≤ Large(x, y + 1)

[Π(j, x, z) = Π(j, x, y) + 1 ∧ ∀k ≤ x[0 < k ̸= j ⊃ Π(k, x, z) = Π(k, x, y)]],

where the function Large is the function defined in an earlier exercise. Then

Nextcont(i, x, y) =

Add(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 1

Sub(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 2

y if Typ(Line(i, x)) ≥ 3.

(3) Recall that Π1(z) = Π(1, 2, z) and Π2(z) = Π(2, 2, z). The function Comp is defined
by primitive recursion as follows:

Comp(x, y, 0) = ⟨1, y⟩
Comp(x, y,m+ 1) = ⟨Nextline(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m))),

Nextcont(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m)))⟩.

Recall that Π1(Comp(x, y,m)) is the number of the next instruction to be executed and that
Π2(Comp(x, y,m)) codes the current contents of the registers.

We can now reprove that every RAM computable function is partial computable. Indeed,
assume that x codes a program P .

We define the partial function End so that for all x, y, where x codes a program and y
codes the contents of its registers, End(x, y) is the number of steps for which the computation
runs before halting, if it halts. If the program does not halt, then End(x, y) is undefined.
Since

End(x, y) = minm[Π1(Comp(x, y,m)) = Ln(x)],

If y is the value of the register R1 before the program P coded by x is started, recall that
the contents of the registers is coded by ⟨y, 0⟩. Noticing that 0 and 1 do not code programs,
we note that if x codes a program, then x ≥ 2, and Π1(z) = Π(1, x, z) is the contents of R1
as coded by z.

252 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Since Comp(x, y,m) = ⟨i, z⟩, we have

Π1(Comp(x, y,m)) = i,

where i is the number (index) of the instruction reached after running the program P coded
by x with initial values of the registers coded by y for m steps. Thus, P halts if i is the last
instruction in P , namely Ln(x), iff

Π1(Comp(x, y,m)) = Ln(x).

End is a partial computable function; it can be computed by a RAM program involving
only one while loop searching for the number of steps m. However, in general, End is not a
total function.

If ϕ is the partial computable function computed by the program P coded by x, then we
have

ϕ(y) = Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩)))).
This is because if m = End(x, ⟨y, 0⟩) is the number of steps after which the program P coded
by x halts on input y, then

Comp(x, ⟨y, 0⟩, m)) = ⟨Ln(x), z⟩,

where z is the code of the register contents when the program stops. Consequently

z = Π2(Comp(x, ⟨y, 0⟩, m))

z = Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩))).

The value of the register R1 is Π1(z), that is

ϕ(y) = Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩)))).

Observe that ϕ is written in the form ϕ = g◦min f , for some primitive recursive functions
f and g.

We can also exhibit a partial computable function which enumerates all the unary partial
computable functions. It is a universal function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(⟨x, y⟩), viewing ϕ as a function
of two arguments (however, ϕ is really a function of a single argument). We define the
function ϕuniv as follows:

ϕuniv(x, y) =
{
Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩)))) if PROG(x),
undefined otherwise.

The function ϕuniv is a partial computable function with the following property: for every x
coding a RAM program P , for every input y,

ϕuniv(x, y) = ϕx(y),

9.3. CODING OF RAM PROGRAMS 253

the value of the partial computable function ϕx computed by the RAM program P coded
by x. If x does not code a program, then ϕuniv(x, y) is undefined for all y.

By Proposition 8.9, the partial function ϕuniv is not computable (recursive).2 Indeed,
being an enumerating function for the partial computable functions, it is an enumerating
function for the total computable functions, and thus, it cannot be computable. Being a
partial function saves us from a contradiction.

The existence of the function ϕuniv leads us to the notion of an indexing of the RAM
programs.

We can define a listing of the RAM programs as follows. If x codes a program (that is, if
PROG(x) holds) and P is the program that x codes, we call this program P the xth RAM
program and denote it as Px. If x does not code a program, we let Px be the program that
diverges for every input:

N1 add R1

N1 R1 jmp N1a

N1 continue

Therefore, in all cases, Px stands for the xth RAM program. Thus, we have a listing
of RAM programs, P0, P1, P2, P3, . . ., such that every RAM program (of the restricted type
considered here) appears in the list exactly once, except for the “infinite loop” program. For
example, the program Padd2 (adding 2 to an integer) appears as

P1 018 748 519 973 070 618.

In particular, note that ϕuniv being a partial computable function, it is computed by
some RAM program UNIV that has a code univ and is the program Puniv in the list.

Having an indexing of the RAM programs, we also have an indexing of the partial com-
putable functions.

Definition 9.4. For every integer x ≥ 0, we let Px be the RAM program coded by x as
defined earlier, and ϕx be the partial computable function computed by Px.

For example, the function add2 (adding 2 to an integer) appears as

ϕ1 018 748 519 973 070 618.

Remark : Kleene used the notation {x} for the partial computable function coded by x.
Due to the potential confusion with singleton sets, we follow Rogers, and use the notation
ϕx.

2The term recursive function is now considered old-fashion. Many researchers have switched to the term
computable function.

254 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

It is important to observe that different programs Px and Py may compute the same
function, that is, while Px ̸= Py for all x ̸= y, it is possible that ϕx = ϕy. In fact, it is
undecidable whether ϕx = ϕy.

The existence of the universal function ϕuniv is sufficiently important to be recorded in
the following Lemma.

Proposition 9.5. For the indexing of RAM programs defined earlier, there is a universal
partial computable function ϕuniv such that, for all x, y ∈ N, if ϕx is the partial computable
function computed by Px, then

ϕx(y) = ϕuniv(⟨x, y⟩).

The program UNIV computing ϕuniv can be viewed as an interpreter for RAM programs.
By giving the universal program UNIV the “program” x and the “data” y, we get the result
of executing program Px on input y. We can view the RAM model as a stored program
computer .

By Theorem 9.3 and Proposition 9.5, the halting problem for the single program UNIV
is undecidable. Otherwise, the halting problem for RAM programs would be decidable, a
contradiction. It should be noted that the program UNIV can actually be written (with a
certain amount of pain).

The object of the next Section is to show the existence of Kleene’s T -predicate. This
will yield another important normal form. In addition, the T -predicate is a basic tool in
recursion theory.

9.4 Kleene’s T -Predicate

In Section 9.3, we have encoded programs. The idea of this Section is to also encode com-
putations of RAM programs. Assume that x codes a program, that y is some input (not a
code), and that z codes a computation of Px on input y. The predicate T (x, y, z) is defined
as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a halting compu-
tation of Px on input y.

We will show that T is primitive recursive. First, we need to encode computations. We
say that z codes a computation of length n ≥ 1 if

z = ⟨n+ 2, ⟨1, y0⟩, ⟨i1, y1⟩, . . . , ⟨in, yn⟩⟩,

where each ij is the physical location of the next instruction to be executed and each yj
codes the contents of the registers just before execution of the instruction at the location
ij . Also, y0 codes the initial contents of the registers, that is, y0 = ⟨y, 0⟩, for some input y.
We let Ln(z) = Π1(z). Note that ij denotes the physical location of the next instruction to

9.4. KLEENE’S T -PREDICATE 255

be executed in the sequence of instructions constituting the program coded by x, and not
the line number (label) of this instruction. Thus, the first instruction to be executed is in
location 1, 1 ≤ ij ≤ Ln(x), and in−1 = Ln(x). Since the last instruction which is executed is
the last physical instruction in the program, namely, a continue, there is no next instruction
to be executed after that, and in is irrelevant. Writing the definition of T is a little simpler
if we let in = Ln(x) + 1.

Definition 9.5. The T -predicate is the primitive recursive predicate defined as follows:

T (x, y, z) iff PROG(x) and (Ln(z) ≥ 3) and

∀j ≤ Ln(z)− 3[0 ≤ j ⊃
Nextline(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z))) = Π1(Π(j + 3,Ln(z), z)) and

Nextcont(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z))) = Π2(Π(j + 3,Ln(z), z)) and

Π1(Π(Ln(z)− 1,Ln(z), z)) = Ln(x) and

Π1(Π(2,Ln(z), z)) = 1 and

y = Π1(Π2(Π(2,Ln(z), z))) and Π2(Π2(Π(2,Ln(z), z))) = 0]

The reader can verify that T (x, y, z) holds iff x codes a RAM program, y is an input, and
z codes a halting computation of Px on input y. In order to extract the output of Px from
z, we define the primitive recursive function Res as follows:

Res(z) = Π1(Π2(Π(Ln(z),Ln(z), z))).

The explanation for this formula is that Res(z) are the contents of register R1 when Px halts,
that is, Π1(yLn(z)). Using the T -predicate, we get the so-called Kleene normal form.

Theorem 9.6. (Kleene Normal Form) Using the indexing of the partial computable functions
defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial computable functions, namely, that
composition is effective. We need two auxiliary primitive recursive functions. The function
Conprogs creates the code of the program obtained by concatenating the programs Px and
Py, and for i ≥ 2, Cumclr(i) is the code of the program which clears registers R2, . . . , Ri.
To get Cumclr, we can use the function clr(i) such that clr(i) is the code of the program

N1 tail Ri

N1 Ri jmp N1a

N continue

256 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are primitive recursive.

Theorem 9.7. There is a primitive recursive function c such that

ϕc(x,y) = ϕx ◦ ϕy.

Proof. If both x and y code programs, then ϕx ◦ ϕy can be computed as follows: Run Py,
clear all registers but R1, then run Px. Otherwise, let loop be the index of the infinite loop
program:

c(x, y) =

{
Conprogs(y,Conprogs(Cumclr(y), x)) if PROG(x) and PROG(y)
loop otherwise.

9.5 A Simple Function Not Known to be Computable

The “3n+ 1 problem” proposed by Collatz around 1937 is the following:

Given any positive integer n ≥ 1, construct the sequence ci(n) as follows starting with
i = 1:

c1(n) = n

ci+1(n) =

{
ci(n)/2 if ci(n) is even

3ci(n) + 1 if ci(n) is odd.

Observe that for n = 1, we get the infinite periodic sequence

1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ · · · ,

so we may assume that we stop the first time that the sequence ci(n) reaches the value 1 (if
it actually does). Such an index i is called the stopping time of the sequence. And this is
the problem:

Conjecture (Collatz):

For any starting integer value n ≥ 1, the sequence (ci(n)) always reaches 1.

Starting with n = 3, we get the sequence

3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 5, we get the sequence

5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

9.5. A SIMPLE FUNCTION NOT KNOWN TO BE COMPUTABLE 257

Starting with n = 6, we get the sequence

6 =⇒ 3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 7, we get the sequence

7 =⇒ 22 =⇒ 11 =⇒ 34 =⇒ 17 =⇒ 52 =⇒ 26 =⇒ 13 =⇒ 40

=⇒ 20 =⇒ 10 =⇒ 25 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

One might be surprised to find that for n = 27, it takes 111 steps to reach 1, and for
n = 97, it takes 118 steps. I computed the stopping times for n up to 107 and found that
the largest stopping time, 525 (524 steps), is obtained for n = 837799. The terms of this
sequence reach values over 2.9×109. The graph of the sequence s(837799) is shown in Figure
9.1.

0 100 200 300 400 500 600

0

0.5

1

1.5

2

2.5

3
×10

9

Figure 9.1: Graph of the sequence for n = 837799.

We can define the partial computable function C (with positive integer inputs) defined
by

C(n) = the smallest i such that ci(n) = 1 if it exists.

Then the Collatz conjecture is equivalent to asserting that the function C is (total) com-
putable. The graph of the function C for 1 ≤ n ≤ 107 is shown in Figure 9.2.

So far, the conjecture remains open. It has been checked by computer for all integers
≤ 87× 260.

258 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

0 1 2 3 4 5 6 7 8 9 10

×10
5

0

100

200

300

400

500

600

Figure 9.2: Graph of the function C for 1 ≤ n ≤ 107.

9.6 A Non-Computable Function; Busy Beavers

Total functions that are not computable must grow very fast and thus are very complicated.
Yet, in 1962, Radó published a paper in which he defined two functions Σ and S (involving
computations of Turing machines) that are total and not computable.

Consider Turing machines with a tape alphabet Γ = {1, B} with two symbols (B being
the blank). We also assume that these Turing machines have a special final state qF , which is
a blocking state (there are no transitions from qF). We do not count this state when counting
the number of states of such Turing machines. The game is to run such Turing machines
with a fixed number of states n starting on a blank tape, with the goal of producing the
maximum number of (not necessarily consecutive) ones (1).

Definition 9.6. The function Σ (defined on the positive natural numbers) is defined as
the maximum number Σ(n) of (not necessarily consecutive) 1’s written on the tape after a
Turing machine with n ≥ 1 states started on the blank tape halts. The function S is defined
as the maximum number S(n) of moves that can be made by a Turing machine of the above
type with n states before it halts, started on the blank tape.

A Turing machine with n states that writes the maximum number Σ(n) of 1’s when
started on the blank tape is called a busy beaver .

9.6. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 259

Busy beavers are hard to find, even for small n. First, it can be shown that the number
of distinct Turing machines of the above kind with n states is (4(n + 1))2n. Second, since
it is undecidable whether a Turing machine halts on a given input, it is hard to tell which
machines loop or halt after a very long time.

Here is a summary of what is known for 1 ≤ n ≤ 6. Observe that the exact value of
Σ(5),Σ(6), S(5) and S(6) is unknown.

n Σ(n) S(n)

1 1 1

2 4 6

3 6 21

4 13 107

5 ≥ 4098 ≥ 47, 176, 870

6 ≥ 95, 524, 079 ≥ 8, 690, 333, 381, 690, 951

6 ≥ 3.515× 1018267 ≥ 7.412× 1036534

The first entry in the table for n = 6 corresponds to a machine due to Heiner Marxen
(1999). This record was surpassed by Pavel Kropitz in 2010, which corresponds to the second
entry for n = 6. The machines achieving the record in 2017 for n = 4, 5, 6 are shown below,
where the blank is denoted ∆ instead of B, and where the special halting states is denoted
H :

4-state busy beaver:

A B C D

∆ (1, R, B) (1, L, A) (1, R,H) (1, R,D)

1 (1, L, B) (∆, L, C) (1, L,D) (∆, R, A)

The above machine output 13 ones in 107 steps. In fact, the output is

∆∆ 1∆ 1 1 1 1 1 1 1 1 1 1 1 1∆∆.

5-state best contender:

A B C D E

∆ (1, R, B) (1, R, C) (1, R,D) (1, L, A) (1, R,H)

1 (1, L, C) (1, R, B) (∆, L, E) (1, L,D) (∆, L, A)

The above machine output 4098 ones in 47, 176, 870 steps.

260 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

6-state contender (Heiner Marxen):

A B C D E F

∆ (1, R, B) (1, L, C) (∆, R, F) (1, R, A) (1, L,H) (∆, L, A)

1 (1, R, A) (1, L, B) (1, L,D) (∆, L, E) (1, L, F) (∆, L, C)

The above machine outputs 96, 524, 079 ones in 8, 690, 333, 381, 690, 951 steps.

6-state best contender (Pavel Kropitz):

A B C D E F

∆ (1, R, B) (1, R, C) (1, L,D) (1, R, E) (1, L, A) (1, L,H)

1 (1, L, E) (1, R, F) (∆, R, B) (∆, L, C) (∆, R,D) (1, R, C)

The above machine output at least 3.515× 1018267 ones!

The reason why it is so hard to compute Σ and S is that they are not computable!

Theorem 9.8. The functions Σ and S are total functions that are not computable (not
recursive).

Proof sketch. The proof consists in showing that Σ (and similarly for S) eventually outgrows
any computable function. More specifically, we claim that for every computable function f ,
there is some positive integer kf such that

Σ(n + kf) ≥ f(n) for all n ≥ 0.

We simply have to pick kf to be the number of states of a Turing machine Mf computing
f . Then, we can create a Turing machine Mn,f that works as follows. Using n of its states,
it writes n ones on the tape, and then it simulates Mf with input 1n. Since the ouput of
Mn,f started on the blank tape consists of f(n) ones, and since Σ(n + kf) is the maximum
number of ones that a turing machine with n+ kf states will ouput when it stops, we must
have

Σ(n + kf) ≥ f(n) for all n ≥ 0.

Next observe that Σ(n) < Σ(n + 1), because we can create a Turing machine with n + 1
states which simulates a busy beaver machine with n states, and then writes an extra 1 when
the busy beaver stops, by making a transition to the (n+1)th state. It follows immediately
that if m < n then Σ(m) < Σ(n). If Σ was computaable, then so would be the function g
given by g(n) = Σ(2n). By the above, we would have

Σ(n + kg) ≥ g(n) = Σ(2n) for all n ≥ 0,

and for n > kg, since 2n > n+ kk, we would have Σ(n+ ng) < Σ(2n), contradicting the fact
that Σ(n + ng) ≥ Σ(2n).

9.6. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 261

Since by definition S(n) is the maximum number of moves that can be made by a Turing
machine of the above type with n states before it halts, S(n) ≥ Σ(n). Then the same
reasoning as above shows that S is not a computable function.

The zoo of comutable and non-computable functions is illustrated in Figure 9.3.

E
S
Pn

i

primitive
recursive add

mult

supexp

rational expressions

total computabale

terminates for all input

partial computable

built from primitive recursive
and minimization

(while loops)

3x + 1 problem

membership in a language
(set)

φ
univ

(x,y)

partial decider

functions that computer can’t calculate
grow too fast: overflow

Busy Beaver
 Only initial cases computed.

poor thing is so busy, he is anemic!

exp

Figure 9.3: Computability Classification of Functions.

262 CHAPTER 9. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Chapter 10

Elementary Recursive Function
Theory

10.1 Acceptable Indexings

In Chapter 9, we have exhibited a specific indexing of the partial computable functions by
encoding the RAM programs. Using this indexing, we showed the existence of a universal
function ϕuniv and of a computable function c, with the property that for all x, y ∈ N,

ϕc(x,y) = ϕx ◦ ϕy.

It is natural to wonder whether the same results hold if a different coding scheme is used or
if a different model of computation is used, for example, Turing machines. In other words,
we would like to know if our results depend on a specific coding scheme or not.

Our previous results showing the characterization of the partial computable functions
being independennt of the specific model used, suggests that it might be possible to pinpoint
certain properties of coding schems which would allow an axiomatic development of recursive
function theory. What we are aiming at is to find some simple properties of “nice” coding
schemes that allow one to proceed without using explicit coding schemes, as long as the
above properties hold.

Remarkably, such properties exist. Furthermore, any two coding schemes having these
properties are equivalent in a strong sense (effectively equivalent), and so, one can pick
any such coding scheme without any risk of losing anything else because the wrong coding
scheme was chosen. Such coding schemes, also called indexings, or Gödel numberings, or
even programming systems, are called acceptable indexings.

Definition 10.1. An indexing of the partial computable functions is an infinite sequence
ϕ0,ϕ1, . . . , of partial computable functions that includes all the partial computable func-
tions of one argument (there might be repetitions, this is why we are not using the term
enumeration). An indexing is universal if it contains the partial computable function ϕuniv

263

264 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

such that
ϕuniv(i, x) = ϕi(x)

for all i, x ∈ N. An indexing is acceptable if it is universal and if there is a total computable
function c for composition, such that

ϕc(i,j) = ϕi ◦ ϕj

for all i, j ∈ N.

From Chapter 9, we know that the specific indexing of the partial computable functions
given for RAM programs is acceptable. Another characterization of acceptable indexings left
as an exercise is the following: an indexing ψ0,ψ1,ψ2, . . . of the partial computable functions
is acceptable iff there exists a total computable function f translating the RAM indexing of
Section 9.3 into the indexing ψ0,ψ1,ψ2, . . ., that is,

ϕi = ψf(i)

for all i ∈ N.

A very useful property of acceptable indexings is the so-called “s-m-n Theorem”. Using
the slightly loose notation ϕ(x1, . . . , xn) for ϕ(⟨x1, . . . , xn⟩), the s-m-n theorem says the
following. Given a function ϕ considered as having m+ n arguments, if we fix the values of
the first m arguments and we let the other n arguments vary, we obtain a function ψ of n
arguments. Then, the index of ψ depends in a computable fashion upon the index of ϕ and
the first m arguments x1, . . . , xm. We can “pull” the first m arguments of ϕ into the index
of ψ.

Theorem 10.1. (The “s-m-n Theorem”) For any acceptable indexing ϕ0,ϕ1, . . . , there is a
total computable function s, such that, for all i,m, n ≥ 1, for all x1, . . . , xm and all y1, . . . , yn,
we have

ϕs(i,m,x1,...,xm)(y1, . . . , yn) = ϕi(x1, . . . , xm, y1, . . . , yn).

Proof. First, note that the above identity is really

ϕs(i,m,⟨x1,...,xm⟩)(⟨y1, . . . , yn⟩) = ϕi(⟨x1, . . . , xm, y1, . . . , yn⟩).

Recall that there is a primitive recursive function Con such that

Con(m, ⟨x1, . . . , xm⟩, ⟨y1, . . . , yn⟩) = ⟨x1, . . . , xm, y1, . . . , yn⟩

for all x1, . . . , xm, y1, . . . , yn ∈ N. Hence, a computable function s such that

ϕs(i,m,x)(y) = ϕi(Con(m, x, y))

will do. We define some auxiliary primitive recursive functions as follows:

P (y) = ⟨0, y⟩ and Q(⟨x, y⟩) = ⟨x+ 1, y⟩.

10.1. ACCEPTABLE INDEXINGS 265

Since we have an indexing of the partial computable functions, there are indices p and q such
that P = ϕp and Q = ϕq. Let R be defined such that

R(0) = p,

R(x+ 1) = c(q, R(x)),

where c is the computable function for composition given by the indexing. We leave as an
exercise to prove that

ϕR(x)(y) = ⟨x, y⟩
for all x, y ∈ N. Also, recall that ⟨x, y, z⟩ = ⟨x, ⟨y, z⟩⟩, by definition of pairing. Then, we
have

ϕR(x) ◦ ϕR(y)(z) = ϕR(x)(⟨y, z⟩) = ⟨x, y, z⟩.
Finally, let k be an index for the function Con, that is, let

ϕk(⟨m, x, y⟩) = Con(m, x, y).

Define s by
s(i,m, x) = c(i, c(k, c(R(m), R(x)))).

Then, we have

ϕs(i,m,x)(y) = ϕi ◦ ϕk ◦ ϕR(m) ◦ ϕR(x)(y) = ϕi(Con(m, x, y)),

as desired. Notice that if the composition function c is primitive recursive, then s is also
primitive recursive. In particular, for the specific indexing of the RAM programs given in
Section 9.3, the function s is primitive recursive.

As a first application of the s-m-n Theorem, we show that any two acceptable indexings
are effectively inter-translatable.

Theorem 10.2. Let ϕ0,ϕ1, . . . , be a universal indexing, and let ψ0,ψ1, . . . , be any indexing
with a total computable s-1-1 function, that is, a function s such that

ψs(i,1,x)(y) = ψi(x, y)

for all i, x, y ∈ N. Then, there is a total computable function t such that ϕi = ψt(i).

Proof. Let ϕuniv be a universal partial computable function for the indexing ϕ0,ϕ1, Since
ψ0,ψ1, . . . , is also an indexing, ϕuniv occurs somewhere in the second list, and thus, there is
some k such that ϕuniv = ψk. Then, we have

ψs(k,1,i)(x) = ψk(i, x) = ϕuniv(i, x) = ϕi(x),

for all i, x ∈ N. Therefore, we can take the function t to be the function defined such that

t(i) = s(k, 1, i)

for all i ∈ N.

266 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

Using Theorem 10.2, if we have two acceptable indexings ϕ0,ϕ1, . . . , and ψ0,ψ1, . . ., there
exist total computable functions t and u such that

ϕi = ψt(i) and ψi = ϕu(i)

for all i ∈ N. Also note that if the composition function c is primitive recursive, then any
s-m-n function is primitive recursive, and the translation functions are primitive recursive.
Actually, a stronger result can be shown. It can be shown that for any two acceptable
indexings, there exist total computable injective and surjective translation functions. In
other words, any two acceptable indexings are recursively isomorphic (Roger’s isomorphism
theorem). Next, we turn to algorithmically unsolvable, or undecidable, problems.

10.2 Undecidable Problems

We saw in Section 9.3 that the halting problem for RAM programs is undecidable. In this
section, we take a slightly more general approach to study the undecidability of problems,
and give some tools for resolving decidability questions.

First, we prove again the undecidability of the halting problem, but this time, for any
indexing of the partial computable functions.

Theorem 10.3. (Halting Problem, Abstract Version) Let ψ0,ψ1, . . . , be any indexing of the
partial computable functions. Then, the function f defined such that

f(x, y) =

{
1 if ψx(y) is defined,
0 if ψx(y) is undefined,

is not computable.

Proof. Assume that f is computable, and let g be the function defined such that

g(x) = f(x, x)

for all x ∈ N. Then g is also computable. Let θ be the function defined such that

θ(x) =

{
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that θ is not even partial computable. Observe that θ is such that

θ(x) =

{
0 if ψx(x) is undefined,
undefined if ψx(x) is defined.

If θ was partial computable, it would occur in the list as some ψi, and we would have

θ(i) = ψi(i) = 0 iff ψi(i) is undefined,

a contradiction. Therefore, f and g can’t be computable.

10.2. UNDECIDABLE PROBLEMS 267

Observe that the proof of Theorem 10.3 does not use the fact that the indexing is uni-
versal or acceptable, and thus, the theorem holds for any indexing of the partial computable
functions. The function g defined in the proof of Theorem 10.3 is the characteristic function
of a set denoted as K, where

K = {x | ψx(x) is defined}.

Given any set, X , for any subset, A ⊆ X , of X , recall that the characteristic function,
CA (or χA), of A is the function, CA : X → {0, 1}, defined so that, for all x ∈ X ,

CA(x) =
{
1 if x ∈ A
0 if x /∈ A.

The set K is an example of a set which is not computable (or not recursive). Since this
fact is quite important, we give the following definition:

Definition 10.2. A subset, A, of Σ∗ (or a subset, A, of N) is computable, or recursive,1 or
decidable iff its characteristic function, CA, is a total computable function.

Using Definition 10.2, Theorem 10.3 can be restated as follows.

Proposition 10.4. For any indexing ϕ0,ϕ1, . . . of the partial computable functions (over Σ∗

or N), the set K = {x | ϕx(x) is defined} is not computable (not recursive).

Computable (recursive) sets allow us to define the concept of a decidable (or undecidable)
problem. The idea is to generalize the situation described in Section 9.3 and Section 9.4,
where a set of objects, the RAM programs, is encoded into a set of natural numbers, using
a coding scheme.

Definition 10.3. Let C be a countable set of objects, and let P be a property of objects in
C. We view P as the set

{a ∈ C | P (a)}.

A coding-scheme is an injective function #: C → N that assigns a unique code to each object
in C. The property P is decidable (relative to #) iff the set {#(a) | a ∈ C and P (a)} is
computable (recursive). The property P is undecidable (relative to #) iff the set {#(a) | a ∈
C and P (a)} is not computable (not recursive).

Observe that the decidability of a property P of objects in C depends upon the coding
scheme #. Thus, if we are cheating in using a non-effective coding scheme, we may declare
that a property is decidabe even though it is not decidable in some reasonable coding scheme.
Consequently, we require a coding scheme # to be effective in the following sense. Given any

1Since 1996, the term recursive has been considered old-fashioned by many researchers, and the term
computable has been used instead.

268 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

object a ∈ C, we can effectively (i.e.. algorithmically) determine its code #(a). Conversely,
given any integer n ∈ N, we should be able to tell effectively if n is the code of some object
in C, and if so, to find this object. In practice, it is always possible to describe the objects
in C as strings over some (possibly complex) alphabet Σ (sets of trees, graphs, etc). In such
cases, the coding schemes are computable functions from Σ∗ to N = {a1}∗.

For example, let C = N×N, where the property P is the equality of the partial functions
ϕx and ϕy. We can use the pairing function ⟨−,−⟩ as a coding function, and the problem is
formally encoded as the computability (recursiveness) of the set

{⟨x, y⟩ | x, y ∈ N, ϕx = ϕy}.

In most cases, we don’t even bother to describe the coding scheme explicitly, knowing
that such a description is routine, although perhaps tedious.

We now show that most properties about programs (except the trivial ones) are undecid-
able. First, we show that it is undecidable whether a RAM program halts for every input.
In other words, it is undecidable whether a procedure is an algorithm. We actually prove a
more general fact.

Proposition 10.5. For any acceptable indexing ϕ0,ϕ1, . . . of the partial computable func-
tions, the set

TOTAL = {x | ϕx is a total function}

is not computable (not recursive).

Proof. The proof uses a technique known as reducibility. We try to reduce a set A known
to be noncomputable (nonrecursive) to TOTAL via a computable function f : A→ TOTAL,
so that

x ∈ A iff f(x) ∈ TOTAL.

If TOTAL were computable (recursive), its characteristic function g would be computable,
and thus, the function g ◦ f would be computable, a contradiction, since A is assumed to be
noncomputable (nonrecursive. In the present case, we pick A = K. To find the computable
function f : K → TOTAL, we use the s-m-n Theorem. Let θ be the function defined below:
for all x, y ∈ N,

θ(x, y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K.

Note that θ does not depend on y. The function θ is partial computable. Indeed, we have

θ(x, y) = ϕx(x) = ϕuniv(x, x).

Thus, θ has some index j, so that θ = ϕj , and by the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y).

10.2. UNDECIDABLE PROBLEMS 269

Let f be the computable function defined such that

f(x) = s(j, 1, x)

for all x ∈ N. Then, we have

ϕf(x)(y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K

for all y ∈ N. Thus, observe that ϕf(x) is a total function iff x ∈ K, that is,

x ∈ K iff f(x) ∈ TOTAL,

where f is computable. As we explained earlier, this shows that TOTAL is not computable
(not recursive).

The above argument can be generalized to yield a result known as Rice’s Theorem. Let
ϕ0,ϕ1, . . . be any indexing of the partial computable functions, and let C be any set of partial
computable functions. We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.

We can view C as a property of some of the partial computable functions. For example

C = {all total computable functions}.

We say that C is nontrivial if C is neither empty nor the set of all partial computable
functions. Equivalently C is nontrivial iff PC ̸= ∅ and PC ̸= N. We may think of PC as the
set of programs computing the functions in C.

Theorem 10.6. (Rice’s Theorem) For any acceptable indexing ϕ0,ϕ1, . . . of the partial com-
putable functions, for any set C of partial computable functions, the set

PC = {x ∈ N | ϕx ∈ C}

is not computable (not recursive) unless C is trivial.

Proof. Assume that C is nontrivial. A set is computable (recursive) iff its complement
is computable (recursive) (the proof is trivial). Hence, we may assume that the totally
undefined function is not in C, and since C ̸= ∅, let ψ be some other function in C. We
produce a computable function f such that

ϕf(x)(y) =

{
ψ(y) if x ∈ K,
undefined if x /∈ K,

for all y ∈ N. We get f by using the s-m-n Theorem. Let ψ = ϕi, and define θ as follows:

θ(x, y) = ϕuniv(i, y) + (ϕuniv(x, x)− ϕuniv(x, x)),

270 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

where − is the primitive recursive function for truncated subtraction (monus). Clearly, θ is
partial computable, and let θ = ϕj . By the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y)

for all x, y ∈ N. Letting f be the computable function such that

f(x) = s(j, 1, x),

by definition of θ, we get

ϕf(x)(y) = θ(x, y) =
{
ψ(y) if x ∈ K,
undefined if x /∈ K.

Thus, f is the desired reduction function. Now, we have

x ∈ K iff f(x) ∈ PC ,

and thus, the characteristic function CK ofK is equal to CP ◦f , where CP is the characteristic
function of PC . Therefore, PC is not computable (not recursive), since otherwise, K would
be computable, a contradiction.

Rice’s Theorem shows that all nontrivial properties of the input/output behavior of
programs are undecidable!

The scenario to apply Rice’s Theorem to a class C of partial functions is to show that
some partial computable function belongs to C (C is not empty), and that some partial
computable function does not belong to C (C is not all the partial computable functions).
This demonstrates that C is nontrivial.

In particular, the following properties are undecidable.

Proposition 10.7. The following properties of partial computable functions are undecidable.

(a) A partial computable function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some partial computable function.

(c) Two partial computable functions ϕx and ϕy are identical. More precisely, the set
{⟨x, y⟩ | ϕx = ϕy} is not computable.

(d) A partial computable function ϕx is equal to a given partial computable function ϕa.

(e) A partial computable function yields output z on input y, for any given y, z ∈ N.

(f) A partial computable function diverges for some input.

(g) A partial computable function diverges for all input.

10.3. LISTABLE (RECURSIVELY ENUMERABLE) SETS 271

The above proposition is left as an easy exercise. For example, in (a), we need to exhibit
a constant (partial) computable function, such as zero(n) = 0, and a nonconstant (partial)
computable function, such as the identity function (or succ(n) = n+ 1).

A property may be undecidable although it is partially decidable. By partially decidable,
we mean that there exists a computable function g that enumerates the set PC = {x | ϕx ∈
C}. This means that there is a computable function g whose range is PC . We say that
PC is listable, or computably enumerable, or recursively enumerable. Indeed, g provides a
recursive enumeration of PC , with possible repetitions. Listable sets are the object of the
next Section.

10.3 Listable (Recursively Enumerable) Sets

Consider the set
A = {x ∈ N | ϕx(a) is defined},

where a ∈ N is any fixed natural number. By Rice’s Theorem, A is not computable (not
recursive); check this. We claim that A is the range of a computable function g. For this,
we use the T -predicate. We produce a function which is actually primitive recursive. First,
note that A is nonempty (why?), and let x0 be any index in A. We define g by primitive
recursion as follows:

g(0) = x0,

g(x+ 1) =

{
Π1(x) if T (Π1(x), a,Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain informally what g does. For
every input x, the function g tries finitely many steps of a computation on input a of some
partial computable function. The computation is given by Π2(x), and the partial function
is given by Π1(x). Since Π1 and Π2 are projection functions, when x ranges over N, both
Π1(x) and Π2(x) also range over N.

Such a process is called a dovetailing computation. Therefore all computations on input
a for all partial computable functions will be tried, and the indices of the partial computable
functions converging on input a will be selected. This type of argument will be used over
and over again.

Definition 10.4. A subset X of N is listable, or computably enumerable, or recursively
enumerable2 iff either X = ∅, or X is the range of some total computable function (total
recursive function). Similarly, a subset X of Σ∗ is listable or computably enumerable, or
recursively enumerable iff either X = ∅, or X is the range of some total computable function
(total recursive function).

2Since 1996, the term recursively enumerable has been considered old-fashioned by many researchers, and
the terms listable and computably enumerable have been used instead.

272 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

We will often abbreviate computably enumerable as c.e, (and recursively enumerable as
r.e.). A computably enumerable set is sometimes called a partially decidable or semidecidable
set.

Remark: It should be noted that the definition of a listable set (r.e set or c.e. set) given
in Definition 10.4 is different from an earlier definition given in terms of acceptance by a
Turing machine and it is by no means obvious that these two definitions are equivalent. This
equivalence will be proved in Proposition 10.9 ((1)⇐⇒ (4)).

The following proposition relates computable sets and listable sets (recursive sets and
recursively enumerable sets).

Proposition 10.8. A set A is computable (recursive) iff both A and its complement A are
listable (recursively enumerable).

Proof. Assume that A is computable. Then, it is trivial that its complement is also com-
putable. Hence, we only have to show that a computable set is listable. The empty set is
listable by definition. Otherwise, let y ∈ A be any element. Then, the function f defined
such that

f(x) =

{
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is computable and has range A.

Conversely, assume that both A and A are computably enumerable. If either A or A is
empty, then A is computable. Otherwise, let A = f(N) and A = g(N), for some computable
functions f and g. We define the function CA as follows:

CA(x) =
{
1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

The function CA lists A and A in parallel, waiting to see whether x turns up in A or in A.
Note that x must eventually turn up either in A or in A, so that CA is a total computable
function.

Our next goal is to show that the listable (recursively enumerable) sets can be given
several equivalent definitions.

Proposition 10.9. For any subset A of N, the following properties are equivalent:

(1) A is empty or A is the range of a primitive recursive function (Rosser, 1936).

(2) A is listable (recursively enumerable).

(3) A is the range of a partial computable function.

(4) A is the domain of a partial computable function.

10.3. LISTABLE (RECURSIVELY ENUMERABLE) SETS 273

Proof. The implication (1) ⇒ (2) is trivial, since A is r.e. iff either it is empty or it is the
range of a (total) computable function.

To prove the implication (2) ⇒ (3), it suffices to observe that the empty set is the
range of the totally undefined function (computed by an infinite loop program), and that a
computable function is a partial computable function.

The implication (3)⇒ (4) is shown as follows. Assume that A is the range of ϕi. Define
the function f such that

f(x) = min y[T (i,Π1(y),Π2(y)) ∧ Res(Π2(y)) = x]

for all x ∈ N. Clearly, f is partial computable and has domain A.

The implication (4) ⇒ (1) is shown as follows. The only nontrivial case is when A is
nonempty. Assume that A is the domain of ϕi. Since A ̸= ∅, there is some a ∈ N such that
a ∈ A, so the quantity

min y[T (i,Π1(y),Π2(y))]

is defined and we can pick a to be

a = Π1(min y[T (i,Π1(y),Π2(y))]).

We define the primitive recursive function f as follows:

f(0) = a,

f(x+ 1) =

{
Π1(x) if T (i,Π1(x),Π2(x)),
a if ¬T (i,Π1(x),Π2(x)).

Clearly, A is the range of f and f is primitive recursive.

More intuitive proofs of the implications (3)⇒ (4) and (4)⇒ (1) can be given. Assume
that A ̸= ∅ and that A = range(g), where g is a partial computable function. Assume that
g is computed by a RAM program P . To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output n. Otherwise the computation
diverges. Hence, the domain of f is the range of g.

Assume now that A is the domain of some partial computable function g, and that g is
computed by some Turing machine M . Since the case where A = ∅ is trivial, we may assume
that A ̸= ∅, and let n0 ∈ A be some chosen element in A. We construct another Turing
machine performing the following steps: On input n,

(0) Do one step of the computation of g(0)

. . .

274 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

(n) Do n+ 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of g(m) halts for some m ≤ n, we output
m. Otherwise, we output n0.

In this fashion, we will enumerate the domain of g, and since we have constructed a
Turing machine that halts for every input, we have a total computable function.

The following proposition can easily be shown using the proof technique of Proposition
10.9.

Proposition 10.10. (1) There is a computable function h such that

range(ϕx) = dom(ϕh(x))

for all x ∈ N.

(2) There is a computable function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total computable, for all x ∈ N such that dom(ϕx) ̸= ∅.

The proof of Proposition 10.10 is left as an exercise. Using Proposition 10.9, we can
prove that K is a listable set. Indeed, we have K = dom(f), where

f(x) = ϕuniv(x, x)

for all x ∈ N. The set
K0 = {⟨x, y⟩ | ϕx(y) converges}

is also a listable set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z),Π2(z)),

which is partial computable. It worth recording these facts in the following lemma.

Proposition 10.11. The sets K and K0 are listable sets that are not computable (r.e. sets
that are not recursive).

We can now prove that there are sets that are not c.e. (r.e.).

10.3. LISTABLE (RECURSIVELY ENUMERABLE) SETS 275

Proposition 10.12. For any indexing of the partial computable functions, the complement
K of the set

K = {x ∈ N | ϕx(x) converges}

is not listable (not recursively enumerable).

Proof. If K was listable, since K is also listable, by Proposition 10.8, the set K would be
computable, a contradiction.

The sets K and K0 are examples of sets that are not c.e. (r.e.). This shows that the c.e.
sets (r.e. sets) are not closed under complementation. However, we leave it as an exercise to
prove that the c.e. sets (r.e. sets) are closed under union and intersection.

We will prove later on that TOTAL is not c.e. (r.e.). This is rather unpleasant. Indeed,
this means that there is no way of effectively listing all algorithms (all total computable
functions). Hence, in a certain sense, the concept of partial computable function (procedure)
is more natural than the concept of a (total) computable function (algorithm).

The next two propositions give other characterizations of the c.e. sets (r.e. sets) and of
the computable sets (recursive sets). The proofs are left as an exercise.

Proposition 10.13. (1) A set A is c.e. (r.e.) iff either it is finite or it is the range of an
injective computable function.

(2) A set A is c.e. (r.e.) if either it is empty or it is the range of a monotonic partial
computable function.

(3) A set A is c.e. (r.e.) iff there is a Turing machine M such that, for all x ∈ N, M
halts on x iff x ∈ A.

Proposition 10.14. A set A is computable (recursive) iff either it is finite or it is the range
of a strictly increasing computable function.

Another important result relating the concept of partial computable function and that
of a c.e. set (r.e. set) is given below.

Theorem 10.15. For every unary partial function f , the following properties are equivalent:

(1) f is partial computable.

(2) The set
{⟨x, f(x)⟩ | x ∈ dom(f)}

is c.e. (r.e.).

Proof. Let g(x) = ⟨x, f(x)⟩. Clearly, g is partial computable, and

range(g) = {⟨x, f(x)⟩ | x ∈ dom(f)}.

276 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

Conversely, assume that

range(g) = {⟨x, f(x)⟩ | x ∈ dom(f)}

for some computable function g. Then, we have

f(x) = Π2(g(min y[Π1(g(y)) = x)]))

for all x ∈ N, so that f is partial computable.

Using our indexing of the partial computable functions and Proposition 10.9, we obtain
an indexing of the c.e. sets. (r.e. sets).

Definition 10.5. For any acceptable indexing ϕ0,ϕ1, . . . of the partial computable functions,
we define the enumeration W0,W1, . . . of the c.e. sets (r.e. sets) by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain sets are c.e. (r.e.) but not com-
putable (not recursive), or complements of c.e. sets (r.e. sets) that are not computable (not
recursive), or not c.e. (not r.e.), or neither c.e. (r.e.) nor the complement of a c.e. set (r.e.
set). This technique is known as reducibility .

10.4 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Proposition 10.5 to show that
TOTAL is not computable (not recursive).

Definition 10.6. Let A and B be subsets of N (or Σ∗). We say that the set A is many-one
reducible to the set B if there is a total computable function (or total recursive function)
f : N→ N (or f : Σ∗ → Σ∗) such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We write A ≤ B, and for short, we say that A is reducible to B. Sometimes, the notation
A ≤m B is used to stress that this is a many-to-one reduction (that is, f is not necessarily
injective).

Intuitively, deciding membership in B is as hard as deciding membership in A. This is
because any method for deciding membership in B can be converted to a method for deciding
membership in A by first applying f to the number (or string) to be tested.

The following simple proposition is left as an exercise to the reader.

10.4. REDUCIBILITY AND COMPLETE SETS 277

Proposition 10.16. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is c.e., then A is c.e.

(4) If A ≤ B and A is not c.e., then B is not c.e.

(5) If A ≤ B and B is computable, then A is computable.

(6) If A ≤ B and A is not computable, then B is not computable.

Another important concept is the concept of a complete set.

Definition 10.7. A c.e. set (r.e. set) A is complete w.r.t. many-one reducibility iff every
c.e. set (r.e. set) B is reducible to A, i.e., B ≤ A.

For simplicity, we will often say complete for complete w.r.t. many-one reducibility .
Intuitively, a complete c.e. set (r.e. set) is a “hardest” c.e. set (r.e. set) as far as membership
is concerned.

Theorem 10.17. The following properties hold:

(1) If A is complete, B is c.e (r.e.), and A ≤ B, then B is complete.

(2) K0 is complete.

(3) K0 is reducible to K. Consequently, K is also complete.

Proof. (1) This is left as a simple exercise.

(2) Let Wx be any c.e. set. Then

y ∈ Wx iff ⟨x, y⟩ ∈ K0,

and the reduction function is the computable function f such that

f(y) = ⟨x, y⟩

for all y ∈ N.

(3) We use the s-m-n Theorem. First, we leave it as an exercise to prove that there is a
computable function f such that

ϕf(x)(y) =

{
1 if ϕΠ1(x)(Π2(x)) converges,
undefined otherwise,

for all x, y ∈ N. Then, for every z ∈ N,

z ∈ K0 iff ϕΠ1(z)(Π2(z)) converges,

278 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

iff ϕf(z)(y) = 1 for all y ∈ N. However,

ϕf(z)(y) = 1 iff ϕf(z)(f(z)) = 1,

since ϕf(z) is a constant function. This means that

z ∈ K0 iff f(z) ∈ K,

and f is the desired function.

As a corollary of Theorem 10.17, the set K is also complete.

Definition 10.8. Two sets A and B have the same degree of unsolvability or are equivalent
iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same degree of unsolvability. We will
now investigate the reducibility and equivalence of various sets. Recall that

TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},
FINITE = {x ∈ N | ϕx is defined only for finitely many input}.

Obviously, EMPTY ⊂ FINITE, and since

FINITE = {x ∈ N | ϕx has a finite domain},

we have
FINITE = {x ∈ N | ϕx has an infinite domain},

and thus, TOTAL ⊂ FINITE.

Proposition 10.18. We have K0 ≤ EMPTY.

The proof of Proposition 10.18 follows from the proof of Theorem 10.17. We also have
the following proposition.

Proposition 10.19. The following properties hold:

(1) EMPTY is not c.e. (not r.e.).

(2) EMPTY is c.e. (r.e.).

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.

10.4. REDUCIBILITY AND COMPLETE SETS 279

Proof. We prove (1) and (3), leaving (2) and (4) as an exercise (Actually, (2) and (4) follow
easily from (3)). First, we show that K ≤ EMPTY. By the s-m-n Theorem, there exists a
computable function f such that

ϕf(x)(y) =

{
ϕx(x) if ϕx(x) converges,
undefined if ϕx(x) diverges,

for all x, y ∈ N. Note that for all x ∈ N,

x ∈ K iff f(x) ∈ EMPTY,

and thus, K ≤ EMPTY. Since K is not c.e., EMPTY is not c.e.

By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = min z[T (x,Π1(z),Π2(z))],

for all x, y ∈ N. Note that
x ∈ EMPTY iff g(x) ∈ K

for all x ∈ N. Therefore, EMPTY ≤ K, and since we just showed that K ≤ EMPTY, the
sets K and EMPTY are equivalent.

Proposition 10.20. The following properties hold:

(1) TOTAL and TOTAL are not c.e. (not r.e.).

(2) FINITE and FINITE are not c.e (not r.e.).

Proof. Checking the proof of Theorem 10.17, we note that K0 ≤ TOTAL and K0 ≤ FINITE.
Hence, we get K0 ≤ TOTAL and K0 ≤ FINITE, and neither TOTAL nor FINITE is c.e.
If TOTAL was c.e., then there would be a computable function f such that TOTAL =
range(f). Define g as follows:

g(x) = ϕf(x)(x) + 1 = ϕuniv(f(x), x) + 1

for all x ∈ N. Since f is total and ϕf(x) is total for all x ∈ N, the function g is total
computable. Let e be an index such that

g = ϕf(e).

Since g is total, g(e) is defined. Then, we have

g(e) = ϕf(e)(e) + 1 = g(e) + 1,

a contradiction. Hence, TOTAL is not c.e. Finally, we show that TOTAL ≤ FINITE. This
also shows that FINITE is not c.e. By the s-m-n Theorem, there is a computable function
f such that

ϕf(x)(y) =

{
1 if ∀z ≤ y(ϕx(z) ↓),
undefined otherwise,

280 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

for all x, y ∈ N. It is easily seen that

x ∈ TOTAL iff f(x) ∈ FINITE

for all x ∈ N.

From Proposition 10.20, we have TOTAL ≤ FINITE. It turns out that FINITE ≤
TOTAL, and TOTAL and FINITE are equivalent.

Proposition 10.21. The sets TOTAL and FINITE are equivalent.

Proof. We show that FINITE ≤ TOTAL. By the s-m-n Theorem, there is a computable
function f such that

ϕf(x)(y) =

{
1 if ∃z ≥ y(ϕx(z) ↓),
undefined if ∀z ≥ y(ϕx(z) ↑),

for all x, y ∈ N. It is easily seen that

x ∈ FINITE iff f(x) ∈ TOTAL

for all x ∈ N.

We now turn to the recursion Theorem.

10.5 The Recursion Theorem

The recursion Theorem, due to Kleene, is a fundamental result in recursion theory. Let f
be a total computable function. Then, it turns out that there is some n such that

ϕn = ϕf(n).

Theorem 10.22. (Recursion Theorem, Version 1) Let ϕ0,ϕ1, . . . be any acceptable indexing
of the partial computable functions. For every total computable function f , there is some n
such that

ϕn = ϕf(n).

Proof. Consider the function θ defined such that

θ(x, y) = ϕuniv(ϕuniv(x, x), y)

for all x, y ∈ N. The function θ is partial computable, and there is some index j such that
ϕj = θ. By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = θ(x, y).

10.5. THE RECURSION THEOREM 281

Consider the function f◦g. Since it is computable, there is some indexm such that ϕm = f◦g.
Let

n = g(m).

Since ϕm is total, ϕm(m) is defined, and we have

ϕn(y) = ϕg(m)(y) = θ(m, y) = ϕuniv(ϕuniv(m,m), y) = ϕϕuniv(m,m)(y)

= ϕϕm(m)(y) = ϕf◦g(m)(y) = ϕf(g(m))(y) = ϕf(n)(y),

for all y ∈ N. Therefore, ϕn = ϕf(n), as desired.

The recursion Theorem can be strengthened as follows.

Theorem 10.23. (Recursion Theorem, Version 2) Let ϕ0,ϕ1, . . . be any acceptable indexing
of the partial computable functions. There is a total computable function h such that for all
x ∈ N, if ϕx is total, then

ϕϕx(h(x)) = ϕh(x).

Proof. The computable function g obtained in the proof of Theorem 10.22 satisfies the
condition

ϕg(x) = ϕϕx(x),

and it has some index i such that ϕi = g. Recall that c is a computable composition function
such that

ϕc(x,y) = ϕx ◦ ϕy.

It is easily verified that the function h defined such that

h(x) = g(c(x, i))

for all x ∈ N does the job.

A third version of the recursion Theorem is given below.

Theorem 10.24. (Recursion Theorem, Version 3) For all n ≥ 1, there is a total computable
function h of n + 1 arguments, such that for all x ∈ N, if ϕx is a total computable function
of n+ 1 arguments, then

ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn),

for all x1, . . . , xn ∈ N.

Proof. Let θ be the function defined such that

θ(x, x1, . . . , xn, y) = ϕϕx(x,x1,...,xn)(y) = ϕuniv(ϕuniv(x, x, x1, . . . , xn), y)

282 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

for all x, x1, . . . , xn, y ∈ N. By the s-m-n Theorem, there is a computable function g such
that

ϕg(x,x1,...,xn) = ϕϕx(x,x1,...,xn).

It is easily shown that there is a computable function c such that

ϕc(i,j)(x, x1, . . . , xn) = ϕi(ϕj(x, x1, . . . , xn), x1, . . . , xn)

for any two partial computable functions ϕi and ϕj (viewed as functions of n+1 arguments)
and all x, x1, . . . , xn ∈ N. Let ϕi = g, and define h such that

h(x, x1, . . . , xn) = g(c(x, i), x1, . . . , xn),

for all x, x1, . . . , xn ∈ N. We have

ϕh(x,x1,...,xn) = ϕg(c(x,i),x1,...,xn) = ϕϕc(x,i)(c(x,i),x1,...,xn),

and

ϕϕc(x,i)(c(x,i),x1,...,xn) = ϕϕx(ϕi(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(g(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(h(x,x1,...,xn),x1,...,xn).

As a first application of the recursion theorem, we can show that there is an index n such
that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name.
Let f be the computable function such that

f(x, y) = x

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = f(x, y) = x

for all x, y ∈ N. By the recursion Theorem 10.22, there is some n such that

ϕg(n) = ϕn,

the constant function with value n.

As a second application, we get a very short proof of Rice’s Theorem. Let C be such
that PC ̸= ∅ and PC ̸= N, and let j ∈ PC and k ∈ N− PC . Define the function f as follows:

f(x) =

{
j if x /∈ PC ,
k if x ∈ PC ,

10.5. THE RECURSION THEOREM 283

If PC is computable, then f is computable. By the recursion Theorem 10.22, there is some
n such that

ϕf(n) = ϕn.

But then, we have
n ∈ PC iff f(n) /∈ PC

by definition of f , and thus,
ϕf(n) ̸= ϕn,

a contradiction. Hence, PC is not computable.

As a third application, we prove the following proposition.

Proposition 10.25. Let C be a set of partial computable functions and let

A = {x ∈ N | ϕx ∈ C}.

The set A is not reducible to its complement A.

Proof. Assume that A ≤ A. Then, there is a computable function f such that

x ∈ A iff f(x) ∈ A

for all x ∈ N. By the recursion Theorem, there is some n such that

ϕf(n) = ϕn.

But then,
ϕn ∈ C iff n ∈ A iff f(n) ∈ A iff ϕf(n) ∈ C,

contradicting the fact that
ϕf(n) = ϕn.

The recursion Theorem can also be used to show that functions defined by recursive
definitions other than primitive recursion are partial computable. This is the case for the
function known as Ackermann’s function, defined recursively as follows:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

It can be shown that this function is not primitive recursive. Intuitively, it outgrows all
primitive recursive functions. However, f is computable, but this is not so obvious. We can

284 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

use the recursion Theorem to prove that f is computable. Consider the following definition
by cases:

g(n, 0, y) = y + 1,

g(n, x+ 1, 0) = ϕuniv(n, x, 1),

g(n, x+ 1, y + 1) = ϕuniv(n, x,ϕuniv(n, x+ 1, y)).

Clearly, g is partial computable. By the s-m-n Theorem, there is a computable function h
such that

ϕh(n)(x, y) = g(n, x, y).

By the recursion Theorem, there is an m such that

ϕh(m) = ϕm.

Therefore, the partial computable function ϕm(x, y) satisfies the definition of Ackermann’s
function. We showed in a previous Section that ϕm(x, y) is a total function, and thus,
Ackermann’s function is a total computable function.

Hence, the recursion Theorem justifies the use of certain recursive definitions. How-
ever, note that there are some recursive definitions that are only satisfied by the completely
undefined function.

In the next Section, we prove the extended Rice Theorem.

10.6 Extended Rice Theorem

The extended Rice Theorem characterizes the sets of partial computable functions C such
that PC is c.e. (r.e.). First, we need to discuss a way of indexing the partial computable
functions that have a finite domain. Using the uniform projection function Π, we define the
primitive recursive function F such that

F (x, y) = Π(y + 1,Π1(x) + 1,Π2(x)).

We also define the sequence of partial functions P0, P1, . . . as follows:

Px(y) =
{
F (x, y)− 1 if 0 < F (x, y) and y < Π1(x) + 1,
undefined otherwise.

Proposition 10.26. Every Px is a partial computable function with finite domain, and every
partial computable function with finite domain is equal to some Px.

The proof is left as an exercise. The easy part of the extended Rice Theorem is the
following lemma. Recall that given any two partial functions f : A→ B and g : A→ B, we
say that g extends f iff f ⊆ g, which means that g(x) is defined whenever f(x) is defined,
and if so, g(x) = f(x).

10.6. EXTENDED RICE THEOREM 285

Proposition 10.27. Let C be a set of partial computable functions. If there is a c.e. set
(r.e. set) A such that, ϕx ∈ C iff there is some y ∈ A such that ϕx extends Py, then
PC = {x | ϕx ∈ C} is c.e. (r.e.).

Proof. Proposition 10.27 can be restated as

PC = {x | ∃y ∈ A, Py ⊆ ϕx}

is c.e. If A is empty, so is PC , and PC is c.e. Otherwise, let f be a computable function such
that

A = range(f).

Let ψ be the following partial computable function:

ψ(z) =
{
Π1(z) if Pf(Π2(z)) ⊆ ϕΠ1(z),
undefined otherwise.

It is clear that
PC = range(ψ).

To see that ψ is partial computable, write ψ(z) as follows:

ψ(z) =

{
Π1(z) if ∀w ≤ Π1(f(Π2(z)))[F (f(Π2(z)), w) > 0

⊃ ϕΠ1(z)(w) = F (f(Π2(z)), w)− 1],
undefined otherwise.

To establish the converse of Proposition 10.27, we need two propositions.

Proposition 10.28. If PC is c.e. (r.e.) and ϕ ∈ C, then there is some Py ⊆ ϕ such that
Py ∈ C.

Proof. Assume that PC is c.e. and that ϕ ∈ C. By an s-m-n construction, there is a
computable function g such that

ϕg(x)(y) =

{
ϕ(y) if ∀z ≤ y[¬T (x, x, z)],
undefined if ∃z ≤ y[T (x, x, z)],

for all x, y ∈ N. Observe that if x ∈ K, then ϕg(x) is a finite subfunction of ϕ, and if x ∈ K,
then ϕg(x) = ϕ. Assume that no finite subfunction of ϕ is in C. Then,

x ∈ K iff g(x) ∈ PC

for all x ∈ N, that is, K ≤ PC . Since PC is c.e., K would also be c.e., a contradiction.

As a corollary of Proposition 10.28, we note that TOTAL is not c.e.

286 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

Proposition 10.29. If PC is c.e. (r.e.), ϕ ∈ C, and ϕ ⊆ ψ, where ψ is a partial computable
function, then ψ ∈ C.

Proof. Assume that PC is c.e. We claim that there is a computable function h such that

ϕh(x)(y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. Assume that ψ /∈ C. Then

x ∈ K iff h(x) ∈ PC

for all x ∈ N, that is, K ≤ PC , a contradiction, since PC is c.e. Therefore, ψ ∈ C. To find
the function h we proceed as follows: Let ϕ = ϕj and define Θ such that

Θ(x, y, z) =

{
ϕ(y) if T (j, y, z) ∧ ¬T (x, y, w), for 0 ≤ w < z
ψ(y) if T (x, x, z) ∧ ¬T (j, y, w), for 0 ≤ w < z
undefined otherwise.

Observe that if x = y = j, then Θ(j, j, z) is multiply defined, but since ψ extends ϕ, we
get the same value ψ(y) = ϕ(y), so Θ is a well defined partial function. Clearly, for all
(m,n) ∈ N2, there is at most one z ∈ N so that Θ(x, y, z) is defined, so the function σ
defined by

σ(x, y) =
{
z if (x, y, z) ∈ dom(Θ)
undefined otherwise

is a partial computable function. Finally, let

θ(x, y) = Θ(x, y, σ(x, y)),

a partial computable function. It is easy to check that

θ(x, y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function h such that

ϕh(x)(y) = θ(x, y)

for all x, y ∈ N.

Observe that Proposition 10.29 yields a new proof that TOTAL is not c.e. (not r.e.).
Finally, we can prove the extended Rice Theorem.

Theorem 10.30. (Extended Rice Theorem) The set PC is c.e. (r.e.) iff there is a c.e. set
(r.e. set) A such that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

10.7. CREATIVE AND PRODUCTIVE SETS 287

Proof. Let PC = dom(ϕi). Using the s-m-n Theorem, there is a computable function k such
that

ϕk(y) = Py

for all y ∈ N. Define the c.e. set A such that

A = dom(ϕi ◦ k).

Then,
y ∈ A iff ϕi(k(y)) ↓ iff Py ∈ C.

Next, using Proposition 10.28 and Proposition 10.29, it is easy to see that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Indeed, if ϕx ∈ C, by Proposition 10.28, there is a finite subfunction Py ⊆ ϕx such that
Py ∈ C, but

Py ∈ C iff y ∈ A,

as desired. On the other hand, if
Py ⊆ ϕx

for some y ∈ A, then
Py ∈ C,

and by Proposition 10.29, since ϕx extends Py, we get

ϕx ∈ C.

10.7 Creative and Productive Sets

In this section, we discuss some special sets that have important applications in logic: creative
and productive sets. The concepts to be described are illustrated by the following situation.
Assume that

Wx ⊆ K

for some x ∈ N. We claim that
x ∈ K −Wx.

Indeed, if x ∈ Wx, then ϕx(x) is defined, and by definition of K, we get x /∈ K, a contradic-
tion. Therefore, ϕx(x) must be undefined, that is,

x ∈ K −Wx.

The above situation can be generalized as follows.

288 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

Definition 10.9. A set A is productive iff there is a total computable function f such that

if Wx ⊆ A then f(x) ∈ A−Wx

for all x ∈ N. The function f is called the productive function of A. A set A is creative if it
is c.e (r.e.) and if its complement A is productive.

As we just showed, K is creative and K is productive. The following facts are immediate
conequences of the definition.

(1) A productive set is not c.e. (r.e.).

(2) A creative set is not computable (not recursive).

Creative and productive sets arise in logic. The set of theorems of a logical theory is
often creative. For example, the set of theorems in Peano’s arithmetic is creative. This
yields incompleteness results.

Proposition 10.31. If a set A is productive, then it has an infinite c.e. (r.e.) subset.

Proof. We first give an informal proof. let f be the computable productive function of A.
We define a computable function g as follows: Let x0 be an index for the empty set, and let

g(0) = f(x0).

Assuming that
{g(0), g(1), . . . , g(y)}

is known, let xy+1 be an index for this finite set, and let

g(y + 1) = f(xy+1).

Since Wxy+1 ⊆ A, we have f(xy+1) ∈ A.

For the formal proof, we use the following facts whose proof is left as an exercise:

(1) There is a computable function u such that

Wu(x,y) = Wx ∪Wy.

(2) There is a computable function t such that

Wt(x) = {x}.

Letting x0 be an index for the empty set, we define the function h as follows:

h(0) = x0,

h(y + 1) = u(t(f(y)), h(y)).

We define g such that
g = f ◦ h.

It is easily seen that g does the job.

10.7. CREATIVE AND PRODUCTIVE SETS 289

Another important property of productive sets is the following.

Proposition 10.32. If a set A is productive, then K ≤ A.

Proof. Let f be a productive function for A. Using the s-m-n Theorem, we can find a
computable function h such that

Wh(y,x) =

{
{f(y)} if x ∈ K,
∅ if x ∈ K.

The above can be restated as follows:

ϕh(y,x)(z) =

{
1 if x ∈ K and z = f(y),
undefined if x ∈ K,

for all x, y, z ∈ N. By the third version of the recursion Theorem (Theorem 10.24), there is
a computable function g such that

Wg(x) = Wh(g(x),x)

for all x ∈ N. Let
k = f ◦ g.

We claim that
x ∈ K iff k(x) ∈ A

for all x ∈ N. The verification of this fact is left as an exercise. Thus, K ≤ A.

Using Proposition 10.32, the following results can be shown.

Proposition 10.33. The following facts hold.

(1) If A is productive and A ≤ B, then B is productive.

(2) A is creative iff A is equivalent to K.

(3) A is creative iff A is complete,

290 CHAPTER 10. ELEMENTARY RECURSIVE FUNCTION THEORY

Chapter 11

Listable Sets and Diophantine Sets;
Hilbert’s Tenth Problem

11.1 Diophantine Equations and Hilbert’s
Tenth Problem

There is a deep and a priori unexpected connection between the theory of computable and
listable sets and the solutions of polynomial equations involving polynomials in several vari-
ables with integer coefficients. These are polynomials in n ≥ 1 variables x1, . . . , xn which
are finite sums of monomials of the form

axk1
1 · · ·xkn

n ,

where k1, . . . , kn ∈ N are nonnegative integers, and a ∈ Z is an integer (possibly negative).
The natural number k1 + · · ·+ kn is called the degree of the monomial axk1

1 · · ·xkn
n .

For example, if n = 3, then

1. 5, −7, are monomials of degree 0.

2. 3x1, −2x2, are monomials of degree 1.

3. x1x2, 2x2
1, 3x1x3, −5x2

2, are monomials of degree 2.

4. x1x2x3, x2
1x3, −x3

2, are monomials of degree 3.

5. x4
1, −x2

1x
2
3, x1x2

2x3, are monomials of degree 4.

It is convenient to introduce multi-indices, where an n-dimensional multi-index is an
n-tuple α = (k1, . . . , kn) with n ≥ 1 and ki ∈ N. Let |α| = k1 + · · ·+ kn. Then we can write

xα = xk1
1 · · ·xkn

n .

For example, for n = 3,
x(1,2,1) = x1x

2
2x3, x

(0,2,2) = x2
2x

2
3.

291

292 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Definition 11.1. A polynomial P (x1, . . . , xn) in the variables x1, . . . , xn with integer coef-
ficients is a finite sum of monomials of the form

P (x1, . . . , xn) =
∑

α

aαx
α,

where the α’s are n-dimensional multi-indices, and with aα ∈ Z. The maximum of the
degrees |α| of the monomials aαxα is called the total degree of the polynomial P (x1, . . . , xn).
The set of all such polynomials is denoted by Z[x1, . . . , xn].

Sometimes, we write P instead of P (x1, . . . , xn). We also use variables x, y, z etc. instead
of x1, x2, x3,

For example, 2x− 3y − 1 is a polynomial of total degree 1, x2 + y2 − z2 is a polynomial
of total degree 2, and x3 + y3 + z3 − 29 is a polynomial of total degree 3.

Mathematicians have been interested for a long time in the problem of solving equations
of the form

P (x1, . . . , xn) = 0,

with P ∈ Z[x1, . . . , xn], seeking only integer solutions for x1, . . . , xn.

Diophantus of Alexandria, a Greek mathematician of the 3rd century, was one of the
first to investigate such equations. For this reason, seeking integer solutions of polynomials
in Z[x1, . . . , xn] is referred to as solving Diophantine equations .

This problem is not as simple as it looks. The equation

2x− 3y − 1 = 0

obviously has the solution x = 2, y = 1, and more generally x = −1 + 3a, y = −1 + 2a, for
any integer a ∈ Z.

The equation
x2 + y2 − z2 = 0

has the solution x = 3, y = 4, z = 5, since 32 + 42 = 9 + 16 = 25 = 52. More generally, the
reader should check that

x = t2 − 1, y = 2t, z = t2 + 1

is a solution for all t ∈ Z.

The equation
x3 + y3 + z3 − 29 = 0

has the solution x = 3, y = 1, z = 1.

What about the equation
x3 + y3 + z3 − 30 = 0?

11.1. DIOPHANTINE EQUATIONS; HILBERT’S TENTH PROBLEM 293

Amazingly, the only known integer solution is

(x, y, z) = (283059965, 2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck, following an approach
suggested by N. Elkies.

And what about solutions of the equation

x3 + y3 + z3 − 33 = 0?

Well, nobody knows whether this equation is solvable in integers!

In 1900, at the International Congress of Mathematicians held in Paris, the famous
mathematician David Hilbert presented a list of ten open mathematical problems. Soon
after, Hilbert published a list of 23 problems. The tenth problem is this:

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

Given as input a polynomial P ∈ Z[x1, . . . , xn] with integer coefficients, return YES or
NO, according to whether there exist integers a1, . . . , an ∈ Z so that P (a1, . . . , an) = 0; that
is, the Diophantine equation P (x1, . . . , xn) = 0 has a solution.

It is important to note that at the time Hilbert proposed his tenth problem, a rigorous
mathematical definition of the notion of algorithm did not exist. In fact, the machinery
needed to even define the notion of algorithm did not exist. It is only around 1930 that
precise definitions of the notion of computability due to Turing, Church, and Kleene, were
formulated, and soon after shown to be all equivalent.

So to be precise, the above statement of Hilbert’s tenth should say: find a RAM program
(or equivalently a Turing machine) that solves the following problem: ...

In 1970, the following somewhat surprising resolution of Hilbert’s tenth problem was
reached:

Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s thenth problem is undecidable; that is, there is no algorithm for solving Hilbert’s
tenth problem.

In 1962, Davis, Putnam and Robinson had shown that if a fact known as Julia Robinson
hypothesis could be proved, then Hilbert’s tenth problem would be undecidable. At the time,
the Julia Robinson hypothesis seemed implausible to many, so it was a surprise when in 1970
Matiyasevich found a set satisfying the Julia Robinson hypothesis, thus completing the proof
of the undecidability of Hilbert’s tenth problem. It is also a bit startling that Matiyasevich’
set involves the Fibonacci numbers.

A detailed account of the history of the proof of the undecidability of Hilbert’s tenth
problem can be found in Martin Davis’ classical paper Davis [6].

294 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Even though Hilbert’s tenth problem turned out to have a negative solution, the knowl-
edge gained in developing the methods to prove this result is very significant. What was
revealed is that polynomials have considerable expressive powers. This is what we discuss
in the next section.

11.2 Diophantine Sets and Listable Sets

We begin by showing that if we can prove that the version of Hilbert’s tenth problem with
solutions restricted to belong to N is undecidable, then Hilbert’s tenth problem (with solutions
in Z is undecidable).

Proposition 11.1. If we had an algorithm for solving Hilbert’s tenth problem (with solutions
in Z), then we would have an algorithm for solving Hilbert’s tenth problem with solutions
restricted to belong to N (that is, nonnegative integers).

Proof. The above statement is not at all obvious, although its proof is short with the help of
some number theory. Indeed, by a theorem of Lagrange (Lagrange’s four square theorem),
every natural number m can be represented as the sum of four squares,

m = a20 + a21 + a22 + a23, a0, a1, a2, a3 ∈ Z.

We reduce Hilbert’s tenth problem restricted to solutions in N to Hilbert’s tenth problem
(with solutions in Z). Given a Diophantine equation P (x1, . . . , xn) = 0, we can form the
polynomial

Q = P (u2
1 + v21 + y21 + z21 , . . . , u

2
n + v2n + y2n + z2n)

in the 4n variables ui, vi, yi, zi (1 ≤ i ≤ n) obtained by replacing xi by u2
i + v2i + y2i + z2i for

i = 1, . . . , n. If Q = 0 has a solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z,
then if we set ai = p2i + q2i + r2i + s2i , obviously P (a1, . . . , an) = 0 with ai ∈ N. Conversely, if
P (a1, . . . , an) = 0 with ai ∈ N, then by Lagrange’s theorem there exist some pi, qi, ri, si ∈ Z

(in fact N) such that ai = p2i + q2i + r2i + s2i for i = 1, . . . , n, and the equation Q = 0 has the
solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z. Therefore Q = 0 has a solution
(p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z iff P = 0 has a solution (a!, . . . , an) with
ai ∈ N. If we had an algorithm to decide whether Q has a solution with its components
in Z, then we would have an algorithm to decide whether P = 0 has a solution with its
components in N.

As consequence, the contrapositive of Proposition 11.1 shows that if the version of
Hilbert’s tenth problem restricted to solutions in N is undecidable, so is Hilbert’s original
problem (with solutions in Z).

In fact, the Davis-Putnam-Robinson-Matiyasevich theorem establishes the undecidability
of the version of Hilbert’s tenth problem restricted to solutions in N. From now on, we restrict
our attention to this version of Hilbert’s tenth problem.

11.2. DIOPHANTINE SETS AND LISTABLE SETS 295

A key idea is to use Diophantine equations with parameters, to define sets of numbers.

For example, consider the polynomial

P1(a, y, z) = (y + 2)(z + 2)− a.

For a ∈ N fixed, the equation (y + 2)(z + 2)− a = 0, equivalently

a = (y + 2)(z + 2),

has a solution with y, z ∈ N iff a is composite.

If we now consider the polynomial

P2(a, y, z) = y(2z + 3)− a,

for a ∈ N fixed, the equation y(2z + 3)− a = 0, equivalently

a = y(2z + 3),

has a solution with y, z ∈ N iff a is not a power of 2.

For a slightly more complicated example, consider the polynomial

P3(a, y) = 3y + 1− a2.

We leave it as an exercise to show that the natural numbers a that satisfy the equation
3y + 1− a2 = 0, equivalently

a2 = 3y + 1,

or (a− 1)(a+ 1) = 3y, are of the form a = 3k + 1 or a = 3k + 2, for any k ∈ N.

In the first case, if we let S1 be the set of composite natural numbers, then we can write

S1 = {a ∈ N | (∃y, z)((y + 2)(z + 2)− a = 0)},

where it is understood that the existentially quantified variables y, z take their values in N.

In the second case, if we let S2 be the set of natural numbers that are not powers of 2,
then we can write

S2 = {a ∈ N | (∃y, z)(y(2z + 3)− a = 0)}.

In the third case, if we let S3 be the set of natural numbers that are congruent to 1 or 2
modulo 3, then we can write

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

A more explicit Diophantine definition for S3 is

S3 = {a ∈ N | (∃y)((a− 3y − 1)(a− 3y − 2) = 0)}.

The natural generalization is as follows.

296 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Definition 11.2. A set S ⊆ N of natural numbers is Diophantine (or Diophantine definable)
if there is a polynomial P (a, x1, . . . , xn) ∈ Z[a, x1, . . . , xn], with n ≥ 01 such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)},

where it is understood that the existentially quantified variables x1, . . . , xn take their values
in N. More generally, a relation R ⊆ Nm is Diophantine (m ≥ 2) if there is a polynomial
P (a1, . . . , am, x1, . . . , xn) ∈ Z[a1, . . . , am, x1, . . . , xn], with n ≥ 0, such that

R = {(a1, . . . , am) ∈ Nm | (∃x1, . . . , xn)(P (a1, . . . , am, x1, . . . , xn) = 0)},

where it is understood that the existentially quantified variables x1, . . . , xn take their values
in N.

For example, the strict order relation a1 < a2 is defined as follows:

a1 < a2 iff (∃x)(a1 + 1 + x− a2 = 0),

and the divisibility relation a1 | a2 (a1 divides a2) is defined as follows:

a1 | a2 iff (∃x)(a1x− a2 = 0).

What about the ternary relation R ⊆ N3 given by

(a1, a2, a3) ∈ R if a1 | a2 and a1 < a3?

At first glance it is not obvious how to “convert” a conjunction of Diophantine definitions
into a single Diophantine definition, but we can do this using the following trick: given any
finite number of Diophantine equations in the variables x1, . . . , xn,

P1 = 0, P2 = 0, . . . , Pm = 0, (∗)

observe that (∗) has a solution (a1, . . . , an), which means that Pi(a1, . . . , an) = 0 for i =
1, . . . , m, iff the single equation

P 2
1 + P 2

2 + · · ·+ P 2
m = 0 (∗∗)

also has the solution (a1, . . . , an). This is because, since P 2
1 , P

2
2 , . . . , P

2
m are all nonnegative,

their sum is equal to zero iff they are all equal to zero, that is P 2
i = 0 for i = 1 . . . , m, which

is equivalent to Pi = 0 for i = 1 . . . , m.

Using this trick, we see that

(a1, a2, a3) ∈ R iff (∃u, v)((a1u− a2)
2 + (a1 + 1 + v − a3)

2 = 0).

We can also define the notion of Diophantine function.

1We have to allow n = 0. Otherwise singleton sets would not be Diophantine.

11.2. DIOPHANTINE SETS AND LISTABLE SETS 297

Definition 11.3. A function f : Nn → N is Diophantine iff its graph {(a0, a1, . . . , an) ⊆
Nn+1 | a0 = f(a1, . . . , an)} is Diophantine.

For example, the pairing function J and the projection functions K,L due to Cantor
introduced in Section 9.1 are Diophantine, since

z = J(x, y) iff (x+ y − 1)(x+ y) + 2x− 2z = 0

x = K(z) iff (∃y)((x+ y − 1)(x+ y) + 2x− 2z = 0)

y = L(z) iff (∃x)((x+ y − 1)(x+ y) + 2x− 2z = 0).

How extensive is the family of Diophantine sets? The remarkable fact proved by Davis-
Putnam-Robinson-Matiyasevich is that they coincide with the listable sets (the recursively
enumerable sets). This is a highly nontrivial result.

The easy direction is the following result.

Proposition 11.2. Every Diophantine set is listable (recursively enumerable).

Proof sketch. Suppose S is given as

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)},

Using the extended pairing function ⟨x1, . . . , xn⟩n of Section 9.1, we enumerate all n-tuples
(x1, . . . , xn) ∈ Nn, and during this process we compute P (a, x1, . . . , xn). If P (a, x1, . . . , xn)
is zero, then we output a, else we go on. This way, S is the range of a computable function,
and it is listable.

It is also easy to see that every Diophantine function is partial computable. The main
theorem of the theory of Diophantine sets is the following deep result.

Theorem 11.3. (Davis-Putnam-Robinson-Matiyasevich, 1970) Every listable subset of N is
Diophantine. Every partial computable function is Diophantine.

Theorem 11.3 is often referred to as the DPRM theorem. A complete proof of Theorem
11.3 is provided in Davis [6]. As noted by Davis, although the proof is certainly long and
nontrivial, it only uses elementary facts of number theory, nothing more sophisticated than
the Chinese remainder theorem. Nevetherless, the proof is a tour de force.

One of the most difficult steps is to show that the exponential function h(n, k) = nk

is Diophantine. This is done using the Pell equation. According to Martin Davis, the
proof given in Davis [6] uses a combination of ideas from Matiyasevich and Julia Robinson.
Matiyasevich’s proof used the Fibonacci numbers.

Using some results from the theory of computation it is now easy to deduce that Hilbert’s
tenth problem is undecidable. To achieve this, recall that there are listable sets that are not

298 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

computable. For example, it is shown in Lemma 10.11 that K = {x ∈ N | ϕx(x) is defined}
is listable but not computable. Since K is listable, by Theorem 11.3, it is defined by some
Diophantine equation

P (a, x1, . . . , xn) = 0,

which means that

K = {a ∈ N | (∃x1 . . . , xn)(P (a, x1, . . . , xn) = 0)}.

We have the following strong form of the undecidability of Hilbert’s tenth problem, in the
sense that it shows that Hilbert’s tenth problem is already undecidable for a fixed Diophan-
tine equation in one parameter.

Theorem 11.4. There is no algorithm which takes as input the polynomial P (a, x1, . . . , xn)
defining K and any natural number a ∈ N and decides whether

P (a, x1, . . . , xn) = 0.

Consequently, Hilbert’s tenth problem is undecidable.

Proof. If there was such an algorithm, then K would be decidable, a contradiction.

Any algorithm for solving Hilbert’s tenth problem could be used to decide whether or
not P (a, x1, . . . , xn) = 0, but we just showed that there is no such algorithm.

It is an open problem whether Hilbert’s tenth problem is undecidable if we allow rational
solutions (that is, x1, . . . , xn ∈ Q).

Alexandra Shlapentokh proved that various extensions of Hilbert’s tenth problem are
undecidable. These results deal with some algebraic number theory beyond the scope of
these notes. Incidentally, Alexandra was an undegraduate at Penn and she worked on a
logic project for me (finding a Gentzen system for a subset of temporal logic).

Having now settled once and for all the undecidability of Hilbert’s tenth problem, we
now briefly explore some interesting consequences of Theorem 11.3.

11.3 Some Applications of the DPRM Theorem

The first application of the DRPM theorem is a particularly striking way of defining the
listable subsets of N as the nonnegative ranges of polynomials with integer coefficients. This
result is due to Hilary Putnam.

Theorem 11.5. For every listable subset S of N, there is some polynomial Q(x, x1, . . . , xn)
with integer coefficients such that

S = {Q(a, b1, . . . , bn) | Q(a, b1, . . . , bn) ∈ N, a, b1, . . . , bn ∈ N}.

11.3. SOME APPLICATIONS OF THE DPRM THEOREM 299

Proof. By the DPRM theorem (Theorem 11.3), there is some polynomial P (x, x1, . . . , xn)
with integer coefficients such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)}.

Let Q(x, x1, . . . , xn) be given by

Q(x, x1, . . . , xn) = (x+ 1)(1− P 2(x, x1, . . . , xn))− 1.

We claim that Q satisfies the statement of the theorem. If a ∈ S, then P (a, b1, . . . , bn) = 0
for some b1, . . . , bn ∈ N, so

Q(a, b1, . . . , bn) = (a+ 1)(1− 0)− 1 = a.

This shows that all a ∈ S show up the the nonnegative range of Q. Conversely, assume that
Q(a, b1, . . . , bn) ≥ 0 for some a, b1, . . . , bn ∈ N. Then by definition of Q we must have

(a+ 1)(1− P 2(a, b1, . . . , bn))− 1 ≥ 0,

that is,
(a+ 1)(1− P 2(a, b1, . . . , bn)) ≥ 1,

and since a ∈ N, this implies that P 2(a, b1, . . . , bn) < 1, but since P is a polynomial with in-
teger coefficients and a, b1, . . . , bn ∈ N, the expression P 2(a, b1, . . . , bn) must be a nonnegative
integer, so we must have

P (a, b1, . . . , bn) = 0,

which shows that a ∈ S.

Remark: It should be noted that in general, the polynomials Q arising in Theorem 11.5
may take on negative integer values, and to obtain all listable sets, we must restrict ourself
to their nonnegative range.

As an example, the set S3 of natural numbers that are congruent to 1 or 2 modulo 3 is
given by

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

so by Theorem 11.5, S3 is the nonnegative range of the polynomial

Q(x, y) = (x+ 1)(1− (3y + 1− x2)2))− 1

= −(x+ 1)((3y − x2)2 + 2(3y − x2)))− 1

= (x+ 1)(x2 − 3y)(2− (x2 − 3y))− 1.

Observe that Q(x, y) takes on negative values. For example, Q(0, 0) = −1. Also, in order
for Q(x, y) to be nonnegative, (x2 − 3y)(2− (x2 − 3y)) must be positive, but this can only
happen if x2 − 3y = 1, that is, x2 = 3y + 1, which is the original equation defining S3.

300 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

There is no miracle. The nonnegativity of Q(x, x1, . . . , xn) must subsume the solvability
of the equation P (x, x1, . . . , xn) = 0.

A particularly interesting listable set is the set of primes. By Theorem 11.5, in theory,
the set of primes is the positive range of some polynomial with integer coefficients.

Remarkably, some explicit polynomials have been found. This is a nontrivial task. In
particular, the process involves showing that the exponential function is definable, which
was the stumbling block of the completion of the DPRM theorem for many years.

To give the reader an idea of how the proof begins, observe by the Bezout identity, if
p = s+ 1 and q = s!, then we can assert that p and q are relatively prime (gcd(p, q) = 1) as
the fact that the Diophantine equation

ap− bq = 1

is satisfied for some a, b ∈ N. Then, it is not hard to see that p ∈ N is prime iff the following
set of equations has a solution for a, b, s, r, q ∈ N:

p = s+ 1

p = r + 2

q = s!

ap− bq = 1.

The problem with the above is that the equation q = s! is not Diophantine. The next step
is to show that the factorial function is Diophantine, and this involves a lot of work. One
way to proceed is to show that the above system is equivalent to a system allowing the use
of the exponential function. The final step is to show that the exponential function can be
eliminated in favor of polynomial equations.

We refer the interested reader to the remarkable expository paper by Davis, Matiyasevich
and Robinson [7] for details. Here is a polynomial of total degree 25 in 26 variables (due to
J. Jones, D. Sato, H. Wada, D. Wiens) which produces the primes as its positive range:

(k + 2)
[
1− ([wz + h+ j − q]2 + [(gk + 2g + k + 1)(h+ j) + h− z]2

+ [16(k + 1)3(k + 2)(n + 1)2 + 1− f 2]2

+ [2n + p+ q + z − e]2 + [e3(e+ 2)(a+ 1)2 + 1− o2]2

+ [(a2 − 1)y2 + 1− x2]2 + [16r2y4(a2 − 1) + 1− u2]2

+ [((a + u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2

+ [(a2 − 1)l2 + 1−m2]2 + [ai+ k + 1− l − i]2 + [n+ l + v − y]2

+ [p + l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

+ [q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

+ [z + pl(a− p) + t(2ap− p2 − 1)− pm]2)
]
.

11.3. SOME APPLICATIONS OF THE DPRM THEOREM 301

Around 2004, Nachi Gupta, an undergraduate student at Penn, and I, tried to produce
the prime 2 as one of the values of the positive range of the above polynomial. It turns out
that this leads to values of the variables that are so large that we never succeeded!

Other interesting applications of the DPRM theorem are the re-statements of famous
open problems, such as the Riemann hypothesis, as the unsolvability of certain Diophantine
equations. One may also obtain a nice variant of Gödel’s incompleteness theorem. For all
this, see Davis, Matiyasevich and Robinson [7].

302 CHAPTER 11. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Chapter 12

The Post Correspondence Problem;
Applications to Undecidability
Results

12.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecidable problem that
turns out to be a very helpful tool for proving problems in logic or in formal language theory
to be undecidable.

Let Σ be an alphabet with at least two letters. An instance of the Post Correspondence
problem (for short, PCP) is given by two sequences U = (u1, . . . , um) and V = (v1, . . . , vm),
of strings ui, vi ∈ Σ∗.

The problem is to find whether there is a (finite) sequence (i1, . . . , ip), with ij ∈ {1, . . . , m}
for j = 1, . . . , p, so that

ui1ui2 · · ·uip = vi1vi2 · · · vip.

Equivalently, an instance of the PCP is a sequence of pairs

(u1, v1), . . . , (um, vm).

For example, consider the following problem:

(abab, ababaaa), (aaabbb, bb), (aab, baab), (ba, baa), (ab, ba), (aa, a).

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.

We are beginning to suspect that this is a hard problem. Indeed, it is undecidable!

303

304 CHAPTER 12. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Theorem 12.1. (Emil Post, 1946) The Post correspondence problem is undecidable, pro-
vided that the alphabet Σ has at least two symbols.

There are several ways of proving Theorem 12.1, but the strategy is more or less the
same: Reduce the halting problem to the PCP, by encoding sequences of ID’s as partial
solutions of the PCP.

For instance, this can be done for RAM programs. The first step is to show that every
RAM program can be simulated by a single register RAM program.

Then, the halting problem for RAM programs with one register is reduced to the PCP
(using the fact that only four kinds of instructions are needed). A proof along these lines
was given by Dana Scott.

12.2 Some Undecidability Results for CFG’s

Theorem 12.2. It is undecidable whether a context-free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for CFG’s. Given any instance U =
(u1, . . . , um) and V = (v1, . . . , vm) of the PCP, let c1, . . . , cm be m new symbols, and consider
the following languages:

LU = {ui1 · · ·uipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},
LV = {vi1 · · · vipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},

and LU,V = LU ∪ LV .

We can easily construct a CFG, GU,V , generating LU,V . The productions are:

S −→ SU

S −→ SV

SU −→ uiSUci
SU −→ uici
SV −→ viSV ci
SV −→ vici.

It is easily seen that the PCP for (U, V) has a solution iff LU ∩LV ̸= ∅ iff G is ambiguous.

12.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 305

Remark: As a corollary, we also obtain the following result: It is undecidable for arbitrary
context-free grammars G1 and G2 whether L(G1) ∩ L(G2) = ∅ (see also Theorem 12.4).

Recall that the computations of a Turing Machine, M , can be described in terms of
instantaneous descriptions, upav.

We can encode computations

ID0 ⊢ ID1 ⊢ · · · ⊢ IDn

halting in a proper ID, as the language, LM , consisting all of strings

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1,

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where k ≥ 0, w0 is a starting ID, wi ⊢ wi+1 for all i with 0 ≤ i < 2k+ 1 and w2k+1 is proper
halting ID in the first case, 0 ≤ i < 2k and w2k is proper halting ID in the second case.

The language LM turns out to be the intersection of two context-free languages L0
M and

L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where w2i ⊢ w2i+1 for all i ≥ 0, and w2k is a proper halting ID in the second case.

(2) The strings in L1
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or
w0#wR

1 #w2#wR
3 # · · ·#w2k−2#wR

2k−1#w2k,

where w2i+1 ⊢ w2i+2 for all i ≥ 0, w0 is a starting ID, and w2k+1 is a proper halting ID
in the first case.

Theorem 12.3. Given any Turing machine M , the languages L0
M and L1

M are context-free,
and LM = L0

M ∩ L1
M .

Proof. We can construct PDA’s accepting L0
M and L1

M . It is easily checked that LM =
L0
M ∩ L1

M .

As a corollary, we obtain the following undecidability result:

306 CHAPTER 12. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Theorem 12.4. It is undecidable for arbitrary context-free grammars G1 and G2 whether
L(G1) ∩ L(G2) = ∅.

Proof. We can reduce the problem of deciding whether a partial recursive function is unde-
fined everywhere to the above problem. By Rice’s theorem, the first problem is undecidable.

However, this problem is equivalent to deciding whether a Turing machine never halts in
a proper ID. By Theorem 12.3, the languages L0

M and L1
M are context-free. Thus, we can

construct context-free grammars G1 and G2 so that L0
M = L(G1) and L1

M = L(G2). Then,
M never halts in a proper ID iff LM = ∅ iff (by Theorem 12.3), LM = L(G1)∩L(G2) = ∅.

Given a Turing machineM , the language LM is defined over the alphabet∆ = Γ∪Q∪{#}.
The following fact is also useful to prove undecidability:

Theorem 12.5. Given any Turing machine M , the language ∆∗ − LM is context-free.

Proof. One can easily check that the conditions for not belonging to LM can be checked by
a PDA.

As a corollary, we obtain:

Theorem 12.6. Given any context-free grammar, G = (V,Σ, P, S), it is undecidable whether
L(G) = Σ∗.

Proof. We can reduce the problem of deciding whether a Turing machine never halts in a
proper ID to the above problem.

Indeed, given M , by Theorem 12.5, the language ∆∗ − LM is context-free. Thus, there
is a CFG, G, so that L(G) = ∆∗ − LM . However, M never halts in a proper ID iff LM = ∅
iff L(G) = ∆∗.

As a consequence, we also obtain the following:

Theorem 12.7. Given any two context-free grammar, G1 and G2, and any regular language,
R, the following facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ⊆ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ⊆ L(G2) is undecidable.

In contrast to (4), the property L(G1) ⊆ R is decidable!

12.3. MORE UNDECIDABLE PROPERTIES OF LANGUAGES 307

12.3 More Undecidable Properties of Languages;
Greibach’s Theorem

We conclude with a nice theorem of S. Greibach, which is a sort of version of Rice’s theorem
for families of languages.

Let L be a countable family of languages. We assume that there is a coding function
c : L→ N and that this function can be extended to code the regular languages (all alphabets
are subsets of some given countably infinite set).

We also assume that L is effectively closed under union, and concatenation with the
regular languages.

This means that given any two languages L1 and L2 in L, we have L1 ∪ L2 ∈ L, and
c(L1 ∪ L2) is given by a recursive function of c(L1) and c(L2), and that for every regular
language R, we have L1R ∈ L, RL1 ∈ L, and c(RL1) and c(L1R) are recursive functions of
c(R) and c(L1).

Given any language, L ⊆ Σ∗, and any string, w ∈ Σ∗, we define L/w by

L/w = {u ∈ Σ∗ | uw ∈ L}.

Theorem 12.8. (Greibach) Let L be a countable family of languages that is effectively closed
under union, and concatenation with the regular languages, and assume that the problem
L = Σ∗ is undecidable for L ∈ L and any given sufficiently large alphabet Σ. Let P be any
nontrivial property of languages that is true for the regular languages, and so that if P (L)
holds for any L ∈ L, then P (L/a) also holds for any letter a. Then, P is undecidable for L.

Proof. Since P is nontrivial for L, there is some L0 ∈ L so that P (L0) is false.

Let Σ be large enough, so that L0 ⊆ Σ∗, and the problem L = Σ∗ is undecidable for
L ∈ L.

We show that given any L ∈ L, with L ⊆ Σ∗, we can construct a language L1 ∈ L, so
that L = Σ∗ iff P (L1) holds. Thus, the problem L = Σ∗ for L ∈ L reduces to property P
for L, and since for Σ big enough, the first problem is undecidable, so is the second.

For any L ∈ L, with L ⊆ Σ∗, let

L1 = L0#Σ∗ ∪ Σ∗#L.

Since L is effectively closed under union and concatenation with the regular languages, we
have L1 ∈ L.

If L = Σ∗, then L1 = Σ∗#Σ∗, a regular language, and thus, P (L1) holds, since P holds
for the regular languages.

Conversely, we would like to prove that if L ̸= Σ∗, then P (L1) is false.

308 CHAPTER 12. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Since L ̸= Σ∗, there is some w /∈ L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by a trivial induction, if P (L1) holds,
then P (L0) also holds. However, P (L0) is false, so P (L1) must be false.

Thus, we proved that L = Σ∗ iff P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecidable whether a context-free
grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free language is
inherently ambiguous.

Chapter 13

Computational Complexity;
P and NP

13.1 The Class P
In the previous two chapters, we clarified what it means for a problem to be decidable
or undecidable. This chapter is heavily inspired by Lewis and Papadimitriou’s excellent
treatment [12].

In principle, if a problem is decidable, then there is an algorithm (i.e., a procedure that
halts for every input) that decides every instance of the problem.

However, from a practical point of view, knowing that a problem is decidable may be
useless, if the number of steps (time complexity) required by the algorithm is excessive, for
example, exponential in the size of the input, or worse.

For instance, consider the traveling salesman problem, which can be formulated as follows:

We have a set {c1, . . . , cn} of cities, and an n×n matrix D = (dij) of nonnegative integers,
the distance matrix , where dij denotes the distance between ci and cj , which means that
dii = 0 and dij = dji for all i ̸= j.

The problem is to find a shortest tour of the cities, that is, a permutation π of {1, . . . , n}
so that the cost

C(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible tours, i.e., n! permutations.

Actually, since the starting point is irrelevant, we need only consider (n− 1)! tours, but
this still grows very fast. For example, when n = 40, it turns out that 39! exceeds 1045, a
huge number.

309

310 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

Consider the 4× 4 symmetric matrix given by

D =

⎛

⎜⎜⎜⎜⎝

0 2 1 1

2 0 1 1

1 1 0 3

1 1 3 0

⎞

⎟⎟⎟⎟⎠
,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4

1 4 2 3

)

has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)
= d14 + d42 + d23 + d31
= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

Remark: The permutation π shown above is described in Cauchy’s two-line notation,

π =

(
1 2 3 4

1 4 2 3

)

,

where every element in the second row is the image of the element immediately above it in
the first row: thus

π(1) = 1, π(2) = 4, π(3) = 2, π(4) = 3.

Thus, to capture the essence of practically feasible algorithms, we must limit our com-
putational devices to run only for a number of steps that is bounded by a polynomial in the
length of the input.

We are led to the definition of polynomially bounded computational models.

Definition 13.1. A deterministic Turing machine M is said to be polynomially bounded if
there is a polynomial p(X) so that the following holds: For every input x ∈ Σ∗, there is no
ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),
where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is polynomially decidable if there is a polynomially bounded Turing
machine that accepts L. The family of all polynomially decidable languages is denoted by
P.

13.2. DIRECTED GRAPHS, PATHS 311

Remark: Even though Definition 13.1 is formulated for Turing machines, it can also be
formulated for other models, such as RAM programs.

The reason is that the conversion of a Turing machine into a RAM program (and vice
versa) produces a program (or a machine) whose size is polynomial in the original device.

The following proposition, although trivial, is useful:

Proposition 13.1. The class P is closed under complementation.

Of course, many languages do not belong to P. One way to obtain such languages is
to use a diagonal argument. But there are also many natural languages that are not in P,
although this may be very hard to prove for some of these languages.

Let us consider a few more problems in order to get a better feeling for the family P.

13.2 Directed Graphs, Paths

Recall that a directed graph, G, is a pair G = (V,E), where E ⊆ V × V . Every u ∈ V is
called a node (or vertex) and a pair (u, v) ∈ E is called an edge of G.

We will restrict ourselves to simple graphs , that is, graphs without edges of the form
(u, u); equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u ̸= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+ 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a path from u
to v. A closed path, or cycle, is a path from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 13.2. Given a graph G, an Eulerian cycle is a cycle in G that passes through
all the nodes (possibly more than once) and every edge of G exactly once. A Hamiltonian
cycle is a cycle that passes through all the nodes exactly once (note, some edges may not be
traversed at all).

Eulerian Cycle Problem: Given a graph G, is there an Eulerian cycle in G?

Hamiltonian Cycle Problem: Given a graph G, is there an Hamiltonian cycle in G?

312 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

13.3 Eulerian Cycles

The following graph is a directed graph version of the Königsberg bridge problem, solved by
Euler in 1736.

The nodes A,B,C,D correspond to four areas of land in Königsberg and the edges to
the seven bridges joining these areas of land.

B

A

C

D

Figure 13.1: A directed graph modeling the Königsberg bridge problem

The problem is to find a closed path that crosses every bridge exactly once and returns
to the starting point.

In fact, the problem is unsolvable, as shown by Euler, because some nodes do not have
the same number of incoming and outgoing edges (in the undirected version of the problem,
some nodes do not have an even degree.)

It may come as a surprise that the Eulerian Cycle Problem does have a polynomial time
algorithm, but that so far, not such algorithm is known for the Hamiltonian Cycle Problem.

The reason why the Eulerian Cycle Problem is decidable in polynomial time is the fol-
lowing theorem due to Euler:

Theorem 13.2. A graph G = (V,E) has an Eulerian cycle iff the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and outgoing edges.

Proving that properties (1) and (2) hold if G has an Eulerian cycle is fairly easy. The
converse is harder, but not that bad (try!).

Theorem 13.2 shows that it is necessary to check whether a graph is strongly connected.
This can be done by computing the transitive closure of E, which can be done in polynomial
time (in fact, O(n3)).

13.4. HAMILTONIAN CYCLES 313

Checking property (2) can clearly be done in polynomial time. Thus, the Eulerian cycle
problem is in P.

Unfortunately, no theorem analogous to Theorem 13.2 is know for Hamiltonian cycles.

13.4 Hamiltonian Cycles

A game invented by Sir William Hamilton in 1859 uses a regular solid dodecahedron whose
twenty vertices are labeled with the names of famous cities.

The player is challenged to “travel around the world” by finding a closed cycle along
the edges of the dodecahedron which passes through every city exactly once (this is the
undirected version of the Hamiltonian cycle problem).

In graphical terms, assuming an orientation of the edges between cities, the graph D
shown in Figure 13.2 is a plane projection of a regular dodecahedron and we want to know
if there is a Hamiltonian cycle in this directed graph.

Figure 13.2: A tour “around the world.”

Finding a Hamiltonian cycle in this graph does not appear to be so easy!

A solution is shown in Figure 13.3 below:

314 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

v18
v17

v11
v12 v13

v10
v6 v5

v4
v14

v19
v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 13.3: A Hamiltonian cycle in D.

A solution!

Remark: We talked about problems being decidable in polynomial time. Obviously, this is
equivalent to deciding some property of a certain class of objects, for example, finite graphs.

Our framework requires that we first encode these classes of objects as strings (or num-
bers), since P consists of languages.

Thus, when we say that a property is decidable in polynomial time, we are really talking
about the encoding of this property as a language. Thus, we have to be careful about these
encodings, but it is rare that encodings cause problems.

13.5 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions in conjunctive normal form (CNF).

The syntax has to do with the legal form of propositions in CNF. Such propositions are
interpreted as truth functions, by assigning truth values to their variables.

We begin by defining propositions in CNF. Such propositions are constructed from a
countable set, PV, of propositional (or boolean) variables, say

PV = {x1, x2, . . . , },

13.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 315

using the connectives ∧ (and), ∨ (or) and ¬ (negation).

We define a literal (or atomic proposition), L, as L = x or L = ¬x, also denoted by x,
where x ∈ PV.

A clause, C, is a disjunction of pairwise distinct literals,

C = (L1 ∨ L2 ∨ · · · ∨ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.

We also have a special clause, the empty clause, denoted ⊥ or (or {}). It corresponds
to the truth value false.

A proposition in CNF, or boolean formula, P , is a conjunction of pairwise distinct clauses

P = C1 ∧ C2 ∧ · · · ∧ Cn.

Thus, a boolean formula may also be viewed as a nonempty set

P = {C1, . . . , Cn},

but this time, the comma is interpreted as conjunction. We also allow the proposition
⊥, and sometimes the proposition ⊤ (corresponding to the truth value true).

For example, here is a boolean formula:

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}.

In order to interpret boolean formulae, we use truth assignments.

We let BOOL = {F,T}, the set of truth values, where F stands for false and T stands
for true.

A truth assignment (or valuation), v, is any function v : PV→ BOOL.

For example, the function vF : PV→ BOOL given by

vF (xi) = F for all i ≥ 1

is a truth assigmnent, and so is the function vT : PV→ BOOL given by

vT (xi) = T for all i ≥ 1.

316 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

The function v : PV→ BOOL given by

v(x1) = T

v(x2) = F

v(x3) = T

v(xi) = T for all i ≥ 4

is also a truth assignment.

Given a truth assignment v : PV → BOOL, we define the truth value v̂(X) of a literal,
clause, and boolean formula, X , using the following recursive definition:

(1) v̂(⊥) = F, v̂(⊤) = T.

(2) v̂(x) = v(x), if x ∈ PV.

(3) v̂(x) = v(x), if x ∈ PV, where v(x) = F if v(x) = T and v(x) = T if v(x) = F.

(4) v̂(C) = F if C is a clause and iff v̂(Li) = F for all literals Li in C, otherwise T.

(5) v̂(P) = T if P is a boolean formula and iff v̂(Cj) = T for all clauses Cj in P , otherwise
F.

Since a boolean formula P only contains a finite number of variables, say {xi1 , . . . , xin},
one should expect that its truth value v̂(P) depends only on the truth values assigned by
the truth assignment v to the variables in the set {xi1 , . . . , xin}, and this is indeed the case.
The following proposition is easily shown by induction on the depth of P (viewed as a tree).

Proposition 13.3. Let P be a boolean formula containing the set of variables {xi1 , . . . , xin}.
If v1 : PV→ BOOL and v2 : PV→ BOOL are any truth assignments agreeing on the set of
variables {xi1 , . . . , xin}, which means that

v1(xij) = v2(xij) for j = 1, . . . , n,

then v̂1(P) = v̂2(P).

In view of Proposition 13.3, given any boolean formula P , we only need to specify the
values of a truth assignment v for the variables occurring on P . For example, given the
boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},

we only need to specify v(x1), v(x2), v(x3). Thus there are 23 = 8 distinct truth assignments:

F,F,F T,F,F

F,F,T T,F,T

F,T,F T,T,F

F,T,T T,T,T.

13.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 317

In general, there are 2n distinct truth assignments to n distinct variables.

Here is an example showing the evaluation of the truth value v̂(P) for the boolean formula

P = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) ∧ (x1 ∨ x2 ∨ x3)

= {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},

and the truth assignment

v(x1) = T, v(x2) = F, v(x3) = F.

For the literals, we have

v̂(x1) = T, v̂(x2) = F v̂(x3) = F, v̂(x1) = F, v̂(x2) = T v̂(x3) = T,

for the clauses

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = T ∨ F ∨ F = T,

v̂(x1 ∨ x2) = v̂(x1) ∨ v̂(x2) = F ∨ F = F,

v̂(x2 ∨ x3) = v̂(x2) ∨ v̂(x3) = T ∨ F = T,

v̂(x3 ∨ x1) = v̂(x3) ∨ v̂(x1) = T ∨T = T,

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = F ∨T ∨T = T,

and for the conjunction of the clauses,

v̂(P) = v̂(x1 ∨ x2 ∨ x3) ∧ v̂(x1 ∨ x2) ∧ v̂(x2 ∨ x3) ∧ v̂(x3 ∨ x1) ∧ v̂(x1 ∨ x2 ∨ x3)

= T ∧ F ∧T ∧T ∧T = F.

Therefore, v̂(P) = F.

Definition 13.3. We say that a truth assignment v satisfies a boolean formula P , if v̂(P) =
T. In this case, we also write

v |= P.

A boolean formula P is satisfiable if v |= P for some truth assignment v, otherwise, it is
unsatisfiable. A boolean formula P is valid (or a tautology) if v |= P for all truth assignments
v, in which case we write

|= P.

One should check that the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}

is unsatisfiable.

318 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

One may think that it is easy to test whether a proposition is satisfiable or not. Try it,
it is not that easy!

As a matter of fact, the satisfiability problem, testing whether a boolean formula is
satisfiable, also denoted SAT, is not known to be in P.

Moreover, it is an NP-complete problem. Most people believe that the satisfiability
problem is not in P, but a proof still eludes us!

Before we explain what is the class NP, let us remark that the satisfiability problem for
clauses containing at most two literals (2-satisfiability , or 2-SAT) is solvable in polynomial
time.

The first step consists in observing that if every clause in P contains at most two literals,
then we can reduce the problem to testing satisfiability when every clause has exactly two
literals.

Indeed, if P contains some clause (x), then any valuation satisfying P must make x true.
Then, all clauses containing x will be true, and we can delete them, whereas we can delete
x from every clause containing it, since x is false.

Similarly, if P contains some clause (x), then any valuation satisfying P must make x
false.

Thus, in a finite number of steps, either we get the empty clause, and P is unsatisfiable,
or we get a set of clauses with exactly two literals.

The number of steps is clearly linear in the number of literals in P .

For the second step, we construct a directed graph from P . The nodes of this graph are
the literals in P , and edges are defined as follows:

(1) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

(2) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x

(3) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

Then, it can be shown that P is unsatisfiable iff there is some x so that there is a cycle
containing x and x.

As a consequence, 2-satisfiability is in P.

13.6 The Class NP, Polynomial Reducibility,
NP-Completeness

One will observe that the hard part in trying to solve either the Hamiltonian cycle problem
or the satisfiability problem, SAT, is to find a solution, but that checking that a candidate
solution is indeed a solution can be done easily in polynomial time.

13.6. THE CLASS NP, NP-COMPLETENESS 319

This is the essence of problems that can be solved nondetermistically in polynomial time:
A solution can be guessed and then checked in polynomial time.

Definition 13.4. A nondeterministic Turing machine M is said to be polynomially bounded
if there is a polynomial p(X) so that the following holds: For every input x ∈ Σ∗, there is
no ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is nondeterministic polynomially decidable if there is a polynomially
bounded nondeterministic Turing machine that accepts L. The family of all nondeterministic
polynomially decidable languages is denoted by NP.

Of course, we have the inclusion
P ⊆ NP,

but whether or not we have equality is one of the most famous open problems of theoretical
computer science and mathematics.

In fact, the question P ̸= NP is one of the open problems listed by the CLAY Institute,
together with the Poincaré conjecture and the Riemann hypothesis, among other problems,
and for which one million dollar is offered as a reward!

It is easy to check that SAT is in NP, and so is the Hamiltonian cycle problem.

As we saw in recursion theory, where we introduced the notion of many-one reducibility,
in order to compare the “degree of difficulty” of problems, it is useful to introduce the notion
of reducibility and the notion of a complete set.

Definition 13.5. A function f : Σ∗ → Σ∗ is polynomial-time computable if there is a polyno-
mial p(X) so that the following holds: There is a deterministic Turing machine M computing
it so that for every input x ∈ Σ∗, there is no ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ⊆ Σ∗, a polynomial-time reduction from L1 to L2 is a
polynomial-time computable function f : Σ∗ → Σ∗ so that for all u ∈ Σ∗,

u ∈ L1 iff f(u) ∈ L2.

The notation L1 ≤P L2 is often used to denote the fact that there is polynomial-time
reduction from L1 to L2. Sometimes, the notation L1 ≤P

m L2 is used to stress that this is a
many-to-one reduction (that is, f is not necessarily injective). This type of reduction is also
known as a Karp reduction.

320 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

A polynomial reduction f : Σ∗ → Σ∗ from a language L1 to a language L2 is a method
that converts in polynomial time every string u ∈ Σ∗ (viewed as an instance of a problem
A encoded by language L1) to a string f(u) ∈ Σ∗ (viewed as an instance of a problem B
encoded by language L2) in such way that membership in L1, that is u ∈ L1, is equivalent
to membership in L2, that is f(u) ∈ L2.

As a consequence, if we have a procedure to decide membership in L2 (to solve every
instance of problem B), then we have a procedure for solving membership in L1 (to solve every
instance of problem A), since given any u ∈ L1, we can first apply f to u to produce f(u),
and then apply our procedure to decide whether f(u) ∈ L2; the defining property of f says
that this is equivalent to deciding whether u ∈ L1. Furthermore, if the procedure for deciding
membership in L2 runs deterministically in polynomial time, since f runs deterministically
in polynomial time, so does the procedure for deciding membership in L1, and similarly if
the procedure for deciding membership in L2 runs non deterministically in polynomial time.

For the above reason, we see that membership in L2 can be considered at least as hard
as membership in L1, since any method for deciding membership in L2 yields a method
for deciding membership in L1. Thus, if we view L1 an encoding a problem A and L2 as
encoding a problem B, then B is at least as hard as A.

The following version of Proposition 10.16 for polynomial-time reducibility is easy to
prove.

Proposition 13.4. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤P B and B ≤P C, then A ≤P C.

(2) If A ≤P B then A ≤P B.

(3) If A ≤P B and B ∈ NP, then A ∈ NP.

(4) If A ≤P B and A /∈ NP, then B /∈ NP.

(5) If A ≤P B and B ∈ P, then A ∈ P.

(6) If A ≤P B and A /∈ P, then B /∈ P.

Intuitively, we see that if L1 is a hard problem and L1 can be reduced to L2 in polynomial
time, then L2 is also a hard problem.

For example, one can construct a polynomial reduction from the Hamiltonian cycle prob-
lem to the satisfiability problem SAT. Given a directed graph G = (V,E) with n nodes, say
V = {1, . . . , n}, we need to construct in polynomial time a set F = τ(G) of clauses such that
G has a Hamiltonian cycle iff τ(G) is satisfiable. We need to describe a permutation of the
nodes that forms a Hamiltonian cycle. For this we introduce n2 boolean variables xij , with
the intended interpretation that xij is true iff node i is the jth node in a Hamiltonian cycle.

To express that at least one node must appear as the jth node in a Hamiltonian cycle,
we have the n clauses

(x1j ∨ x2j ∨ · · · ∨ xnj), 1 ≤ j ≤ n. (1)

13.6. THE CLASS NP, NP-COMPLETENESS 321

The conjunction of these clauses is satisfied iff for every j = 1, . . . , n there is some node i
which is the jth node in the cycle.

To express that only one node appears in the cycle, we have the clauses

(xij ∨ xkj), 1 ≤ i, j, k ≤ n, i ̸= k. (2)

Since (xij ∨ xkj) is equivalent to (xij ∧ xkj), each such clause asserts that no two distinct
nodes may appear as the jth node in the cycle. Let S1 be the set of all clauses of type (1)
or (2).

The conjunction of the clauses in S1 assert that exactly one node appear at the jth node
in the Hamiltonian cycle. We still need to assert that each node i appears exactly once in
the cycle. For this, we have the clauses

(xi1 ∨ xi2 ∨ · · · ∨ xin), 1 ≤ i ≤ n, (3)

and
(xij ∨ xik), 1 ≤ i, j, k ≤ n, j ̸= k. (4)

Let S2 be the set of all clauses of type (3) or (4).

The conjunction of the clauses in S1 ∪ S2 asserts that the xij represents a bijection of
{1, 2, . . . , n}, in the sense that for any truth assigment v satisfying all these clauses, i ,→ j
iff v(xij) = T defines a bijection of {1, 2, . . . , n}.

It remains to assert that this permutation of the nodes is a Hamiltonian cycle, which
means that if xij and xkj+1 are both true then there there must be an edge (i, k). By
contrapositive, this equivalent to saying that if (i, k) is not an edge of G, then (xij ∧ xkj+1)
is true, which as a clause is equivalent to (xij ∨ xkj+1).

Therefore, for all (i, k) such that (i, k) /∈ E (with i, k ∈ {1, 2, . . . , n}), we have the clauses

(xij ∨ xk j+1 (mod n)), j = 1, . . . , n. (5)

Let S3 be the set of clauses of type (5). The conjunction of all the clauses in S1 ∪ S2 ∪ S3 is
the boolean formula F = τ(G).

We leave it as an exercise to prove that G has a Hamiltonian cycle iff F = τ(G) is
satisfiable.

It is also possible to construct a reduction of the satisfiability problem to the Hamiltonian
cycle problem but this is harder. It is easier to construct this reduction in two steps by
introducing an intermediate problem, the exact cover problem, and to provide a polynomial
reduction from the satisfiability problem to the exact cover problem, and a polynomial
reduction from the exact cover problem to the Hamiltonian cycle problem. These reductions
are carried out in Section 14.2.

322 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

The above construction of a set F = τ(G) of clauses from a graph G asserting that G
has a Hamiltonian cycle iff F is satisfiable illustrates the expressive power of propositional
logic.

Remarkably, every language in NP can be reduced to SAT. Thus, SAT is a hardest
problem in NP (Since it is in NP).

Definition 13.6. A language L is NP-hard if there is a polynomial reduction from every
language L1 ∈ NP to L. A language L is NP-complete if L ∈ NP and L is NP-hard.

Thus, an NP-hard language is as hard to decide as any language in NP.

Remark: There are NP-hard languages that do not belong to NP. Such problems are
really hard. Two standard examples are K0 and K, which encode the halting problem. Since
K0 and K are not computable, they can’t be in NP. Furthermore, since every language
L in NP is accepted nondeterminsticaly in polynomial time p(X), for some polynomial
p(X), for every input w we can try all computations of length at most p(|w|) (there can
be exponentially many, but only a finite number), so every language in NP is computable.
Finally, it is shown in Theorem 10.17 that K0 and K are complete with respect to many-one
reducibility, so in particular they are NP-hard. An example of a computable NP-hard
language not in NP will be described after Theorem 13.6.

The importance of NP-complete problems stems from the following theorem which fol-
lows immediately from Proposition 13.4.

Theorem 13.5. Let L be an NP-complete language. Then, P = NP iff L ∈ P.

There are analogies between P and the class of computable sets, and NP and the class
of listable sets, but there are also important differences. One major difference is that the
family of computable sets is properly contained in the family of listable sets, but it is an open
problem whether P is properly contained in NP. We also know that a set L is computable
iff both L and L are listable, but it is also an open problem whether if both L ∈ NP and
L ∈ NP, then L ∈ P. This suggests defining

coNP = {L | L ∈ NP},
that is, coNP consists of all complements of languages in NP. Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP,

and thus
P ⊆ NP ∩ coNP,

but nobody knows whether the inclusion is proper. There are problems in NP ∩ coNP not
known to be in P; see Section 14.3. It is unknown whether NP is closed under complemen-
tation, that is, nobody knows whether NP = coNP. This is considered unlikely. We will
come back to coNP in Section 14.3.

Next, we prove a famous theorem of Steve Cook and Leonid Levin (proved independently):
SAT is NP-complete.

13.7. THE COOK-LEVIN THEOREM 323

13.7 The Cook–Levin Theorem: SAT is NP-Complete

Instead of showing directly that SAT is NP-complete, which is rather complicated, we
proceed in two steps, as suggested by Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H. Wang (1961) by Harry Lewis, and
we prove that it is NP-complete.

(2) We show that the tiling problem can be reduced to SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns, for short, tiles. Copies of these
tile patterns may be used to tile a rectangle of predetermined size 2s× s (s > 1). However,
there are constraints on the way that these tiles may be adjacent horizontally and vertically.

The horizontal constraints are given by a relation H ⊆ T ×T , and the vertical constraints
are given by a relation V ⊆ T × T .

Thus, a tiling system is a triple T = (T , V,H) with V and H as above.

The bottom row of the rectangle of tiles is specified before the tiling process begins.

For example, consider the following tile patterns:

a

c ,

a

c

a

, c

a

,

d

e e ,

e

e

b

c d ,

b

c d

b

,

c

d e

c

,

d

e e

d

,

e

e

e

c

d e , c d

b

, d e

c

, e e

d

, e

e

The horizontal and the vertical constraints are that the letters on adjacent edges match
(blank edges do not match).

For s = 3, given the bottom row

a

c

b

c d

c

d e

d

e e

d

e e

e

e

324 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

we have the tiling shown below:

c

a

c d

b

d e

c

e e

d

e e

d

e

e

a

c

a

b

c d

b

c

d e

c

d

e e

d

d

e e

d

e

e

e

a

c

b

c d

c

d e

d

e e

d

e e

e

e

Formally, the problem is then as follows:

The Bounded Tiling Problem

Given any tiling system (T , V,H), any integer s > 1, and any initial row of tiles σ0 (of
length 2s)

σ0 : {1, 2, . . . , s, s+ 1, . . . , 2s}→ T ,

find a 2s× s-tiling σ extending σ0, i.e., a function

σ : {1, 2, . . . , s, s+ 1, . . . , 2s}× {1, . . . , s}→ T

so that

(1) σ(m, 1) = σ0(m), for all m with 1 ≤ m ≤ 2s.

(2) (σ(m,n), σ(m+ 1, n)) ∈ H , for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s.

(3) (σ(m,n), σ(m,n+ 1)) ∈ V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1.

Formally, an instance of the tiling problem is a triple ((T , V,H), ŝ, σ0), where (T , V,H)
is a tiling system, ŝ is the string representation of the number s ≥ 2, in binary and σ0 is an
initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its binary representation is ŝ =
10000000001. The length of ŝ is log2 s+ 1.

Recall that the input must be a string. This is why the number s is represented by a
string in binary.

13.7. THE COOK-LEVIN THEOREM 325

If we only included a single tile σ0 in position (s + 1, 1), then the length of the input
((T , V,H), ŝ, σ0) would be log2 s + C + 2 for some constant C corresponding to the length
of the string encoding (T , V,H).

However, the rectangular grid has size 2s2, which is exponential in the length log2 s+C+2
of the input ((T , V,H), ŝ, σ0). Thus, it is impossible to check in polynomial time that a
proposed solution is a tiling.

However, if we include in the input the bottom row σ0 of length 2s, then the size of the
grid is indeed polynomial in the size of the input.

Theorem 13.6. The tiling problem defined earlier is NP-complete.

Proof. Let L ⊆ Σ∗ be any language in NP and let u be any string in Σ∗. Assume that L is
accepted in polynomial time bounded by p(|u|).

We show how to construct an instance of the tiling problem, ((T , V,H)L, ŝ, σ0), where
s = p(|u|)+2, and where the bottom row encodes the starting ID, so that u ∈ L iff the tiling
problem ((T , V,H)L, ŝ, σ0) has a solution.

First, note that the problem is indeed in NP, since we have to guess a rectangle of size
2s2, and that checking that a tiling is legal can indeed be done in O(s2), where s is bounded
by the the size of the input ((T , V,H), ŝ, σ0), since the input contains the bottom row of 2s
symbols (this is the reason for including the bottom row of 2s tiles in the input!).

The idea behind the definition of the tiles is that, in a solution of the tiling problem, the
labels on the horizontal edges between two adjacent rows represent a legal ID, upav.

In a given row, the labels on vertical edges of adjacent tiles keep track of the change of
state and direction.

Let Γ be the tape alphabet of the TM, M . As before, we assume that M signals that it
accepts u by halting with the output 1 (true).

From M , we create the following tiles:

(1) For every a ∈ Γ, tiles

a

a

(2) For every a ∈ Γ, the bottom row uses tiles

a

,

q0, a

where q0 is the start state.

326 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

(3) For every instruction (p, a, b, R, q) ∈ δ, for every c ∈ Γ, tiles

b

q, R

p, a

,

q, c

q, R

c

(4) For every instruction (p, a, b, L, q) ∈ δ, for every c ∈ Γ, tiles

q, c

q, L

c

,

b

q, L

p, a

(5) For every halting state, p, tiles

p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s × s rectangle iff M accepts u. Since
s = p(|u|) + 2 and the machine runs for at most p(|u|) steps, the 2s × s rectangle can be
tiled iff u ∈ L.

The vertical and the horizontal constraints are that adjacent edges have the same label
(or no label).

If u = u1 · · ·uk, the initial bottom row σ0, of length 2s, is:

B

· · ·
q0, u1

· · ·
uk

· · ·
B

where the tile labeled q0, u1 is in position s+ 1.

The example below illustrates the construction:

13.7. THE COOK-LEVIN THEOREM 327

B

B

. . .

B

f, R

q, c

f, 1

f, R

1

. . .

B

B

B

B

. . .

q, c

q, L

c

1

q, L

p, a

. . .

B

B

B

B

. . .

c

p, R

r, b

p, a

p, R

a

. . .

B

B

We claim that u = u1 · · ·uk is accepted by M iff the tiling problem just constructed has
a solution.

The upper horizontal edge of the first (bottom) row of tiles represents the starting con-
figuation Bsq0uBs−|u|. By induction, we see that after i (i ≤ p(|u|) = s− 2) steps the upper
horizontal edge of the (i + 1)th row of tiles represents the current ID upav reached by the
Turing machine. Since the machine runs for at most p(|u|) steps and since s = p(|u|) + 2,
when the computation stops, at most the lowest p(|u|) + 1 = s − 1 rows of the the 2s × s
rectangle have been tiled. Assume the machine M stops after r ≤ s − 2 steps. Then the
lowest r+1 rows have been tiled, and since no further instruction can be executed (since the
machine entered a halting state), the remaining s− r − 1 rows can be filled iff tiles of type
(5) can be used iff the machine stopped in an ID containing a pair p 1 where p is a halting
state. Therefore, the machine M accepts u iff the 2s× s rectangle can be tiled.

Remarks.

(1) The problem becomes harder if we only specify a single tile σ0 as input, instead of
a row of length 2s. If s is specified in binary (or any other base, but not in tally
notation), then the 2s2 grid has size exponential in the length log2 s + C + 2 of the
input ((T , V,H), ŝ, σ0), and this tiling problem is actually NEXP-complete! The class
NEXP is the family of languages that can be accepted by a nondeterministic Turing
machine that runs in time bounded by 2p(|x|), for every x, where p is a polynomial;
see the remark after Definition 14.4. By the time hierarchy theorem (Cook, Seiferas,
Fischer, Meyer, Zak), it is known that NP is properly contained in NEXP; see Pa-
padimitriou [15] (Chapters 7 and 20) and Arora and Barak [2] (Chapter 3, Section 3.2).
Then the tiling problem with a single tile as input is a computable NP-hard problem
not in NP.

(2) If we relax the finiteness condition and require that the entire upper half-plane be tiled,
i.e., for every s > 1, there is a solution to the 2s× s-tiling problem, then the problem
is undecidable.

328 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

In 1972, Richard Karp published a list of 21 NP-complete problems.

We finally prove the Cook-Levin theorem.

Theorem 13.7. (Cook, 1971, Levin, 1973) The satisfiability problem SAT is NP-complete.

Proof. We reduce the tiling problem to SAT. Given a tiling problem, ((T , V,H), ŝ, σ0), we
introduce boolean variables

xmnt,

for all m with 1 ≤ m ≤ 2s, all n with 1 ≤ n ≤ s, and all tiles t ∈ T .

The intuition is that xmnt = T iff tile t occurs in some tiling σ so that σ(m,n) = t.

We define the following clauses:

(1) For all m,n in the correct range, as above,

(xmnt1 ∨ xmnt2 ∨ · · · ∨ xmntp),

for all p tiles in T .

This clause states that every position in σ is tiled.

(2) For any two distinct tiles t ̸= t′ ∈ T , for all m,n in the correct range, as above,

(xmnt ∨ xmnt′).

This clause states that a position may not be occupied by more than one tile.

(3) For every pair of tiles (t, t′) ∈ T × T −H , for all m with 1 ≤ m ≤ 2s− 1, and all n,
with 1 ≤ n ≤ s,

(xmnt ∨ xm+1nt′).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t′) ∈ T × T − V , for all m with 1 ≤ m ≤ 2s, and all n, with
1 ≤ n ≤ s− 1,

(xmnt ∨ xmn+1 t′).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1 ≤ m ≤ 2s,
(xm1σ0(m)).

This clause states that the bottom row is correctly tiled with σ0.

13.7. THE COOK-LEVIN THEOREM 329

It is easily checked that the tiling problem has a solution iff the conjunction of the clauses
just defined is satisfiable. Thus, SAT is NP-complete.

We sharpen Theorem 13.7 to prove that 3-SAT is also NP-complete. This is the satisfi-
ability problem for clauses containing at most three literals.

We know that we can’t go further and retain
NP-completeteness, since 2-SAT is in P.

Theorem 13.8. (Cook, 1971) The satisfiability problem 3-SAT is NP-complete.

Proof. We have to break “long clauses”

C = (L1 ∨ · · · ∨ Lk),

i.e., clauses containing k ≥ 4 literals, into clauses with at most three literals, in such a
way that satisfiability is preserved.

For example, consider the following clause with k = 6 literals:

C = (L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6).

We create 3 new boolean variables y1, y2, y3, and the 4 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), (y3 ∨ L5 ∨ L6).

Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable but C is not. If so, in any truth assigment v, v(Li) = F,
for i = 1, 2, . . . , 6. To satisfy the first clause, we must have v(y1) = T., Then to satisfy the
second clause, we must have v(y2) = T, and similarly satisfy the third clause, we must have
v(y3) = T. However, since v(L5) = F and v(L6) = F, the only way to satisfy the fourth
clause is to have v(y3) = F, contradicting that v(y3) = T. Thus, C is indeed satisfiable.

Let us now assume that C is satisfiable. This means that there is a smallest index i such
that Li is satisfied.

Say i = 1, so v(L1) = T. Then if we let v(y1) = v(y2) = v(y3) = F, we see that C ′ is
satisfied.

Say i = 2, so v(L1) = F and v(L2) = T. Again if we let v(y1) = v(y2) = v(y3) = F, we
see that C ′ is satisfied.

Say i = 3, so v(L1) = F, v(L2) = F, and v(L3) = T. If we let v(y1) = T and
v(y2) = v(y3) = F, we see that C ′ is satisfied.

Say i = 4, so v(L1) = F, v(L2) = F, v(L3) = F, and v(L4) = T. If we let v(y1) = T,
v(y2) = T and v(y3) = F, we see that C ′ is satisfied.

330 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

Say i = 5, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, and v(L5) = T. If we let
v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Say i = 6, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, v(L5) = F, and v(L6) = T.
Again, if we let v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Therefore if C is satisfied, then C ′ is satisfied in all cases.

In general, for every long clause, create k − 3 new boolean variables y1, . . . yk−3, and the
k − 2 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), · · · ,
(yk−4 ∨ Lk−2 ∨ yk−3), (yk−3 ∨ Lk−1 ∨ Lk).

Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable, but that C is not. Then, for every truth assignment v, we
have v(Li) = F, for i = 1, . . . , k.

However, C ′ is satisfied by some v, and the only way this can happen is that v(y1) = T,
to satisfy the first clause. Then, v(y1) = F, and we must have v(y2) = T, to satisfy the
second clause.

By induction, we must have v(yk−3) = T, to satisfy the next to the last clause. However,
the last clause is now false, a contradiction.

Thus, if C ′ is satisfiable, then so is C.

Conversely, assume that C is satisfiable. If so, there is some truth assignment, v, so that
v(C) = T, and thus, there is a smallest index i, with 1 ≤ i ≤ k, so that v(Li) = T (and so,
v(Lj) = F for all j < i).

Let v′ be the assignment extending v defined so that

v′(yj) = F if max{1, i− 1} ≤ j ≤ k − 3,

and v′(yj) = T, otherwise.

It is easily checked that v′(C ′) = T.

Another version of 3-SAT can be considered, in which every clause has exactly three
literals. We will call this the problem exact 3-SAT.

Theorem 13.9. (Cook, 1971) The satisfiability problem for exact 3-SAT is NP-complete.

Proof. A clause of the form (L) is satisfiable iff the following four clauses are satisfiable:

(L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v).

13.7. THE COOK-LEVIN THEOREM 331

A clause of the form (L1 ∨ L2) is satisfiable iff the following two clauses are satisfiable:

(L1 ∨ L2 ∨ u), (L1 ∨ L2 ∨ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We now make some remarks on the conversion of propositions to CNF.

Recall that the set of propositions (over the connectives ∨, ∧, and ¬) is defined inductively
as follows:

(1) Every propositional letter, x ∈ PV, is a proposition (an atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A ∨B) is a proposition.

(4) If A and B are propositions, then (A ∧B) is a proposition.

Two propositions A and B are equivalent , denoted A ≡ B, if

v |= A iff v |= B

for all truth assignments, v.

It is easy to show that A ≡ B iff the proposition

(¬A ∨ B) ∧ (¬B ∨ A)

is valid.

Every proposition, A, is equivalent to a proposition, A′, in CNF.

There are several ways of proving this fact. One method is algebraic, and consists in
using the algebraic laws of boolean algebra.

First, one may convert a proposition to negation normal form, or nnf . A proposition is
in nnf if occurrences of ¬ only appear in front of propositional variables, but not in front of
compound propositions.

Any proposition can be converted to an equivalent one in nnf by using the de Morgan
laws:

¬(A ∨B) ≡ (¬A ∧ ¬B)

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬¬A ≡ A.

Then, a proposition in nnf can be converted to CNF, but the question of uniqueness of
the CNF is a bit tricky.

332 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

For example, the proposition

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

has

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y)

A2 = (u ∨ ¬u) ∧ (x ∨ y)

A3 = x ∨ y,

as equivalent propositions in CNF!

We can get a unique CNF equivalent to a given proposition if we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables occurring in A.

(2) Define a maxterm w.r.t. Var(A) as any disjunction of m pairwise distinct literals
formed from Var(A), and not containing both some variable xi and its negation ¬xi.

(3) Then, it can be shown that for any proposition A that is not a tautology, there is a
unique proposition in CNF equivalent to A, whose clauses consist of maxterms formed
from Var(A).

The above definition can yield strange results. For instance, the CNF of any unsatisfiable
proposition with m distinct variables is the conjunction of all of its 2m maxterms!

The above notion does not cope well with minimality.

For example, according to the above, the CNF of

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

should be
A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y).

There are also propositions such that any equivalent proposition in CNF has size expo-
nential in terms of the original proposition.

Here is such an example:

A = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

Observe that it is in DNF.

We will prove a little later that any CNF for A contains 2n occurrences of variables.

A nice method to convert a proposition in nnf to CNF is to construct a tree whose nodes
are labeled with sets of propositions using the following (Gentzen-style) rules :

13.7. THE COOK-LEVIN THEOREM 333

P,∆ Q,∆

(P ∧Q),∆

and
P,Q,∆

(P ∨Q),∆

where ∆ stands for any set of propositions (even empty), and the comma stands for
union. Thus, it is assumed that (P ∧Q) /∈ ∆ in the first case, and that (P ∨Q) /∈ ∆ in the
second case.

Since we interpret a set, Γ, of propositions as a disjunction, a valuation, v, satisfies Γ iff
it satisfies some proposition in Γ.

Observe that a valuation v satisfies the conclusion of a rule iff it satisfies both premises
in the first case, and the single premise in the second case.

Using these rules, we can build a finite tree whose leaves are labeled with sets of literals.

By the above observation, a valuation v satisfies the proposition labeling the root of the
tree iff it satisfies all the propositions labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf, at the root of the tree) is the
conjunction of the clauses appearing as the leaves of the tree.

We may exclude the clauses that are tautologies, and we may discover in the process that
A is a tautology (when all leaves are tautologies).

Going back to our “bad” proposition, A, by induction, we see that any tree for A has 2n

leaves.

However, it should be noted that for any proposition, A, we can construct in polynomial
time a formula, A′, in CNF, so that A is satisfiable iff A′ is satisfiable, by creating new
variables.

We proceed recursively. The trick is that we replace

(C1 ∧ · · · ∧ Cm) ∨ (D1 ∧ · · · ∧Dn)

by
(C1 ∨ y) ∧ · · · ∧ (Cm ∨ y) ∧ (D1 ∨ y) ∧ · · · ∧ (Dn ∨ y),

where the Ci’s and the Dj’s are clauses, and y is a new variable.

It can be shown that the number of new variables required is at most quadratic in the
size of A.

Warning: In general, the proposition A′ is not equivalent to the proposition A.

Rules for dealing for ¬ can also be created. In this case, we work with pairs of sets of
propositions,

334 CHAPTER 13. COMPUTATIONAL COMPLEXITY; P AND NP

Γ→ ∆,

where, the propositions in Γ are interpreted conjunctively, and the propositions in ∆ are
interpreted disjunctively.

We obtain a sound and complete proof system for propositional logic (a “Gentzen-style”
proof system, see Gallier’s Logic for Computer Science).

Chapter 14

Some NP-Complete Problems

14.1 Statements of the Problems

In this chapter we will show that certain classical algorithmic problems are NP-complete.
This chapter is heavily inspired by Lewis and Papadimitriou’s excellent treatment [12]. In
order to study the complexity of these problems in terms of resource (time or space) bounded
Turing machines (or RAM programs), it is crucial to be able to encode instances of a prob-
lem P as strings in a language LP . Then an instance of a problem P is solvable iff the
corresponding string belongs to the language LP . This implies that our problems must have
a yes–no answer, which is not always the usual formulation of optimization problems where
what is required is to find some optimal solution, that is, a solution minimizing or maximiz-
ing so objective (cost) function F . For example the standard formulation of the traveling
salesman problem asks for a tour (of the cities) of minimal cost.

Fortunately, there is a trick to reformulate an optimization problem as a yes–no answer
problem, which is to explicitly incorporate a budget (or cost) term B into the problem, and
instead of asking whether some objective function F has a minimum or a maximum w, we
ask whether there is a solution w such that F (w) ≤ B in the case of a minimum solution,
or F (w) ≥ B in the case of a maximum solution.

If we are looking for a minimum of F , we try to guess the minimum value B of F and
then we solve the problem of finding w such that F (w) ≤ B. If our guess for B is too small,
then we fail. In this case, we try again with a larger value of B. Otherwise, if B was not too
small we find some w such that F (w) ≤ B, but w may not correspond to a minimum of F ,
so we try again with a smaller value of B, and so on. This yields an approximation method
to find a minimum of F .

Similarly, if we are looking for a maximum of F , we try to guess the maximum value B
of F and then we solve the problem of finding w such that F (w) ≥ B. If our guess for B
is too large, then we fail. In this case, we try again with a smaller value of B. Otherwise,
if B was not too large we find some w such that F (w) ≥ B, but w may not correspond
to a maximum of F , so we try again with a greater value of B, and so on. This yields an

335

336 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

approximation method to find a maximum of F .

We will see several examples of this technique in Problems 5–8 listed below.

The problems that will consider are

(1) Exact Cover

(2) Hamiltonian Cycle for directed graphs

(3) Hamiltonian Cycle for undirected graphs

(4) The Traveling Salesman Problem

(5) Independent Set

(6) Clique

(7) Node Cover

(8) Knapsack, also called subset sum

(9) Inequivalence of ∗-free Regular Expressions

(10) The 0-1-integer programming problem

We begin by describing each of these problems.

(1) Exact Cover

We are given a finite nonempty set U = {u1, . . . , un} (the universe), and a family
F = {S1, . . . , Sm} of m ≥ 1 nonempty subsets of U . The question is whether there is
an exact cover , that is, a subfamily C ⊆ F of subsets in F such that the sets in C are
disjoint and their union is equal to U .

For example, let U = {u1, u2, u3, u4, u5, u6}, and let F be the family

F = {{u1, u3}, {u2, u3, u6}, {u1, u5}, {u2, u3, u4}, {u5, u6}, {u2, u4}}.

The subfamily
C = {{u1, u3}, {u5, u6}, {u2, u4}}

is an exact cover.

It is easy to see that Exact Cover is in NP. To prove that it is NP-complete,
we will reduce the Satisfiability Problem to it. This means that we provide a
method running in polynomial time that converts every instance of the Satisfiability
Problem to an instance of Exact Cover, such that the first problem has a solution
iff the converted problem has a solution.

14.1. STATEMENTS OF THE PROBLEMS 337

(2) Hamiltonian Cycle (for Directed Graphs)

Recall that a directed graph G is a pair G = (V,E), where E ⊆ V × V . Elements of
V are called nodes (or vertices). A pair (u, v) ∈ E is called an edge of G. We will
restrict ourselves to simple graphs , that is, graphs without edges of the form (u, u);
equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u ̸= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A directed graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a
path from u to v. A closed path, or cycle, is a path from some node u to itself. We
will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 14.1. Given a directed graph G, a Hamiltonian cycle is a cycle that passes
through all the nodes exactly once (note, some edges may not be traversed at all).

Hamiltonian Cycle Problem (for Directed Graphs): Given a directed graph G,
is there an Hamiltonian cycle in G?

Is there is a Hamiltonian cycle in the directed graph D shown in Figure 14.1?

Figure 14.1: A tour “around the world.”

338 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Finding a Hamiltonian cycle in this graph does not appear to be so easy! A solution
is shown in Figure 14.2 below.

v18
v17

v11
v12 v13

v10
v6 v5

v4
v14

v19
v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 14.2: A Hamiltonian cycle in D.

It is easy to see that Hamiltonian Cycle (for Directed Graphs) is in NP. To
prove that it is NP-complete, we will reduce Exact Cover to it. This means that we
provide a method running in polynomial time that converts every instance of Exact
Cover to an instance of Hamiltonian Cycle (for Directed Graphs) such that the
first problem has a solution iff the converted problem has a solution. This is perphaps
the hardest reduction.

(3) Hamiltonian Cycle (for Undirected Graphs)

Recall that an undirected graph G is a pair G = (V,E), where E is a set of subsets
{u, v} of V consisting of exactly two distinct elements. Elements of V are called nodes
(or vertices). A pair {u, v} ∈ E is called an edge of G.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n nodes (n ≥ 2)

u = u1, u2, . . . , un = v

such that {ui, ui+1} ∈ E for i = 1, . . . , n− 1. (If n = 2, a path from u to v is simply a
single edge, {u, v}.)

An undirected graph G is connected if for every pair (u, v) ∈ V × V , there is a path
from u to v. A closed path, or cycle, is a path from some node u to itself.

14.1. STATEMENTS OF THE PROBLEMS 339

Definition 14.2. Given an undirected graph G, a Hamiltonian cycle is a cycle that
passes through all the nodes exactly once (note, some edges may not be traversed at
all).

Hamiltonian Cycle Problem (for Undirected Graphs): Given an undirected
graph G, is there an Hamiltonian cycle in G?

An instance of this problem is obtained by changing every directed edge in the directed
graph of Figure 14.1 to an undirected edge. The directed Hamiltonian cycle given in
Figure 14.2 is also an undirected Hamiltonian cycle of the undirected graph of Figure
14.3.

Figure 14.3: A tour “around the world,” undirected version.

We see immediately that Hamiltonian Cycle (for Undirected Graphs) is in NP.
To prove that it is NP-complete, we will reduce Hamiltonian Cycle (for Directed
Graphs) to it. This means that we provide a method running in polynomial time
that converts every instance of Hamiltonian Cycle (for Directed Graphs) to
an instance of Hamiltonian Cycle (for Undirected Graphs) such that the first
problem has a solution iff the converted problem has a solution. This is an easy
reduction.

(4) Traveling Salesman Problem

340 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

We are given a set {c1, c2, . . . , cn} of n ≥ 2 cities, and an n × n matrix D = (dij) of
nonnegative integers, where dij is the distance (or cost) of traveling from city ci to city
cj. We assume that dii = 0 and dij = dji for all i, j, so that the matrix D is symmetric
and has zero diagonal.

Traveling Salesman Problem: Given some n × n matrix D = (dij) as above and
some integer B ≥ 0 (the budget of the traveling salesman), find a permutation π of
{1, 2, . . . , n} such that

c(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1) ≤ B.

The quantity c(π) is the cost of the trip specified by π. The Traveling Salesman
Problem has been stated in terms of a budget so that it has a yes or no answer, which
allows us to convert it into a language. A minimal solution corresponds to the smallest
feasible value of B.

Example 14.1. Consider the 4× 4 symmetric matrix given by

D =

⎛

⎜⎜⎜⎜⎝

0 2 1 1

2 0 1 1

1 1 0 3

1 1 3 0

⎞

⎟⎟⎟⎟⎠
,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4

1 4 2 3

)

has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)
= d14 + d42 + d23 + d31
= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

It is clear that the Traveling Salesman Problem is in NP. To show that it is NP-
complete, we reduce theHamiltonian Cycle Problem (Undirected Graphs) to it.
This means that we provide a method running in polynomial time that converts every
instance of Hamiltonian Cycle Problem (Undirected Graphs) to an instance of
the Traveling Salesman Problem such that the first problem has a solution iff the
converted problem has a solution.

14.1. STATEMENTS OF THE PROBLEMS 341

(5) Independent Set

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is no edge
{vi, vj} ∈ E?

A maximal independent set with 3 nodes is shown in Figure 14.4. A maximal solution

Figure 14.4: A maximal Independent Set in a graph

corresponds to the largest feasible value of K. The problem Independent Set is
obviously in NP. To show that it is NP-complete, we reduce Exact 3-Satisfiability
to it. This means that we provide a method running in polynomial time that converts
every instance of Exact 3-Satisfiability to an instance of Independent Set such
that the first problem has a solution iff the converted problem has a solution.

(6) Clique

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is some
edge {vi, vj} ∈ E? Equivalently, does G contain a complete subgraph with at least K
nodes?

A maximal clique with 4 nodes is shown in Figure 14.5. A maximal solution corresponds
to the largest feasible value of K. The problem Clique is obviously in NP. To show
that it isNP-complete, we reduce Independent Set to it. This means that we provide
a method running in polynomial time that converts every instance of Independent

342 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Figure 14.5: A maximal Clique in a graph

Set to an instance ofClique such that the first problem has a solution iff the converted
problem has a solution.

(7) Node Cover

The problem is this: Given an undirected graph G = (V,E) and an integer B ≥ 2, is
there a set C of nodes with |C| ≤ B such that C covers all edges in G, which means
that for every edge {vi, vj} ∈ E, either vi ∈ C or vj ∈ C?

A minimal node cover with 6 nodes is shown in Figure 14.6. A minimal solution corre-
sponds to the smallest feasible value of B. The problem Node Cover is obviously in
NP. To show that it is NP-complete, we reduce Independent Set to it. This means
that we provide a method running in polynomial time that converts every instance of
Independent Set to an instance of Node Cover such that the first problem has a
solution iff the converted problem has a solution.

The Node Cover problem has the following interesting interpretation: think of the
nodes of the graph as rooms of a museum (or art gallery etc.), and each edge as a
straight corridor that joins two rooms. Then Node Cover may be useful in assigning
as few as possible guards to the rooms, so that all corridors can be seen by a guard.

(8) Knapsack (also called Subset sum)

The problem is this: Given a finite nonempty set S = {a1, a2, . . . , an} of nonnegative
integers, and some integer K ≥ 0, all represented in binary, is there a nonempty subset

14.1. STATEMENTS OF THE PROBLEMS 343

Figure 14.6: A minimal Node Cover in a graph

I ⊆ {1, 2, . . . , n} such that ∑

i∈I

ai = K?

A “concrete” realization of this problem is that of a hiker who is trying to fill her/his
backpack to its maximum capacity with items of varying weights or values.

It is easy to see that the Knapsack Problem is in NP. To show that it is NP-
complete, we reduce Exact Cover to it. This means that we provide a method running
in polynomial time that converts every instance of Exact Cover to an instance of
Knapsack Problem such that the first problem has a solution iff the converted problem
has a solution.

Remark: The 0 -1 Knapsack Problem is defined as the following problem. Given
a set of n items, numbered from 1 to n, each with a weight wi ∈ N and a value vi ∈ N,
given a maximum capacity W ∈ N and a budget B ∈ N, is there a set of n variables
x1, . . . , xn with xi ∈ {0, 1} such that

n∑

i=1

xivi ≥ B,

n∑

i=1

xiwi ≤W.

344 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Informally, the problem is to pick items to include in the knapsack so that the sum
of the values exceeds a given minimum B (the goal is to maximize this sum), and the
sum of the weights is less than or equal to the capacity W of the knapsack. A maximal
solution corresponds to the largest feasible value of B.

The Knapsack Problem as we defined it (which is how Lewis and Papadimitriou
define it) is the special case where vi = wi = 1 for i = 1, . . . , n and W = B. For this
reason, it is also called the Subset Sum Problem. Clearly, the Knapsack (Subset
Sum) Problem reduces to the 0 -1 Knapsack Problem, and thus the 0 -1 Knapsack
Problem is also NP-complete.

(9) Inequivalence of ∗-free Regular Expressions

Recall that the problem of deciding the equivalence R1
∼= R2 of two regular expressions

R1 and R2 is the problem of deciding whether R1 and R2 define the same language,
that is, L[R1] = L[R2]. Is this problem in NP?

In order to show that the equivalence problem for regular expressions is in NP we
would have to be able to somehow check in polynomial time that two expressions
define the same language, but this is still an open problem.

What might be easier is to decide whether two regular expressions R1 and R2 are
inequivalent . For this, we just have to find a string w such that either w ∈ L[R1]−L[R2]
or w ∈ L[R2] − L[R1]. The problem is that if we can guess such a string w, we still
have to check in polynomial time that w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), and this
implies that there is a bound on the length of w which is polynomial in the sizes of R1

and R2. Again, this is an open problem.

To obtain a problem in NP we have to consider a restricted type of regular expressions,
and it turns out that ∗-free regular expressions are the right candidate. A ∗-free regular
expression is a regular expression which is built up from the atomic expressions using
only + and ·, but not ∗. For example,

R = ((a+ b)aa(a + b) + aba(a + b)b)

is such an expression.

It is easy to see that if R is a ∗-free regular expression, then for every string w ∈ L[R]
we have |w| ≤ |R|. In particular, L[R] is finite. The above observation shows that if
R1 and R2 are ∗-free and if there is a string w ∈ (L[R1]−L[R2])∪(L[R2]−L[R1]), then
|w| ≤ |R1|+ |R2|, so we can indeed check this in polynomial time. It follows that the
inequivalence problem for ∗ -free regular expressions is in NP. To show that it is NP-
complete, we reduce the Satisfiability Problem to it. This means that we provide
a method running in polynomial time that converts every instance of Satisfiability

14.1. STATEMENTS OF THE PROBLEMS 345

Problem to an instance of Inequivalence of Regular Expressions such that the
first problem has a solution iff the converted problem has a solution.

Observe that both problems of Inequivalence of Regular Expressions and Equiv-
alence of Regular Expressions are as hard as Inequivalence of ∗-free Regular
Expressions, since if we could solve the first two problems in polynomial time, then
we we could solve Inequivalence of ∗-free Regular Expressions in polynomial
time, but since this problem is NP-complete, we would have P = NP. This is very
unlikely, so the complexity of Equivalence of Regular Expressions remains open.

(10) 0-1 integer programming problem

Let A be any p× q matrix with integer coefficients and let b ∈ Zp be any vector with
integer coefficients. The 0-1 integer programming problem is to find whether a
system of p linear equations in q variables

a11x1 + · · ·+ a1qxq = b1
...

...

ai1x1 + · · ·+ aiqxq = bi
...

...

ap1x1 + · · ·+ apqxq = bp

with aij , bi ∈ Z has any solution x ∈ {0, 1}q, that is, with xi ∈ {0, 1}. In matrix form,
if we let

A =

⎛

⎜⎜⎝

a11 · · · a1q
...

. . .
...

ap1 · · · apq

⎞

⎟⎟⎠ , b =

⎛

⎜⎜⎝

b1
...

bp

⎞

⎟⎟⎠ , x =

⎛

⎜⎜⎝

x1

...

xq

⎞

⎟⎟⎠ ,

then we write the above system as

Ax = b.

It is immediate that 0-1 integer programming problem is in NP. To prove that
it is NP-complete we reduce the bounded tiling problem to it. This means that
we provide a method running in polynomial time that converts every instance of the
bounded tiling problem to an instance of the 0-1 integer programming problem
such that the first problem has a solution iff the converted problem has a solution.

346 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

14.2 Proofs of NP-Completeness

(1) Exact Cover

To prove that Exact Cover is NP-complete, we reduce the Satisfiability Problem
to it:

Satisfiability Problem ≤P Exact Cover

Given a set F = {C1, . . . , Cℓ} of ℓ clauses constructed from n propositional variables
x1, . . . , xn, we must construct in polynomial time an instance τ(F) = (U,F) of Exact
Cover such that F is satisfiable iff τ(F) has a solution.

Example 14.2. If

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3)},

then the universe U is given by

U = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42},

and the family F consists of the subsets

{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42}
T1,F = {x1, p11}
T1,T = {x1, p21}
T2,F = {x2, p22, p31}
T2,T = {x2, p12, p41}
T3,F = {x3, p23}
T3,T = {x3, p42}
{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23},
{C3, p31}, {C4, p41}, {C4, p42}.

It is easy to check that the set C consisting of the following subsets is an exact cover:

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}.

The general method to construct (U,F) from F = {C1, . . . , Cℓ} proceeds as follows.
Say

Cj = (Lj1 ∨ · · · ∨ Ljmj
)

14.2. PROOFS OF NP-COMPLETENESS 347

is the jth clause in F , where Ljk denotes the kth literal in Cj and mj ≥ 1. The universe
of τ(F) is the set

U = {xi | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ ℓ} ∪ {pjk | 1 ≤ j ≤ ℓ, 1 ≤ k ≤ mj}

where in the third set pjk corresponds to the kth literal in Cj.

The following subsets are included in F :

(a) There is a set {pjk} for every pjk.

(b) For every boolean variable xi, the following two sets are in F :

Ti,T = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all negative occurrences of xi, and

Ti,F = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all its positive occurrences. Note carefully that Ti,T involves
negative occurrences of xi whereas Ti,F involves positive occurrences of xi.

(c) For every clause Cj , the mj sets {Cj , pjk} are in F .

It remains to prove that F is satisfiable iff τ(F) has a solution. We claim that if v is
a truth assignement that satisfies F , then we can make an exact cover C as follows:

For each xi, we put the subset Ti,T in C iff v(xi) = T, else we we put the subset Ti,F

in C iff v(xi) = F. Also, for every clause Cj, we put some subset {Cj, pjk} in C for a
literal Ljk which is made true by v. By construction of Ti,T and Ti,F, this pjk is not in
any set in C selected so far. Since by hypothesis F is satisfiable, such a literal exists for
every clause. Having covered all xi and Cj , we put a set {pjk} in C for every remaining
pjk which has not yet been covered by the sets already in C.

Going back to Example 14.2, the truth assigment v(x1) = T, v(x2) = T, v(x3) = F
satisfies F , so we put

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}

in C.

We leave as an exercise to check that the above procedure works.

Conversely, if C is an exact cover of τ(F), we define a truth assigment as follows:

For every xi, if Ti,T is in C, then we set v(xi) = T, else if Ti,F is in C, then we set
v(xi) = F. We leave it as an exercise to check that this procedure works.

348 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Example 14.3. Given the exact cover

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42},

we get the satisfying assigment v(x1) = T, v(x2) = T, v(x3) = F .

If we now consider the proposition is CNF given by

F2 = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3 ∨ x4)}
where we have added the boolean variable x4 to clause C4, then U also contains x4 and
p43 so we need to add the following subsets to F :

T4,F = {x4, p43}, T4,T = {x4}, {C4, p43}, {p43}.
The truth assigment v(x1) = T, v(x2) = T, v(x3) = F, v(x4) = T satisfies F2, so an
exact cover C is

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23}, T4,T = {x4},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}, {p43}.

Observe that this time, because the truth assignment v makes both literals correspond-
ing to p42 and p43 true and since we picked p42 to form the subset {C4, p42}, we need
to add the singleton {p43} to C to cover all elements of U .

(2) Hamiltonian Cycle (for Directed Graphs)

To prove that Hamiltonian Cycle (for Directed Graphs) is NP-complete, we will
reduce Exact Cover to it:

Exact Cover ≤P Hamiltonian Cycle (for Directed Graphs)

We need to find an algorithm working in polynomial time that converts an instance
(U,F) of Exact Cover to a directed graph G = τ(U,F) such that G has a Hamiltonian
cycle iff (U,F) has an exact cover.

The construction of the graph G uses a trick involving a small subgraph Gad with 7
(distinct) nodes known as a gadget shown in Figure 14.7.

a

d

u v w

b

c

Figure 14.7: A gadget Gad

14.2. PROOFS OF NP-COMPLETENESS 349

The crucial property of the graph Gad is that if Gad is a subgraph of a bigger graph
G in such a way that no edge of G is incident to any of the nodes u, v, w unless it
is one of the eight edges of Gad incident to the nodes u, v, w, then for any Hamil-
tonian cycle in G, either the path (a, u), (u, v), (v, w), (w, b) is traversed or the path
(c, w), (w, v), (v, u), (u, d) is traversed, but not both.

The reader should convince herself/himself that indeed, any Hamiltonian cycle that
does not traverse either the subpath (a, u), (u, v), (v, w), (w, b) from a to b or the sub-
path (c, w), (w, v), (v, u), (u, d) from c to d will not traverse one of the nodes u, v, w.
Also, the fact that node v is traversed exactly once forces only one of the two paths
to be traversed but not both. The reader should also convince herself/himself that a
smaller graph does not guarantee the desired property.

It is convenient to use the simplified notation with a special type of edge labeled with
the exclusive or sign ⊕ between the “edges” between a and b and between d and c, as
shown in Figure 14.8.

a

d

b

c

⊕

Figure 14.8: A shorthand notation for a gadget

Whenever such a figure occurs, the actual graph is obtained by substituting a copy of
the graph Gad (the four nodes a, b, c, d must be distinct). This abbreviating device
can be extended to the situation where we build gadgets between a given pair (a, b)
and several other pairs (c1, d1), . . . , (cm, dm), all nodes beeing distinct, as illustrated in
Figure 14.9.

Either all three edges (c1, d1), (c2, d2), (c3, d3) are traversed or the edge (a, b) is tra-
versed, and these possibilities are mutually exclusive.

The graph G = τ(U,F) where U = {u1, . . . , un} (with n ≥ 1) and F = {S1, . . . , Sm}
(with m ≥ 1) is constructed as follows:

The graph G has m+ n + 2 nodes {u0, u1, . . . , un, S0, S1, . . . , Sm}. Note that we have
added two extra nodes u0 and S0. For i = 1, . . . , m, there are two edges (Si−1, Si)1
and (Si−1, Si)2 from Si−1 to Si. For j = 1, . . . , n, from uj−1 to uj, there are as many
edges as there are sets Si ∈ F containing the element uj. We can think of each edge
between uj−1 and uj as an occurrence of uj in a uniquely determined set Si ∈ F ; we

350 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

a b

d2 c2

d1

c1 d3

c3
⊕

⊕

⊕

Figure 14.9: A shorthand notation for several gadgets

denote this edge by (uj−1, uj)i. We also have an edge from un to S0 and an edge from
Sm to u0, thus “closing the cycle.”

What we have constructed so far is not a legal graph since it may have many parallel
edges, but are going to turn it into a legal graph by pairing edges between the uj’s
and edges between the Si’s. Indeed, since each edge (uj−1, uj)i between uj−1 and uj

corresponds to an occurrence of uj in some uniquely determined set Si ∈ F (that
is, uj ∈ Si), we put an exclusive-or edge between the edge (uj−1, uj)i and the edge
(Si−1, Si)2 between Si−1 and Si, which we call the long edge. The other edge (Si−1, Si)1
between Si−1 and Si (not paired with any other edge) is called the short edge. Effec-
tively, we put a copy of the gadget graph Gad with a = uj−1, b = uj, c = Si−1, d = Si

for any pair (uj, Si) such that uj ∈ Si. The resulting object is indeed a directed graph
with no parallel edges.

Example 14.4. The above construction is illustrated in Figure 14.10 for the instance
of the exact cover problem given by

U = {u1, u2, u3, u4}, F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

It remains to prove that (U,F) has an exact cover iff the graph G = τ(U,F) has a
Hamiltonian cycle. First, assume that G has a Hamiltonian cycle. If so, for every
j some unique “edge” (uj−1, uj)i is traversed once (since every uj is traversed once),
and by the exclusive-or nature of the gadget graphs, the corresponding long edge
(Si−1, Si)2 can’t be traversed, which means that the short edge (Si−1, Si)1 is traversed.
Consequently, if C consists of those subsets Si such that the short edge (Si−1, Si)1 is
traversed, then C consists of pairwise disjoint subsets whose union is U , namely C is
an exact cover.

14.2. PROOFS OF NP-COMPLETENESS 351

u0

u1

u2

u3

u4 S0

S1

S2

S3

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

Figure 14.10: The directed graph constructed from the data (U,F) of Example 14.4

In our example, there is a Hamiltonian where the blue edges are traversed between the
Si nodes, and the red edges are traversed between the uj nodes, namely

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0).

The subsets corresponding to the short (Si−1, Si) edges are S1 and S3, and indeed
C = {S1, S3} is an exact cover.

Note that the exclusive-or property of the gadgets implies the following: since the
edge (u0, u1)3 must be chosen to obtain a Hamiltonian, the long edge (S2, S3) can’t be
chosen, so the edge (u1, u2)3 must be chosen, but then the edge (u1, u2)2 is not chosen
so the long edge (S1, S2) must be chosen, so the edges (u2, u3)2 and (u3, u4)2 can’t be
chosen, and thus edges (u2, u3)1 and (u3, u4)1 must be chosen.

Conversely, if C is an exact cover for (U,F), then consider the path in G obtained by
traversing each short edge (Si−1, Si)1 for which Si ∈ C, each edge (uj−1, uj)i such that
uj ∈ Si, which means that this edge is connected by a ⊕-sign to the long edge (Si−1, Si)2

352 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

(by construction, for each uj there is a unique such Si), and the edges (un, S0) and
(Sm, u0), then we obtain a Hamiltonian cycle.

In our example, the exact cover C = {S1, S3} yields the Hamiltonian

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0)

that we encountered earlier.

(3) Hamiltonian Cycle (for Undirected Graphs)

To show that Hamiltonian Cycle (for Undirected Graphs) is NP-complete we
reduce Hamiltonian Cycle (for Directed Graphs) to it:

Hamiltonian Cycle (for Directed Graphs) ≤P Hamiltonian Cycle (for Undi-
rected Graphs)

Given any directed graph G = (V,E) we need to construct in polynomial time an
undirected graph τ(G) = G′ = (V ′, E ′) such that G has a (directed) Hamiltonian cycle
iff G′ has a (undirected) Hamiltonian cycle. This is easy. We make three distinct
copies v0, v1, v2 of every node v ∈ V which we put in V ′, and for every edge (u, v) ∈ E
we create five edges {u0, u1}, {u1, u2}, {u2, v0}, {v0, v1}, {v1, v2} which we put in E ′, as
illustrated in the diagram shown in Figure 14.11.

u v u0 u1 u2 v0 v1 v2=⇒

Figure 14.11: Conversion of a directed graph into an undirected graph

The crucial point about the graph G′ is that although there may be several edges
adjacent to a node u0 or a node u2, the only way to reach u1 from u0 is through the
edge {u0, u1} and the only way to reach u1 from u2 is through the edge {u1, u2}.

Suppose there is a Hamiltonian cycle in G′. If this cycle arrives at a node u0 from the
node u1, then by the above remark, the previous node in the cycle must be u2. Then,
the predecessor of u2 in the cycle must be a node v0 such that there is an edge {u2, v0}
in G′ arising from an edge (u, v) in G. The nodes in the cycle in G′ are traversed in
the order (v0, u2, u1, u0) where v0 and u2 are traversed in the opposite order in which
they occur as the endpoints of the edge (u, v) in G. If so, consider the reverse of our
Hamiltonian cycle in G′, which is also a Hamiltonian cycle since G′ is unoriented. In
this cycle, we go from u0 to u1, then to u2, and finally to v0. In G, we traverse the
edge from u to v. In order for the cycle in G′ to be Hamiltonian, we must continue
by visiting v1 and v2, since otherwise v1 is never traversed. Now, the next node w0 in
the Hamiltonian cycle in G′ corresponds to an edge (v, w) in G, and by repeating our

14.2. PROOFS OF NP-COMPLETENESS 353

reasoning we see that our Hamiltonian cycle in G′ determines a Hamiltonian cycle in
G. We leave it as an easy exercise to check that a Hamiltonian cycle in G yields a
Hamiltonian cycle in G′.

(4) Traveling Salesman Problem

To show that the Traveling Salesman Problem is NP-complete, we reduce the
Hamiltonian Cycle Problem (Undirected Graphs) to it:

Hamiltonian Cycle Problem (Undirected Graphs) ≤P Traveling Salesman
Problem

This is a fairly easy reduction.

Given an undirected graph G = (V,E), we construct an instance τ(G) = (D,B) of
the traveling salesman problem so that G has a Hamiltonian cycle iff the traveling
salesman problem has a solution. If we let n = |V |, we have n cities and the matrix
D = (dij) is defined as follows:

dij =

⎧
⎪⎨

⎪⎩

0 if i = j

1 if {vi, vj} ∈ E

2 otherwise.

We also set the budget B as B = n.

Any tour of the cities has cost equal to n plus the number of pairs (vi, vj) such that
i ̸= j and {vi, vj} is not an edge of G. It follows that a tour of cost n exists iff there
are no pairs (vi, vj) of the second kind iff the tour is a Hamiltonian cycle.

The reduction from Hamiltonian Cycle Problem (Undirected Graphs) to the
Traveling Salesman Problem is quite simple, but a direct reduction of say Satis-
fiability to the Traveling Salesman Problem is hard. By breaking this reduction
into several steps made it simpler to achieve.

(5) Independent Set

To show that Independent Set is NP-complete, we reduce Exact 3-Satisfiability
to it:

Exact 3-Satisfiability ≤P Independent Set

Recall that in Exact 3-Satisfiability every clause Ci has exactly three literals Li1, Li2,
Li3.

Given a set F = {C1, . . . , Cm} of m ≥ 2 such clauses, we construct in polynomial time
an undirected graph G = (V,E) such that F is satisfiable iff G has an independent set
C with at least K = m nodes.

354 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

For every i (1 ≤ i ≤ m), we have three nodes ci1, ci2, ci3 corresponding to the three
literals Li1, Li2, Li3 in clause Ci, so there are 3m nodes in V . The “core” of G consists
of m triangles, one for each set {ci1, ci2, ci3}. We also have an edge {cik, cjℓ} iff Lik and
Ljℓ are complementary literals.

Example 14.5. Let F be the set of clauses

F = {C1 = (x1∨x2∨x3), C2 = (x1∨x2∨x3), C3 = (x1∨x2∨x3), C4 = (x1∨x2∨x3)}.

The graph G associated with F is shown in Figure 14.12.

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

Figure 14.12: The graph constructed from the clauses of Example 14.5

It remains to show that the construction works. Since any three nodes in a triangle
are connected, an independent set C can have at most one node per triangle and thus
has at most m nodes. Since the budget is K = m, we may assume that there is an
independent set with m nodes. Define a (partial) truth assignment by

v(xi) =

{
T if Ljk = xi and cjk ∈ C

F if Ljk = xi and cjk ∈ C.

Since the non-triangle edges in G link nodes corresponding to complementary literals
and nodes in C are not connected, our truth assigment does not assign clashing truth
values to the variables xi. Not all variables may receive a truth value, in which case
we assign an arbitrary truth value to the unassigned variables. This yields a satisfying
assignment for F .

In Example 14.5, the set C = {c11, c22, c32, c41} corresponding to the nodes shown
in red in Figure 14.12 form an independent set, and they induce the partial truth
assignment v(x1) = T, v(x2) = F. The variable x3 can be assigned an arbitrary value,
say v(x3) = F, and v is indeed a satisfying truth assignment for F .

14.2. PROOFS OF NP-COMPLETENESS 355

Conversely, if v is a truth assignment for F , then we obtain an independent set C of
size m by picking for each clause Ci a node cik corresponding to a literal Lik whose
value under v is T.

(6) Clique

To show that Clique is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Clique

The key the reduction is the notion of the complement of an undirected graph G =
(V,E). The complement Gc = (V,Ec) of the graph G = (V,E) is the graph with the
same set of nodes V as G but there is an edge {u, v} (with u ̸= v) in Ec iff {u, v} /∈ E.
Then, it is not hard to check that there is a bijection between maximum independent
sets in G and maximum cliques in Gc. The reduction consists in constructing from a
graph G its complement Gc, and then G has an independent set iff Gc has a clique.

This construction is illustrated in Figure 14.13, where a maximum independent set in
the graph G is shown in blue and a maximum clique in the graph Gc is shown in red.

Figure 14.13: A graph (left) and its complement (right)

(7) Node Cover

To show that Node Cover is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Node Cover

This time the crucial observation is that if N is an independent set in G, then the
complement C = V −N of N in V is a node cover in G. Thus there is an independent
set of size at least K iff there is a node cover of size at most n −K where n = |V | is
the number of nodes in V . The reduction leaves the graph unchanged and replaces K
by n−K. An example is shown in Figure 14.14 where an independent set is shown in
blue and a node cover is shown in red.

356 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Figure 14.14: An inpendent set (left) and a node cover (right)

(8) Knapsack (also called Subset sum)

To show that Knapsack is NP-complete, we reduce Exact Cover to it:

Exact Cover ≤P Knapsack

Given an instance (U,F) of set cover with U = {u1, . . . , un} and F = {S1, . . . , Sm},
a family of subsets of U , we need to produce in polynomial time an instance τ(U,F)
of the knapsack problem consisting of k nonnegative integers a1, . . . , ak and another
integer K > 0 such that there is a subset I ⊆ {1, . . . , k} such that

∑
i∈I ai = K iff

there is an exact cover of U using subsets in F .

The trick here is the relationship between set union and integer addition.

Example 14.6. Consider the exact cover problem given by U = {u1, u2, u3, u4} and

F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

We can represent each subset Sj by a binary string aj of length 4, where the ith bit
from the left is 1 iff ui ∈ Sj , and 0 otherwise. In our example

a1 = 0011

a2 = 0111

a3 = 1100.

Then, the trick is that some family C of subsets Sj is an exact cover if the sum of the
corresponding numbers aj adds up to 1111 = 24 − 1 = K. For example,

C = {S1 = {u3, u4}, S3 = {u1, u2}}

is an exact cover and
a1 + a3 = 0011 + 1100 = 1111.

Unfortunately, there is a problem with this encoding which has to do with the fact
that addition may involve carry. For example, assuming four subsets and the universe
U = {u1, . . . , u6},

11 + 13 + 15 + 24 = 63,

14.2. PROOFS OF NP-COMPLETENESS 357

in binary
001011 + 001101 + 001111 + 011000 = 111111,

but if we convert these binary strings to the corresponding subsets we get the subsets

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

which are not disjoint and do not cover U .

The fix is surprisingly simple: use base m (where m is the number of subsets in F)
instead of base 2.

Example 14.7. Consider the exact cover problem given by U = {u1, u2, u3, u4, u5, u6}
and F given by

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},
S5 = {u1, u2, u4}.

In base m = 5, the numbers corresponding to S1, . . . , S5 are

a1 = 001011

a2 = 001101

a3 = 001111

a4 = 011000

a5 = 110100.

This time,

a1 + a2 + a3 + a4 = 001011 + 001101 + 001111 + 011000 = 014223 ̸= 111111,

so {S1, S2, S3, S4} is not a solution. However

a1 + a5 = 001011 + 110100 = 111111,

and C = {S1, S5} is an exact cover.

358 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

Thus, given an instance (U,F) of Exact Cover where U = {u1, . . . , un} and F =
{S1, . . . , Sm} the reduction toKnapsack consists in forming them numbers a1, . . . , am
(each of n bits) encoding the subsets Sj, namely aji = 1 iff ui ∈ Sj, else 0, and to let
K = 1 +m2 + · · · +mn−1, which is represented in base m by the string 11 · · ·11︸ ︷︷ ︸

n

. In

testing whether
∑

i∈I ai = K for some subset I ⊆ {1, . . . , m}, we use arithmetic in
base m.

If a candidate solution C involves at most m− 1 subsets, then since the corresponding
numbers are added in base m, a carry can never happen. If the candidate solution
involves all m subsets, then a1+ · · ·+am = K iff F is a partition of U , since otherwise
some bit in the result of adding up these m numbers in base m is not equal to 1, even
if a carry occurs.

(9) Inequivalence of ∗-free Regular Expressions

To show that Inequivalence of ∗-free Regular Expressions is NP-complete, we
reduce the Satisfiability Problem to it:

Satisfiability Problem ≤P Inequivalence of ∗-free Regular Expressions

We already argued that Inequivalence of ∗-free Regular Expressions is in NP
because if R is a ∗-free regular expression, then for every string w ∈ L[R] we have
|w| ≤ |R|. The above observation shows that if R1 and R2 are ∗-free and if there is a
string w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), then |w| ≤ |R1|+ |R2|, so we can indeed
check this in polynomial time. It follows that the inequivalence problem for ∗ -free
regular expressions is in NP.

We reduce the Satisfiability Problem to the Inequivalence of ∗-free Regular
Expressions as follows. For any set of clauses P = C1 ∧ · · ·∧Cp, if the propositional
variables occurring in P are x1, . . . , xn, we produce two ∗-free regular expressions R,
S over Σ = {0, 1}, such that P is satisfiable iff LR ̸= LS. The expression S is actually

S = (0 + 1)(0 + 1) · · · (0 + 1)︸ ︷︷ ︸
n

.

The expression R is of the form

R = R1 + · · ·+Rp,

where Ri is constructed from the clause Ci in such a way that LRi
corresponds precisely

to the set of truth assignments that falsify Ci; see below.

Given any clause Ci, let Ri be the ∗-free regular expression defined such that, if xj and
xj both belong to Ci (for some j), then Ri = ∅, else

Ri = R1
i ·R2

i · · ·Rn
i ,

14.3. SUCCINCT CERTIFICATES, coNP, AND EXP 359

where Rj
i is defined by

Rj
i =

⎧
⎨

⎩

0 if xj is a literal of Ci

1 if xj is a literal of Ci

(0 + 1) if xj does not occur in Ci.

Clearly, all truth assignments that falsify Ci must assign F to xj if xj ∈ Ci or assign
T to xj if xj ∈ Ci. Therefore, LRi

corresponds to the set of truth assignments that
falsify Ci (where 1 stands for T and 0 stands for F) and thus, if we let

R = R1 + · · ·+Rp,

then LR corresponds to the set of truth assignments that falsify P = C1 ∧ · · · ∧ Cp.
Since LS = {0, 1}n (all binary strings of length n), we conclude that LR ̸= LS iff P is
satisfiable. Therefore, we have reduced the Satisfiability Problem to our problem
and the reduction clearly runs in polynomial time. This proves that the problem of
deciding whether LR ̸= LS, for any two ∗-free regular expressions R and S is NP-
complete.

(10) 0-1 integer programming problem

It is easy to check that the problem is in NP.

To prove that the is NP-complete we reduce the bounded-tiling problem to it:

bounded-tiling problem ≤P 0-1 integer programming problem

Given a tiling problem, ((T , V,H), ŝ, σ0), we create a 0-1-valued variable xmnt, such
that xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or
inequalities expressing that a tiling exists and then use “slack variables” to convert
inequalities to equations. For example, to express the fact that every position is tiled
by a single tile, use the equation

∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s. We leave the rest as as exercise.

14.3 Succinct Certificates, coNP, and EXP
All the problems considered in Section 14.1 share a common feature, which is that for each
problem, a solution is produced nondeterministically (an exact cover, a directed Hamiltonian
cycle, a tour of cities, an independent set, a node cover, a clique etc.), and then this candidate
solution is checked deterministically and in polynomial time. The candidate solution is a
string called a certificate (or witness).

It turns out that membership on NP can be defined in terms of certificates. To be a
certificate, a string must satisfy two conditions:

360 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

1. It must be polynomially succinct , which means that its length is at most a polynomial
in the length of the input.

2. It must be checkable in polynomial time.

All “yes” inputs to a problem in NP must have at least one certificate, while all “no”
inputs must have none.

The notion of certificate can be formalized using the notion of a polynomially balanced
language.

Definition 14.3. Let Σ be an alphabet, and let “;” be a symbol not in Σ. A language
L′ ⊆ Σ∗;Σ∗ is said to be polynomially balanced if there exists a polynomial p(X) such that
for all x, y ∈ Σ∗, if x; y ∈ L′ then |y| ≤ p(|x|).

Suppose L′ is a polynomially balanced language and that L′ ∈ P. Then we can consider
the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.
The intuition is that for each x ∈ L, the set

{y ∈ Σ∗ | x; y ∈ L′}

is the set of certificates of x. For every x ∈ L, a Turing machine can nondeterministically
guess one of its certificates y, and then use the deterministic Turing machine for L′ to check in
polynomial time that x; y ∈ L′. Note that, by definition, strings not in L have no certificate.
It follows that L ∈ NP.

Conversely, if L ∈ NP and the alphabet Σ has at least two symbols, we can encode the
paths in the computation tree for every input x ∈ L, and we obtain a polynomially balanced
language L′ ⊆ Σ∗;Σ∗ in P such that

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

The details of this construction are left as an exercise. In summary, we obtain the following
theorem.

Theorem 14.1. Let L ⊆ Σ∗ be a language over an alphabet Σ with at least two symbols, and
let “;” be a symbol not in Σ. Then L ∈ NP iff there is a polynomially balanced language
L′ ⊆ Σ∗;Σ∗ such that L′ ∈ P and

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

A striking illustration of the notion of succint certificate is illustrated by the set of
composite integers, namely those natural numbers n ∈ N that can be written as the product
pq of two numbers p, q ≥ 2 with p, q ∈ N. For example, the number

4, 294, 967, 297

14.3. SUCCINCT CERTIFICATES, coNP, AND EXP 361

is a composite!

This is far from obvious, but if an oracle gives us the certificate {6, 700, 417, 641}, it is
easy to carry out in polynomial time the multiplication of these two numbers and check that
it is equal to 4, 294, 967, 297. Finding a certificate is usually (very) hard, but checking that
it works is easy. This is the point of certificates.

We conclude this section with a brief discussion of the complexity classes coNP and
EXP.

By definition,
coNP = {L | L ∈ NP},

that is, coNP consists of all complements of languages in NP. Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP,

but nobody knows whether NP is closed under complementation, that is, nobody knows
whether NP = coNP.

What can be shown is that if NP ≠ coNP then P ̸= NP. However it is possible that
P ̸= NP and yet NP = coNP, although this is considered unlikely.

Of course, P ⊆ NP ∩ coNP. There are problems in NP ∩ coNP not known to be in P.
One of the most famous in the following problem:

Integer factorization problem:

Given an integer N ≥ 3, and another integer M (a budget) such that 1 < M < N , does
N have a factor d with 1 < d ≤M?

That Integer factorization is in NP is clear. To show that Integer factorization is
in coNP, we can guess a factorization of N into distinct factors all greater than M , check
that they are prime using the results of Chapter 15 showing that testing primality is in NP
(even in P, but that’s much harder to prove), and then check that the product of these
factors is N .

It is widely believed that Integer factorization does not belong to P, which is the
technical justification for saying that this problem is hard. Most cryptographic algorithms
rely on this unproven fact. If Integer factorization was either NP-complete or coNP-
complete, then we would have NP = coNP, which is considered very unlikely.

Remark: If
√
N ≤M < N , the above problem is equivalent to asking whether N is prime.

A natural instance of a problem in coNP is the unsatisfiability problem for propositions
UNSAT = ¬SAT, namely deciding that a proposition P has no satisfying assignmnent.

A proposition P (in CNF) is falsifiable if there is some truth assigment v such that
v̂(P) = F. It is obvious that the set of falsifiable propositions is in NP. Since a proposition

362 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

P is valid iff P is not falsifiable, the validity (or tautology) problem TAUT for propositions
is in coNP. In fact, TAUT is coNP-complete; see Papadimitriou [15].

This is easy to prove. Since SAT is NP-complete, for every language L ∈ NP, there is
a polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ L iff f(x) ∈ SAT. Then
x /∈ L iff f(x) /∈ SAT, that is, x ∈ L iff f(x) ∈ ¬SAT, which means that every language L ∈
coNP is polynomial-time reducible to ¬SAT = UNSAT. But TAUT = {¬P | P ∈ UNSAT},
so we have the polynomial-time computable function g given by g(x) = ¬f(x) which gives
us the reduction x ∈ L iff g(x) ∈ TAUT, which shows that TAUT is coNP-complete.

Despite the fact that this problem has been extensively studied, not much is known about
its exact complexity.

The reasoning used to show that TAUT is coNP-complete can also be used to show the
following interesting result.

Proposition 14.2. If a language L is NP-complete, then its complement L is coNP-
complete.

Proof. By definition, since L ∈ NP, we have L ∈ coNP. Since L is NP-complete, for every
language L2 ∈ NP, there is a polynomial-time computable function f : Σ∗ → Σ∗ such that
x ∈ L2 iff f(x) ∈ L. Then x /∈ L2 iff f(x) /∈ L, that is, x ∈ L2 iff f(x) ∈ L, which means
that L is coNP-hard as well, thus coNP-complete.

The class EXP is defined as follows.

Definition 14.4. A deterministic Turing machine M is said to be exponentially bounded if
there is a polynomial p(X) such that for every input x ∈ Σ∗, there is no ID IDn such that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > 2p(|x|).

The class EXP is the class of all languages that are accepted by some exponentially bounded
deterministic Turing machine.

Remark: We can also define the class NEXP as in Definition 14.4, except that we allow
nondeterministic Turing machines.

One of the interesting features of EXP is that it contains NP.

Theorem 14.3. We have the inclusion NP ⊆ EXP.

Sketch of proof. Let M be some nondeterministic Turing machine accepting L in polynomial
time bounded by p(X). We can construct a deterministic Turing machine M ′ that operates
as follows: for every input x, M ′ simulates M on all computations of length 1, then on
all possible computations of length 2, and so on, up to all possible computations of length
p(|x|)+ 1. At this point, either an accepting computation has been discovered or all compu-
tations have halted rejecting. We claim that M ′ operates in time bounded by 2q(|x|) for some

14.3. SUCCINCT CERTIFICATES, coNP, AND EXP 363

poynomial q(X). First, let r be the degree of nondeterminism of M , that is, the maximum
number of triples (b,m, q) such that a quintuple (p, q, b,m, q) is an instructions of M . Then
to simulate a computation of M of length ℓ, M ′ needs O(ℓ) steps—to copy the input, to
produce a string c in {1, . . . , r}ℓ, and so simulate M according to the choices specified by c.
It follows that M ′ can carry out the simulation of M on an input x in

p(|x|)+1∑

ℓ=1

rℓ ≤ (r + 1)p(|x|)+1

steps. Including the O(ℓ) extra steps for each ℓ, we obtain the bound (r + 2)p(|x|)+1. Then,
we can pick a constant k such that 2k > r + 2, and with q(X) = k(p(X) + 1), we see that
M ′ operates in time bounded by 2q(|x|).

It is also immediate to see that EXP is closed under complementation. Furthermore the
strict inclusion P ⊂ EXP holds.

Theorem 14.4. We have the strict inclusion P ⊂ EXP.

Sketch of proof. We use a diagonalization argument to produce a language E such that
E /∈ P, yet E ∈ EXP. We need to code a Turing machine as a string, but this can certainly
be done using the techniques of Chapter 9. Let #(M) be the code of Turing machine M .
Define E as

E = {#(M)x | M accepts input x after at most 2|x| steps}.

We claim that E /∈ P. We proceed by contradiction. If E ∈ P, then so is the language
E1 given by

E1 = {#(M) | M accepts #(M) after at most 2|#(M)| steps}.

Since P is closed under complementation, we also have E1 ∈ P. Let M∗ be a deterministic
Turing machine accepting E1 in time p(X), for some polynomial p(X). Since p(X) is a
polynomial, there is some n0 such that p(n) ≤ 2n for all all n ≥ n0. We may also assume
that |#(M∗)| ≥ n0, since if not we can add n0 “dead states” to M∗.

Now, what happens if we run M∗ on its own code #(M∗)?

It is easy to see that we get a contradiction, namely M∗ accepts #(M∗) iff M∗ rejects
#(M∗). We leave this verification as an exercise.

In conclusion, E1 /∈ P, which in turn implies that E /∈ P.

It remains to prove that E ∈ EXP. This is because we can construct a Turing machine
that can in exponential time simulate any Turing machine M on input x for 2|x| steps.

364 CHAPTER 14. SOME NP-COMPLETE PROBLEMS

In summary, we have the chain of inclusions

P ⊆ NP ⊆ EXP,

where the left inclusion and the right inclusion are both open problems, but we know that
at least one of these two inclusions is strict.

We also have the inclusions

P ⊆ NP ⊆ EXP ⊆ NEXP.

Nobody knows whether EXP = NEXP, but it can be shown that if EXP ≠ NEXP, then
P ̸= NP; see Papadimitriou [15].

Chapter 15

Primality Testing is in NP

15.1 Prime Numbers and Composite Numbers

Prime numbers have fascinated mathematicians and more generally curious minds for thou-
sands of years. What is a prime number? Well, 2, 3, 5, 7, 11, 13, . . . , 9973 are prime numbers.

Definition 15.1. A positive integer p is prime if p ≥ 2 and if p is only divisible by 1 and
p. Equivalently, p is prime if and only if p is a positive integer p ≥ 2 that is not divisible by
any integer m such that 2 ≤ m < p. A positive integer n ≥ 2 which is not prime is called
composite.

Observe that the number 1 is considered neither a prime nor a composite. For example,
6 = 2 · 3 is composite. Is 3 215 031 751 composite? Yes, because

3 215 031 751 = 151 · 751 · 28351.

Even though the definition of primality is very simple, the structure of the set of prime
numbers is highly nontrivial. The prime numbers are the basic building blocks of the natu-
ral numbers because of the following theorem bearing the impressive name of fundamental
theorem of arithmetic.

Theorem 15.1. Every natural number n ≥ 2 has a unique factorization

n = pi11 p
i2
2 · · · pikk ,

where the exponents i1, . . . , ik are positive integers and p1 < p2 < · · · < pk are primes.

Every book on number theory has a proof of Theorem 15.1. The proof is not difficult
and uses induction. It has two parts. The first part shows the existence of a factorization.
The second part shows its uniqueness. For example, see Apostol [1] (Chapter 1, Theorem
1.10).

How many prime numbers are there? Many! In fact, infinitely many.

365

366 CHAPTER 15. PRIMALITY TESTING IS IN NP

Theorem 15.2. The set of prime numbers is infinite.

Proof. The following proof attributed to Hermite only use the fact that every integer greater
than 1 has some prime divisor. We prove that for every natural number n ≥ 2, there is
some prime p > n. Consider N = n! + 1. The number N must be divisible by some prime
p (p = N is possible). Any prime p dividing N is distinct from 2, 3, . . . , n, since otherwise p
would divide N − n! = 1, a contradiction.

The problem of determining whether a given integer is prime is one of the better known
and most easily understood problems of pure mathematics. This problem has caught the
interest of mathematicians again and again for centuries. However, it was not until the 20th
century that questions about primality testing and factoring were recognized as problems
of practical importance, and a central part of applied mathematics. The advent of cryp-
tographic systems that use large primes, such as RSA, was the main driving force for the
development of fast and reliable methods for primality testing. Indeed, in order to create
RSA keys, one needs to produce large prime numbers.

15.2 Methods for Primality Testing

The general strategy to test whether an integer n > 2 is prime or composite is to choose
some property, say A, implied by primality, and to search for a counterexample a to this
property for the number n, namely some a for which property A fails. We look for properties
for which checking that a candidate a is indeed a countexample can be done quickly.

Is simple property that is the basis of several primality testing algorithms is the Fermat
test , namely

an−1 ≡ 1 (mod n),

which means that an−1 − 1 is divisible by n (see Definition 15.2 for the meaning of the
notation a ≡ b (mod n)). If n is prime, and if gcd(a, n) = 1, then the above test is indeed
satisfied; this is Fermat’s little theorem, Theorem 15.7.

Typically, together with the number n being tested for primality, some candidate coun-
terexample a is supplied to an algorithm which runs a test to determine whether a is really a
counterexample to property A for n. If the test says that a is a counterexample, also called
a witness , then we know for sure that n is composite.

For example, using the Fermat test, if n = 10 and a = 3, we check that

39 = 19683 = 10 · 1968 + 3,

so 39 − 1 is not divisible by 10, which means that

an−1 = 39 ̸≡ 1 (mod 10),

15.2. METHODS FOR PRIMALITY TESTING 367

and the Fermat test fails. This shows that 10 is not prime and that a = 3 is a witness of
this fact.

If the algorithm reports that a is not a witness to the fact that n is composite, does this
imply that n is prime? Unfortunately, no. This is because, there may be some composite
number n and some candidate counterexample a for which the test says that a is not a
countexample. Such a number a is called a liar .

For example, using the Fermat test for n = 91 = 7 · 13 and a = 3, we can check that

an−1 = 390 ≡ 1 (mod 91),

so the Fermat test succeeds even though 91 is not prime. The number a = 3 is a liar.

The other reason is that we haven’t tested all the candidate counterexamples a for n. In
the case where n = 91, it can be shown that 290 − 64 is divisible by 91, so the Fermat test
fails for a = 2, which confirms that 91 is not prime, and a = 2 is a witness of this fact.

Unfortunately, the Fermat test has the property that it may succeed for all candidate
counterexamples, even though n is composite. The number n = 561 = 3 · 11 · 17 is such a
devious number. It can be shown that for all a ∈ {2, . . . , 560} such that gcd(a, 561) = 1, we
have

a560 ≡ 1 (mod 561),

so all these a are liars.

Such composite numbers for which the Fermat test succeeds for all candidate counterex-
amples are called Carmichael numbers , and unfortunately there are infinitely many of them.
Thus the Fermat test is doomed. There are various ways of strengthening the Fermat test,
but we will not discuss this here. We refer the interested reader to Crandall and Pomerance
[5] and Gallier and Quaintance [9].

The remedy is to make sure that we pick a property A such that if n is composite, then at
least some candidate a is not a liar, and to test all potential countexamples a. The difficulty
is that trying all candidate countexamples can be too expensive to be practical.

There are two classes of primality testing algorithms:

(1) Algorithms that try all possible countexamples, and for which the test does not lie.
These algorithms give a definite answer: n is prime or n is composite. Until 2002,
no algorithms running in polynomial time, were known. The situation changed in
2002 when a paper with the title “PRIMES is in P,” by Agrawal, Kayal and Saxena,
appeared on the website of the Indian Institute of Technology at Kanpur, India. In
this paper, it was shown that testing for primality has a deterministic (nonrandomized)
algorithm that runs in polynomial time.

We will not discuss algorithms of this type here, and instead refer the reader to Crandall
and Pomerance [5] and Ribenboim [18].

368 CHAPTER 15. PRIMALITY TESTING IS IN NP

(2) Randomized algorithms. To avoid having problems with infinite events, we assume
that we are testing numbers in some large finite interval I. Given any positive integer
m ∈ I, some candidate witness a is chosen at random. We have a test which, given m
and a potential witness a, determines whether or not a is indeed a witness to the fact
that m is composite. Such an algorithm is a Monte Carlo algorithm, which means the
following:

(1) If the test is positive, then m ∈ I is composite. In terms of probabilities, this
is expressed by saying that the conditional probability that m ∈ I is composite
given that the test is positive is equal to 1. If we denote the event that some
positive integer m ∈ I is composite by C, then we can express the above as

Pr(C | test is positive) = 1.

(2) If m ∈ I is composite, then the test is positive for at least 50% of the choices for
a. We can express the above as

Pr(test is positive | C) ≥ 1

2
.

This gives us a degree of confidence in the test .

The contrapositive of (1) says that if m ∈ I is prime, then the test is negative. If we
denote by P the event that some positive integer m ∈ I is prime, then this is expressed
as

Pr(test is negative | P) = 1.

If we repeat the test ℓ times by picking independent potential witnesses, then the con-
ditional probability that the test is negative ℓ times given that n is composite, written
Pr(test is negative ℓ times | C), is given by

Pr(test is negative ℓ times | C) = Pr(test is negative | C)ℓ

= (1− Pr(test is positive | C))ℓ

≤
(
1− 1

2

)ℓ

=

(
1

2

)ℓ

,

where we used Property (2) of a Monte Carlo algorithm that

Pr(test is positive | C) ≥ 1

2

and the independence of the trials. This confirms that if we run the algorithm ℓ times, then
Pr(test is negative ℓ times | C) is very small . In other words, it is very unlikely that the test
will lie ℓ times (is negative) given that the number m ∈ I is composite.

15.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 369

If the probabilty Pr(P) of the event P is known, which requires knowledge of the distri-
bution of the primes in the interval I, then the conditional probability

Pr(P | test is negative ℓ times)

can be determined using Bayes’s rule.

A Monte Carlo algorithm does not give a definite answer. However, if ℓ is large enough
(say ℓ = 100), then the conditional probability that the number n being tested is prime given
that the test is negative ℓ times, is very close to 1.

Two of the best known randomized algorithms for primality testing are the Miller–Rabin
test and the Solovay–Strassen test . We will not discuss these methods here, and we refer
the reader to Gallier and Quaintance [9].

However, what we will discuss is a nondeterministic algorithm that checks that a number
n is prime by guessing a certain kind of tree that we call a Lucas tree (because this algorithm
is based on a method due to E. Lucas), and then verifies in polynomial time (in the lentgh
log2 n of the input given in binary) that this tree constitutes a ‘proof” that n is indeed
prime. This shows that primality testing is in NP, a fact that is not obvious at all. Of
course, this is a much weaker result than the AKS algorithm, but the proof that the AKS
works in polynomial time (in log2 n) is much harder.

The Lucas test, and basically all of the primality-testing algorithms, use modular arith-
metic and some elementary facts of number theory such as the Euler-Fermat theorem, so we
proceed with a review of these concepts.

15.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)∗

Recall the fundamental notion of congruence modulo n and its notation due to Gauss (circa
1802).

Definition 15.2. For any a, b ∈ Z, we write a ≡ b (mod m) iff a− b = km, for some k ∈ Z

(in other words, a− b is divisible by m), and we say that a and b are congruent modulo m.

For example, 37 ≡ 1 (mod 9), since 37 − 1 = 36 = 4 · 9. It can also be shown that
200250 ≡ 1 (mod 251), but this is impossible to do by brute force, so we will develop some
tools to either avoid such computations, or to make them tractable.

It is easy to check that congruence is an equivalence relation but it also satisfies the
following properties.

Proposition 15.3. For any positive integer m, for all a1, a2, b1, b2 ∈ Z, the following prop-
erties hold. If a1 ≡ b1 (modm) and a2 ≡ b2 (modm), then

(1) a1 + a2 ≡ b1 + b2 (modm).

370 CHAPTER 15. PRIMALITY TESTING IS IN NP

(2) a1 − a2 ≡ b1 − b2 (modm).

(3) a1a2 ≡ b1b2 (modm).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because a1 ≡ b1 (mod m)
and a2 ≡ b2 (modm), we have a1 = b1 + k1m and a2 = b2 + k2m, for some k1, k2 ∈ Z, so we
obtain

a1a2 − b1b2 = a1(a2 − b2) + (a1 − b1)b2
= (a1k2 + k1b2)m.

Proposition 15.3 allows us to define addition, subtraction, and multiplication on equiva-
lence classes modulo m.

Definition 15.3. Given any positive integer m, we denote by Z/mZ the set of equivalence
classes modulo m. If we write a for the equivalence class of a ∈ Z, then we define addition,
subtraction, and multiplication on residue classes as follows:

a+ b = a+ b

a− b = a− b

a · b = ab.

The above operations make sense because a + b does not depend on the representatives
chosen in the equivalence classes a and b, and similarly for a− b and ab. Each equivalence
class a contains a unique representative from the set of remainders {0, 1, . . . , m−1}, modulo
m, so the above operations are completely determined by m×m tables. Using the arithmetic
operations of Z/mZ is called modular arithmetic.

The additions tables of Z/nZ for n = 2, 3, 4, 5, 6, 7 are shown below.

n = 2

+ 0 1

0 0 1

1 1 0

n = 3

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

n = 4

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

n = 5

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

15.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 371

n = 6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

n = 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

It is easy to check that the addition operation + is commutative (abelian), associative,
that 0 is an identity element for +, and that every element a has −a as additive inverse,
which means that

a+ (−a) = (−a) + a = 0.

It is easy to check that the multiplication operation · is commutative (abelian), associa-
tive, that 1 is an identity element for ·, and that · is distributive on the left and on the right
with respect to addition. We usually suppress the dot and write a b instead of a · b. The
multiplication tables of Z/nZ for n = 2, 3, . . . , 9 are shown below. Since 0 ·m = m · 0 = 0
for all m, these tables are only given for nonzero arguments.

n = 2

· 1

1 1

n = 3

· 1 2

1 1 2

2 2 1

n = 4

· 1 2 3

1 1 2 3

2 2 0 2

3 3 2 1

n = 5

· 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

n = 6

· 1 2 3 4 5

1 1 2 3 4 5

2 2 4 0 2 4

3 3 0 3 0 3

4 4 2 0 4 2

5 5 4 3 2 1

372 CHAPTER 15. PRIMALITY TESTING IS IN NP

n = 7

· 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

n = 8

· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 2 4 6 0 2 4 6

3 3 6 1 4 7 2 5

4 4 0 4 0 4 0 4

5 5 2 7 4 1 6 3

6 6 4 2 0 6 4 2

7 7 6 5 4 3 2 1

n = 9

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 4 6 8 1 3 5 7

3 3 6 0 3 6 0 3 6

4 4 8 3 7 2 6 1 5

5 5 1 6 2 7 3 8 4

6 6 3 0 6 3 0 6 3

7 7 5 3 1 8 6 4 2

8 8 7 6 5 4 3 2 1

Examining the above tables, we observe that for n = 2, 3, 5, 7, which are primes, every
element has an inverse, which means that for every nonzero element a, there is some (actually,
unique) element b such that

a · b = b · a = 1.

For n = 2, 3, 5, 7, we say that Z/nZ− {0} is an abelian group under multiplication. When n
is composite, there exist nonzero elements whose product is zero. For example, when n = 6,
we have 3 · 2 = 0, when n = 8, we have 4 · 4 = 0, when n = 9, we have 6 · 6 = 0.

For n = 4, 6, 8, 9, the elements a that have an inverse are precisely those that are relatively
prime to the modulus n (that is, gcd(a, n) = 1).

These observations hold in general. Recall the Bezout theorem: two nonzero integers
m,n ∈ Z are relatively prime (gcd(m,n) = 1) iff there are integers a, b ∈ Z such that

am+ bn = 1.

15.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 373

Proposition 15.4. Given any integer n ≥ 1, for any a ∈ Z, the residue class a ∈ Z/nZ is
invertible with respect to multiplication iff gcd(a, n) = 1.

Proof. If a has inverse b in Z/nZ, then a b = 1, which means that

ab ≡ 1 (mod n),

that is ab = 1 + nk for some k ∈ Z, which is the Bezout identity

ab− nk = 1

and implies that gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then by Bezout’s identity there
exist u, v ∈ Z such that

au+ nv = 1,

so au = 1− nv, that is,
au ≡ 1 (mod n),

which means that a u = 1, so a is invertible in Z/nZ.

We have alluded to the notion of a group. Here is the formal definition.

Definition 15.4. A group is a set G equipped with a binary operation · : G × G → G
that associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the
following properties: · is associative, has an identity element e ∈ G, and every element in G
is invertible (w.r.t. ·). More explicitly, this means that the following equations hold for all
a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).

A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

It is easy to show that the element e satisfying property (G2) is unique, and for any
a ∈ G, the element a−1 ∈ G satisfying a · a−1 = a−1 · a = e required to exist by (G3) is
actually unique. This element is called the inverse of a.

The set of integers Z with the addition operation is an abelian group with identity
element 0. The set Z/nZ of residues modulo m is an abelian group under addition with
identity element 0. In general, Z/nZ − {0} is not a group under multiplication, because
some nonzero elements may not have an inverse.

The subset of elements, shown in boldface in the multiplication tables, forms an abelian
group under multiplication.

374 CHAPTER 15. PRIMALITY TESTING IS IN NP

Definition 15.5. The group (under multiplication) of invertible elements of the ring Z/nZ
is denoted by (Z/nZ)∗. Note that this group is abelian and only defined if n ≥ 2.

The Euler ϕ-function plays an important role in the theory of the groups (Z/nZ)∗.

Definition 15.6. Given any positive integer n ≥ 1, the Euler ϕ-function (or Euler totient
function) is defined such that ϕ(n) is the number of integers a, with 1 ≤ a ≤ n, which are
relatively prime to n; that is, with gcd(a, n) = 1.1

If p is prime, then by definition

ϕ(p) = p− 1.

We leave it as an exercise to show that if p is prime and if k ≥ 1, then

ϕ(pk) = pk−1(p− 1).

It can also be shown that if gcd(m,n) = 1, then

ϕ(mn) = ϕ(m)ϕ(n).

The above properties yield a method for computing ϕ(n), based on its prime factorization.
If n = pi11 · · · pikk , then

ϕ(n) = pi1−1
1 · · · pik−1

k (p1 − 1) · · · (pk − 1).

For example, ϕ(17) = 16, ϕ(49) = 7 · 6 = 42,

ϕ(900) = ϕ(22 · 32 · 52) = 2 · 3 · 5 · 1 · 2 · 4 = 240.

Proposition 15.4 shows that (Z/nZ)∗ has ϕ(n) elements. It also shows that Z/nZ− {0}
is a group (under multiplication) iff n is prime.

Definition 15.7. If G is a finite group, the number of elements in G is called the the order
of G.

Given a group G with identity element e, and any element g ∈ G, we often need to
consider the powers of g defined as follows.

Definition 15.8. Given a group G with identity element e, for any nonnegative integer n,
it is natural to define the power gn of g as follows:

g0 = e

gn+1 = g · gn.
1We allow a = n to accomodate the special case n = 1.

15.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 375

Using induction, it is easy to show that

gmgn = gn+m

for all m,n ∈ N.

Since g has an inverse g−1, we can extend the definition of gn to negative powers. For
n ∈ Z, with n < 0, let

gn = (g−1)−n.

Then, it is easy to prove that

gi · gj = gi+j

(gi)−1 = g−i

gi · gj = gj · gi

for all i, j ∈ Z.

Given a finite group G of order n, for any element a ∈ G, it is natural to consider the
set of powers {e, a1, a2, . . . , ak, . . .}. A crucial fact is that there is a smallest positive s ∈ N

such that as = e, and that s divides n.

Proposition 15.5. Let G be a finite group of order n. For every element a ∈ G, the
following facts hold:

(1) There is a smallest positive integer s ≤ n such that as = e.

(2) The set {e, a, . . . , as−1} is an abelian group denoted ⟨a⟩.

(3) We have an = e, and the positive integer s divides n, More generally, for any positive
integer m, if am = e, then s divides m.

Proof. (1) Consider the sequence of n+ 1 elements

(e, a1, a2, . . . , an).

Since G only has n distinct elements, by the pigeonhole principle, there exist i, j such that
0 ≤ i < j ≤ n such that

ai = aj .

By multiplying both sides by (ai)−1 = a−i, we get

e = ai(ai)−1 = aj(ai)−1 = aja−i = aj−i.

Since 0 ≤ i < j ≤ n, we have 0 ≤ j − i ≤ n with aj−i = e. Thus there is some s with
0 < s ≤ n such that as = e, and thus a smallest such s.

376 CHAPTER 15. PRIMALITY TESTING IS IN NP

(2) Since as = e, for any i, j ∈ {0, . . . , s−1} if we write i+ j = sq+ r with 0 ≤ r ≤ s−1,
we have

aiaj = ai+j = asq+r = asqar = (as)qar = eqar = ar,

so ⟨a⟩ is closed under multiplication. We have e ∈ ⟨a⟩ and the inverse of ai is as−i, so ⟨a⟩ is
a group. This group is obviously abelian.

(3) For any element g ∈ G, let g⟨a⟩ = {gak | 0 ≤ k ≤ s− 1}. Observe that for any i ∈ N,
we have

ai⟨a⟩ = ⟨a⟩.

We claim that for any two elements g1, g2 ∈ G, if g1⟨a⟩ ∩ g2⟨a⟩ ≠ ∅, then g1⟨a⟩ = g2⟨a⟩.

Proof of the claim. If g ∈ g1⟨a⟩ ∩ g2⟨a⟩, then there exist i, j ∈ {0, . . . , s− 1} such that

g1a
i = g2a

j .

Without loss of generality, we may assume that i ≥ j. By multipliying both sides by (aj)−1,
we get

g2 = g1a
i−j .

Consequently
g2⟨a⟩ = g1a

i−j⟨a⟩ = g1⟨a⟩,

as claimed.

It follows that the pairwise disjoint nonempty subsets of the form g⟨a⟩, for g ∈ G, form a
partition of G. However, the map ϕg from ⟨a⟩ to g⟨a⟩ given by ϕg(ai) = gai has for inverse
the map ϕg−1 , so ϕg is a bijection, and thus the subsets g⟨a⟩ all have the same number of
elements, s. Since these subsets form a partition of G, we must have n = sq for some q ∈ N,
which implies that an = e.

If gm = 1, then writing m = sq + r, with 0 ≤ r < s, we get

1 = gm = gsq+r = (gs)q · gr = gr,

so gr = 1 with 0 ≤ r < s, contradicting the minimality of s, so r = 0 and s divides m.

Definition 15.9. Given a finite group G of order n, for any a ∈ G, the smallest positive
integer s ≤ n such that as = e in (1) of Proposition 15.5 is called the order of a.

For any integer n ≥ 2, let (Z/nZ)∗ be the group of invertible elements of the ring Z/nZ.
This is a group of order ϕ(n). Then Proposition 15.5 yields the following result.

Theorem 15.6. (Euler) For any integer n ≥ 2 and any a ∈ {1, . . . , n − 1} such that
gcd(a, n) = 1, we have

aϕ(n) ≡ 1 (mod n).

15.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 377

In particular, if n is a prime, then ϕ(n) = n− 1, and we get Fermat’s little theorem.

Theorem 15.7. (Fermat’s little theorem) For any prime p and any a ∈ {1, . . . , p− 1}, we
have

ap−1 ≡ 1 (mod p).

Since 251 is prime, and since gcd(200, 252) = 1, Fermat’s little theorem implies our earlier
claim that 200250 ≡ 1 (mod 251), without making any computations.

Proposition 15.5 suggests considering groups of the form ⟨g⟩.
Definition 15.10. A finite group G is cyclic iff there is some element g ∈ G such that
G = ⟨g⟩. An element g ∈ G with this property is called a generator of G.

Even though, in principle, a finite cyclic group has a very simple structure, finding a
generator for a finite cyclic group is generally hard. For example, it turns out that the
multiplicative group (Z/pZ)∗ is a cyclic group when p is prime, but no efficient method for
finding a generator for (Z/pZ)∗ is known (besides a brute-force search).

Examining the multiplication tables for (Z/nZ)∗ for n = 3, 4, . . . , 9, we can check the
following facts:

1. 2 is a generator for (Z/3Z)∗.

2. 3 is a generator for (Z/4Z)∗.

3. 2 is a generator for (Z/5Z)∗.

4. 5 is a generator for (Z/6Z)∗.

5. 3 is a generator for (Z/7Z)∗.

6. Every element of (Z/8Z)∗ satisfies the equation a2 = 1 (mod 8), thus (Z/8Z)∗ has no
generators.

7. 2 is a generator for (Z/9Z)∗.

More generally, it can be shown that the multiplicative groups (Z/pkZ)∗ and (Z/2pkZ)∗

are cyclic groups when p is an odd prime and k ≥ 1.

Definition 15.11. A generator of the group (Z/nZ)∗ (when there is one), is called a primitive
root modulo n.

As an exercise, the reader should check that the next value of n for which (Z/nZ)∗ has
no generator is n = 12.

The following theorem due to Gauss can be shown. For a proof, see Apostol [1] or Gallier
and Quaintance [9].

Theorem 15.8. (Gauss) For every odd prime p, the group (Z/pZ)∗ is cyclic of order p− 1.
It has ϕ(p− 1) generators.

The generators of (Z/pZ)∗ are the primitive roots modulo p.

378 CHAPTER 15. PRIMALITY TESTING IS IN NP

15.4 The Lucas Theorem; Lucas Trees

In this section we discuss an application of the existence of primitive roots in (Z/pZ)∗ where
p is an odd prime, known an the n− 1 test . This test due to E. Lucas determines whether a
positive odd integer n is prime or not by examining the prime factors of n− 1 and checking
some congruences.

The n− 1 test can be described as the construction of a certain kind of tree rooted with
n, and it turns out that the number of nodes in this tree is bounded by 2 log2 n, and that
the number of modular multiplications involved in checking the congruences is bounded by
2 log22 n.

When we talk about the complexity of algorithms dealing with numbers, we assume that
all inputs (to a Turing machine) are strings representing these numbers, typically in base
2. Since the length of the binary representation of a natural number n ≥ 1 is ⌊log2 n⌋ + 1
(or ⌈log2(n+ 1)⌉, which allows n = 0), the complexity of algorithms dealing with (nonzero)
numbers m,n, etc. is expressed in terms of log2m, log2 n, etc. Recall that for any real
number x ∈ R, the floor of x is the greatest integer ⌊x⌋ that is less that or equal to x, and
the ceiling of x is the least integer ⌈x⌉ that is greater that or equal to x.

If we choose to represent numbers in base 10, since for any base b we have logb x =
ln x/ ln b, we have

log2 x =
ln 10

ln 2
log10 x.

Since (ln 10)/(ln 2) ≈ 3.322 ≈ 10/3, we see that the number of decimal digits needed to
represent the integer n in base 10 is approximately 30% of the number of bits needed to
represent n in base 2.

Since the Lucas test yields a tree such that the number of modular multiplications in-
volved in checking the congruences is bounded by 2 log22 n, it is not hard to show that testing
whether or not a positive integer n is prime, a problem denoted PRIMES, belongs to the
complexity class NP. This result was shown by V. Pratt [16] (1975), but Peter Freyd told
me that it was “folklore.” Since 2002, thanks to the AKS algorithm, we know that PRIMES
actually belongs to the class P, but this is a much harder result.

Here is Lehmer’s version of the Lucas result, from 1876.

Theorem 15.9. (Lucas theorem) Let n be a positive integer with n ≥ 2. Then n is prime
iff there is some integer a ∈ {1, 2, . . . , n− 1} such that the following two conditions hold:

(1) an−1 ≡ 1 (mod n).

(2) If n > 2, then a(n−1)/q ̸≡ 1 (mod n) for all prime divisors q of n− 1.

Proof. First, assume that Conditions (1) and (2) hold. If n = 2, since 2 is prime, we are
done. Thus assume that n ≥ 3, and let r be the order of a. We claim that r = n− 1. The
condition an−1 ≡ 1 (mod n) implies that r divides n− 1. Suppose that r < n− 1, and let q

15.4. THE LUCAS THEOREM; LUCAS TREES 379

be a prime divisor of (n− 1)/r (so q divides n− 1). Since r is the order or a we have ar ≡ 1
(mod n), so we get

a(n−1)/q ≡ ar(n−1)/(rq) ≡ (ar)(n−1)/(rq) ≡ 1(n−1)/(rq) ≡ 1 (mod n),

contradicting Condition (2). Therefore, r = n− 1, as claimed.

We now show that n must be prime. Now an−1 ≡ 1 (mod n) implies that a and n are
relatively prime so by Euler’s Theorem (Theorem 15.6),

aϕ(n) ≡ 1 (mod n).

Since the order of a is n− 1, we have n− 1 ≤ ϕ(n). If n ≥ 3 is not prime, then n has some
prime divisor p, but n and p are integers in {1, 2, . . . , n} that are not relatively prime to n,
so by definition of ϕ(n), we have ϕ(n) ≤ n − 2, contradicting the fact that n − 1 ≤ ϕ(n).
Therefore, n must be prime.

Conversely, assume that n is prime. If n = 2, then we set a = 1. Otherwise, pick a to be
any primitive root modulo p.

Clearly, if n > 2 then we may assume that a ≥ 2. The main difficulty with the n − 1
test is not so much guessing the primitive root a, but finding a complete prime factorization
of n − 1. However, as a nondeterministic algorithm, the n − 1 test yields a “proof” that a
number n is indeed prime which can be represented as a tree, and the number of operations
needed to check the required conditions (the congruences) is bounded by c log22 n for some
positive constant c, and this implies that testing primality is in NP.

Before explaining the details of this method, we sharpen slightly Lucas theorem to deal
only with odd prime divisors.

Theorem 15.10. Let n be a positive odd integer with n ≥ 3. Then n is prime iff there
is some integer a ∈ {2, . . . , n − 1} (a guess for a primitive root modulo n) such that the
following two conditions hold:

(1b) a(n−1)/2 ≡ −1 (mod n).

(2b) If n− 1 is not a power of 2, then a(n−1)/2q ̸≡ −1 (mod n) for all odd prime divisors q
of n− 1.

Proof. Assume that Conditions (1b) and (2b) of Theorem 15.10 hold. Then we claim that
Conditions (1) and (2) of Theorem 15.9 hold. By squaring the congruence a(n−1)/2 ≡ −1
(mod n), we get an−1 ≡ 1 (mod n), which is Condition (1) of Theorem 15.9. Since a(n−1)/2 ≡
−1 (mod n), Condition (2) of Theorem 15.9 holds for q = 2. Next, if q is an odd prime
divisor of n− 1, let m = a(n−1)/2q. Condition (1b) means that

mq ≡ a(n−1)/2 ≡ −1 (mod n).

380 CHAPTER 15. PRIMALITY TESTING IS IN NP

Now if m2 ≡ a(n−1)/q ≡ 1 (mod n), since q is an odd prime, we can write q = 2k + 1 for
some k ≥ 1, and then

mq ≡ m2k+1 ≡ (m2)km ≡ 1km ≡ m (mod n),

and since mq ≡ −1 (mod n), we get

m ≡ −1 (mod n)

(regardless of whether n is prime or not). Thus we proved that if mq ≡ −1 (mod n) and
m2 ≡ 1 (mod n), thenm ≡ −1 (mod n). By contrapositive, we see that ifm ̸≡ −1 (mod n),
then m2 ̸≡ 1 (mod n) or mq ̸≡ −1 (mod n), but since mq ≡ a(n−1)/2 ≡ −1 (mod n) by
Condition (1a), we conclude that m2 ≡ a(n−1)/q ̸≡ 1 (mod n), which is Condition (2) of
Theorem 15.9. But then, Theorem 15.9 implies that n is prime.

Conversely, assume that n is an odd prime, and let a be any primitive root modulo n.
Then by little Fermat we know that

an−1 ≡ 1 (mod n),

so
(a(n−1)/2 − 1)(a(n−1)/2 + 1) ≡ 0 (mod n).

Since n is prime, either a(n−1)/2 ≡ 1 (mod n) or a(n−1)/2 ≡ −1 (mod n), but since a generates
(Z/nZ)∗, it has order n − 1, so the congruence a(n−1)/2 ≡ 1 (mod n) is impossible, and
Condition (1b) must hold. Similarly, if we had a(n−1)/2q ≡ −1 (mod n) for some odd prime
divisor q of n− 1, then by squaring we would have

a(n−1)/q ≡ 1 (mod n),

and a would have order at most (n− 1)/q < n− 1, which is absurd.

If n is an odd prime, we can use Theorem 15.10 to build recursively a tree which is a
proof, or certificate, of the fact that n is indeed prime. We first illustrate this process with
the prime n = 1279.

Example 15.1. If n = 1279, then we easily check that n− 1 = 1278 = 2 · 32 · 71. We build
a tree whose root node contains the triple (1279, ((2, 1), (3, 2), (71, 1)), 3), where a = 3 is the
guess for a primitive root modulo 1279. In this simple example, it is clear that 3 and 71 are
prime, but we must supply proofs that these number are prime, so we recursively apply the
process to the odd divisors 3 and 71.

Since 3− 1 = 21 is a power of 2, we create a one-node tree (3, ((2, 1)), 2), where a = 2 is
a guess for a primitive root modulo 3. This is a leaf node.

Since 71−1 = 70 = 2·5·7, we create a tree whose root node is (71, ((2, 1), (5, 1), (7, 1)), 7),
where a = 7 is the guess for a primitive root modulo 71. Since 5 − 1 = 4 = 22, and

15.4. THE LUCAS THEOREM; LUCAS TREES 381

7− 1 = 6 = 2 · 3, this node has two successors (5, ((2, 2)), 2) and (7, ((2, 1), (3, 1)), 3), where
2 is the guess for a primitive root modulo 5, and 3 is the guess for a primitive root modulo
7.

Since 4 = 22 is a power of 2, the node (5, ((2, 2)), 2) is a leaf node.

Since 3 − 1 = 21, the node (7, ((2, 1), (3, 1)), 3) has a single successor, (3, ((2, 1)), 2),
where a = 2 is a guess for a primitive root modulo 3. Since 2 = 21 is a power of 2, the node
(3, ((2, 1)), 2) is a leaf node.

To recap, we obtain the following tree:

(1279,
((2, 1), (3, 2), (71, 1)), 3)

,,♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

--❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

(3,
((2, 1)), 2)

(71,
((2, 1), (5, 1), (7, 1)), 7)

..❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

/$◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

(5,
((2, 2)), 2)

(7,
((2, 1), (3, 1)), 3)

))

(3,
((2, 1)), 2)

We still have to check that the relevant congruences hold at every node. For the root
node (1279, ((2, 1), (3, 2), (71, 1)), 3), we check that

31278/2 ≡ 3864 ≡ −1 (mod 1279) (1b)

31278/(2·3) ≡ 3213 ≡ 775 (mod 1279) (2b)

31278/(2·71) ≡ 39 ≡ 498 (mod 1279). (2b)

Assuming that 3 and 71 are prime, the above congruences check that Conditions (1a) and
(2b) are satisfied, and by Theorem 15.10 this proves that 1279 is prime. We still have to
certify that 3 and 71 are prime, and we do this recursively.

For the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

For the node (71, ((2, 1), (5, 1), (7, 1)), 7), we check that

770/2 ≡ 735 ≡ −1 (mod 71) (1b)

770/(2·5) ≡ 77 ≡ 14 (mod 71) (2b)

770/(2·7) ≡ 75 ≡ 51 (mod 71). (2b)

382 CHAPTER 15. PRIMALITY TESTING IS IN NP

Now, we certified that 3 and 71 are prime, assuming that 5 and 7 are prime, which we now
establish.

For the leaf node (5, ((2, 2)), 2), we check that

24/2 ≡ 22 ≡ −1 (mod 5). (1b)

For the node (7, ((2, 1), (3, 1)), 3), we check that

36/2 ≡ 33 ≡ −1 (mod 7) (1b)

36/(2·3) ≡ 31 ≡ 3 (mod 7). (2b)

We have certified that 5 and 7 are prime, given that 3 is prime, which we finally verify.

At last, for the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

The above example suggests the following definition.

Definition 15.12. Given any odd integer n ≥ 3, a pre-Lucas tree for n is defined inductively
as follows:

(1) It is a one-node tree labeled with (n, ((2, i0)), a), such that n− 1 = 2i0 , for some i0 ≥ 1
and some a ∈ {2, . . . , n− 1}.

(2) If L1, . . . , Lk are k pre-Lucas (with k ≥ 1), where the tree Lj is a pre-Lucas tree for some
odd integer qj ≥ 3, then the tree L whose root is labeled with (n, ((2, i0), ((q1, i1), . . .,
(qk, ik)), a) and whose jth subtree is Lj is a pre-Lucas tree for n if

n− 1 = 2i0qi11 · · · qikk ,

for some i0, i1, . . . , ik ≥ 1, and some a ∈ {2, . . . , n− 1}.

Both in (1) and (2), the number a is a guess for a primitive root modulo n.

A pre-Lucas tree for n is a Lucas tree for n if the following conditions are satisfied:

(3) If L is a one-node tree labeled with (n, ((2, i0)), a), then

a(n−1)/2 ≡ −1 (mod n).

(4) If L is a pre-Lucas tree whose root is labeled with (n, ((2, i0), ((q1, i1), . . . , (qk, ik)), a),
and whose jth subtree Lj is a pre-Lucas tree for qj , then Lj is a Lucas tree for qj for
j = 1, . . . , k, and

(a) a(n−1)/2 ≡ −1 (mod n).

15.5. ALGORITHMS FOR COMPUTING POWERS MODULO m 383

(b) a(n−1)/2qj ̸≡ −1 (mod n) for j = 1, . . . , k.

Since Conditions (3) and (4) of Definition 15.12 are Conditions (1b) and (2b) of Theorem,
15.10, we see that Definition 15.12 has been designed in such a way that Theorem 15.10 yields
the following result.

Theorem 15.11. An odd integer n ≥ 3 is prime iff it has some Lucas tree.

The issue is now to see how long it takes to check that a pre-Lucas tree is a Lucas tree.
For this, we need a method for computing xn mod n in polynomial time in log2 n. This is
the object of the next section.

15.5 Algorithms for Computing Powers Modulo m

Let us first consider computing the nth power xn of some positive integer. The idea is to
look at the parity of n and to proceed recursively. If n is even, say n = 2k, then

xn = x2k = (xk)2,

so, compute xk recursively and then square the result. If n is odd, say n = 2k + 1, then

xn = x2k+1 = (xk)2 · x,

so, compute xk recursively, square it, and multiply the result by x.

What this suggests is to write n ≥ 1 in binary, say

n = bℓ · 2ℓ + bℓ−1 · 2ℓ−1 + · · ·+ b1 · 21 + b0,

where bi ∈ {0, 1} with bℓ = 1 or, if we let J = {j | bj = 1}, as

n =
∑

j∈J

2j.

Then we have
xn ≡ x

∑
j∈J 2j =

∏

j∈J

x2j modm.

This suggests computing the residues rj such that

x2j ≡ rj (modm),

because then,

xn ≡
∏

j∈J

rj (modm),

384 CHAPTER 15. PRIMALITY TESTING IS IN NP

where we can compute this latter product modulo m two terms at a time.

For example, say we want to compute 999179 mod 1763. First, we observe that

179 = 27 + 25 + 24 + 21 + 1,

and we compute the powers modulo 1763:

9992
1 ≡ 143 (mod 1763)

9992
2 ≡ 1432 ≡ 1056 (mod 1763)

9992
3 ≡ 10562 ≡ 920 (mod 1763)

9992
4 ≡ 9202 ≡ 160 (mod 1763)

9992
5 ≡ 1602 ≡ 918 (mod 1763)

9992
6 ≡ 9182 ≡ 10 (mod 1763)

9992
7 ≡ 102 ≡ 100 (mod 1763).

Consequently,

999179 ≡ 999 · 143 · 160 · 918 · 100 (mod 1763)

≡ 54 · 160 · 918 · 100 (mod 1763)

≡ 1588 · 918 · 100 (mod 1763)

≡ 1546 · 100 (mod 1763)

≡ 1219 (mod 1763),

and we find that
999179 ≡ 1219 (mod 1763).

Of course, it would be impossible to exponentiate 999179 first and then reduce modulo 1763.
As we can see, the number of multiplications needed is bounded by 2 log2 n, which is quite
good.

The above method can be implemented without actually converting n to base 2. If n is
even, say n = 2k, then n/2 = k and if n is odd, say n = 2k + 1, then (n− 1)/2 = k, so we
have a way of dropping the unit digit in the binary expansion of n and shifting the remaining
digits one place to the right without explicitly computing this binary expansion. Here is an
algorithm for computing xn modm, with n ≥ 1, using the repeated squaring method.

An Algorithm to Compute xn modm Using Repeated Squaring

begin
u := 1; a := x;

15.6. PRIMES IS IN NP 385

while n > 1 do
if even(n) then e := 0 else e := 1;
if e = 1 then u := a · u mod m;
a := a2 mod m; n := (n− e)/2

endwhile;
u := a · u mod m

end

The final value of u is the result. The reason why the algorithm is correct is that after j
rounds through the while loop, a = x2j modm and

u =
∏

i∈J | i<j

x2i modm,

with this product interpreted as 1 when j = 0.

Observe that the while loop is only executed n − 1 times to avoid squaring once more
unnecessarily and the last multiplication a ·u is performed outside of the while loop. Also, if
we delete the reductions modulo m, the above algorithm is a fast method for computing the
nth power of an integer x and the time speed-up of not performing the last squaring step is
more significant. We leave the details of the proof that the above algorithm is correct as an
exercise.

15.6 PRIMES is in NP
Exponentiation modulo n can performed by repeated squaring, as explained in Section 15.5.
In that section, we observed that computing xm mod n requires at most 2 log2m modular
multiplications. Using this fact, we obtain the following result.

Proposition 15.12. If p is any odd prime, then any pre-Lucas tree L for p has at most log2 p
nodes, and the number M(p) of modular multiplications required to check that the pre-Lucas
tree L is a Lucas tree is less than 2 log22 p.

Proof. Let N(p) be the number of nodes in a pre-Lucas tree for p. We proceed by complete
induction. If p = 3, then p− 1 = 21, any pre-Lucas tree has a single node, and 1 < log2 3.

Suppose the results holds for any odd prime less than p. If p − 1 = 2i0 , then any Lucas
tree has a single node, and 1 < log2 3 < log2 p. If p− 1 has the prime factorization

p− 1 = 2i0qi11 · · · qikk ,

then by the induction hypothesis, each pre-Lucas tree Lj for qj has less than log2 qj nodes,
so

N(p) = 1 +
k∑

j=1

N(qj) < 1 +
k∑

j=1

log2 qj = 1 + log2(q1 · · · qk) ≤ 1 + log2

(
p− 1

2

)
< log2 p,

386 CHAPTER 15. PRIMALITY TESTING IS IN NP

establishing the induction hypothesis.

If r is one of the odd primes in the pre-Lucas tree for p, and r < p, then there is
some other odd prime q in this pre-Lucas tree such that r divides q − 1 and q ≤ p. We
also have to show that at some point, a(q−1)/2r ̸≡ −1 (mod q) for some a, and at another
point, that b(r−1)/2 ≡ −1 (mod r) for some b. Using the fact that the number of modular
multiplications required to exponentiate to the power m is at most 2 log2m, we see that the
number of multiplications required by the above two exponentiations does not exceed

2 log2

(
q − 1

2r

)
+ 2 log2

(
r − 1

2

)
< 2 log2 q − 4 < 2 log2 p.

As a consequence, we have

M(p) < 2 log2

(
p− 1

2

)
+ (N(p)− 1)2 log2 p < 2 log2 p+ (log2 p− 1)2 log2 p = 2 log22 p,

as claimed.

The following impressive example is from Pratt [16].

Example 15.2. Let n = 474 397 531. It is easy to check that n − 1 = 474 397 531− 1 =
474 397 530 = 2 · 3 · 5 · 2513. We claim that the following is a Lucas tree for n = 474 397 531:

(474 397 531, ((2, 1), (3, 1), (5, 1), (251, 3)), 2)

0/❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

)) 10❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳

(3, ((2, 1)), 2) (5, ((2, 2)), 2) (251, ((2, 1), (5, 3)), 6)

))

(5, ((2, 2)), 2)

To verify that the above pre-Lucas tree is a Lucas tree, we check that 2 is indeed a
primitive root modulo 474 397 531 by computing (using Mathematica) that

2474 397 530/2 ≡ 2237 198 765 ≡ −1 (mod 474 397 531) (1)

2474 397 530/(2·3) ≡ 279 066 255 ≡ 9 583 569 (mod 474 397 531) (2)

2474 397 530/(2·5) ≡ 247 439 753 ≡ 91 151 207 (mod 474 397 531) (3)

2474 397 530/(2·251) ≡ 2945 015 ≡ 282 211 150 (mod 474 397 531). (4)

The number of modular multiplications is: 27 in (1), 26 in (2), 25 in (3) and 19 in (4).

We have 251− 1 = 250 = 2 · 53, and we verify that 6 is a primitive root modulo 251 by
computing:

6250/2 ≡ 6125 ≡ −1 (mod 251) (5)

6250/(2·5) ≡ 610 ≡ 175 (mod 251). (6)

15.6. PRIMES IS IN NP 387

The number of modular multiplications is: 6 in (5), and 3 in (6).

We have 5− 1 = 4 = 22, and 2 is a primitive root modulo 5, since

24/2 ≡ 22 ≡ −1 (mod 5). (7)

This takes one multiplication.
We have 3− 1 = 2 = 21, and 2 is a primitive root modulo 3, since

22/2 ≡ 21 ≡ −1 (mod 3). (8)

This takes 0 multiplications.

Therefore, 474 397 531 is prime.

As nice as it is, Proposition 15.12 is deceiving, because finding a Lucas tree is hard.

Remark: Pratt [16] presents his method for finding a certificate of primality in terms of
a proof system. Although quite elegant, we feel that this method is not as transparent as
the method using Lucas trees, which we adapted from Crandall and Pomerance [5]. Pratt’s
proofs can be represented as trees, as Pratt sketches in Section 3 of his paper. However,
Pratt uses the basic version of Lucas’ theorem, Theorem 15.9, instead of the improved
version, Theorem 15.10, so his proof trees have at least twice as many nodes as ours.

As nice as it is, Proposition 15.12 is deceiving, because finding a Lucas tree is hard.

The following nice result was first shown by V. Pratt in 1975 [16].

Theorem 15.13. The problem PRIMES (testing whether an integer is prime) is in NP.

Proof. Since all even integers besides 2 are composite, we can restrict out attention to odd
integers n ≥ 3. By Theorem 15.11, an odd integer n ≥ 3 is prime iff it has a Lucas tree.
Given any odd integer n ≥ 3, since all the numbers involved in the definition of a pre-Lucas
tree are less than n, there is a finite (very large) number of pre-Lucas trees for n. Given a
guess of a Lucas tree for n, checking that this tree is a pre-Lucas tree can be performed in
O(log2 n), and by Proposition 15.12, checking that it is a Lucas tree can be done in O(log22 n).
Therefore PRIMES is in NP.

Of course, checking whether a number n is composite is in NP, since it suffices to guess
to factors n1, n2 and to check that n = n1n2, which can be done in polynomial time in log2 n.
Therefore, PRIMES ∈ NP ∩ coNP. As we said earlier, this was the situation until the
discovery of the AKS algorithm, which places PRIMES in P.

Remark: Altough finding a primitive root modulo p is hard, we know that the number of
primitive roots modulo p is ϕ(ϕ(p)). If p is large enough, this number is actually quite large.
According to Crandal and Pomerance [5] (Chapter 4, Section 4.1.1), if p is a prime and if
p > 200560490131, then p has more than p/(2 ln ln p) primitive roots.

388 CHAPTER 15. PRIMALITY TESTING IS IN NP

Chapter 16

Phrase-Structure Grammars and
Context-Sensitive Grammars

16.1 Phrase-Structure Grammars

Context-free grammars can be generalized in various ways. The most general grammars
generate exactly the recursively enumerable languages.

Between the context-free languages and the recursively enumerable languages, there is a
natural class of languages, the context-sensitive languages.

The context-sensitive languages also have a Turing-machine characterization. We begin
with phrase-structure gammars.

Definition 16.1. A phrase-structure grammar is a quadruple G = (V,Σ, P, S), where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

The set N = V −Σ is called the set of nonterminal symbols (for short, nonterminals).

• P ⊆ V ∗NV ∗ × V ∗ is a finite set of productions (or rewrite rules, or rules).

Every production ⟨α, β⟩ is also denoted as α→ β. A production of the form α→ ϵ is called
an epsilon rule, or null rule.

Example 1.

G1 = ({S,A,B, C,D,E, a, b}, {a, b}, P, S),

389

390CHAPTER 16. PHRASE-STRUCTURE AND CONTEXT-SENSITIVE GRAMMARS

where P is the set of rules

S −→ ABC,

AB −→ aAD,

AB −→ bAE,

DC −→ BaC,

EC −→ BbC,

Da −→ aD,

Db −→ bD,

Ea −→ aE,

Eb −→ bE,

AB −→ ϵ,

C −→ ϵ,

aB −→ Ba,

bB −→ Bb.

It can be shown that this grammar generates the language

L = {ww | w ∈ {a, b}∗},

which is not context-free.

16.2 Derivations and Type-0 Languages

The productions of a grammar are used to derive strings. In this process, the productions
are used as rewrite rules.

Definition 16.2. Given a phrase-structure grammar G = (V,Σ, P, S), the (one-step) deriva-
tion relation =⇒G associated with G is the binary relation =⇒G⊆ V ∗×V ∗ defined as follows:
for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production (γ → δ) ∈ P , such that

α = λγρ and β = λδρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of
=⇒G is denoted as

∗
=⇒G.

When the grammar G is clear from the context, we ususally omit the subscript G in

=⇒G,
+

=⇒G, and
∗

=⇒G.

The language generated by a phrase-structure grammar is defined as follows.

16.3. TYPE-0 GRAMMARS AND CONTEXT-SENSITIVE GRAMMARS 391

Definition 16.3. Given a phrase-structure grammar G = (V,Σ, P, S), the language gener-
ated by G is the set

L(G) = {w ∈ Σ∗ | S +
=⇒ w}.

A language L ⊆ Σ∗ is a type-0 language iff L = L(G) for some phrase-structure grammar G.

The following proposition can be shown.

Proposition 16.1. A language L is recursively enumerable iff it generated by some phrase-
structure grammar G.

In one direction, we can construct a nondeterministic Turing machine simulating the
derivations of the grammar G. In the other direction, we construct a grammar simulating
the computations of a Turing machine.

We now consider some variants of the phrase-structure

16.3 Type-0 Grammars and Context-Sensitive Gram-
mars

We begin with type-0 grammars. At first glance, it may appear that they are more restrictive
than phrase-structure grammars, but this is not so.

Definition 16.4. A type-0 grammar is a phrase-structure grammar G = (V,Σ, P, S), such
that the productions are of the form

α→ β,

where α ∈ N+. A production of the form α→ ϵ is called an epsilon rule, or null rule.

Proposition 16.2. A language L is generated by a phrase-structure grammar iff it is gen-
erated by some type-0 grammar.

We now place additional restrictions on productions, obtaining context-sensitive gram-
mars.

Definition 16.5. A context-sensitive grammar (for short, csg) is a phrase-structure gram-
mar G = (V,Σ, P, S), such that the productions are of the form

αAβ → αγβ,

with A ∈ N , γ ∈ V +, α, β ∈ V ∗, or
S → ϵ,

and if S → ϵ ∈ P , then S does not appear on the right-hand side of any production.

392CHAPTER 16. PHRASE-STRUCTURE AND CONTEXT-SENSITIVE GRAMMARS

The notion of derivation is defined as before. A language L is context-sensitive iff it is
generated by some context-sensitive grammar.

We can also define monotonic grammars.

Definition 16.6. A monotonic grammar is a phrase-structure grammar G = (V,Σ, P, S),
such that the productions are of the form

α→ β

with α, β ∈ V + and |α| ≤ |β|, or
S → ϵ,

and if S → ϵ ∈ P , then S does not appear on the right-hand side of any production.

Example 2.
G2 = ({S,A,B, C, a, b, c}, {a, b, c}, P, S),

where P is the set of rules

S −→ ABC,

S −→ ABCS,

AB −→ BA,

AC −→ CA,

BC −→ CB,

BA −→ AB,

CA −→ AC,

CB −→ BC,

A −→ a,

B −→ b,

C −→ c.

It can be shown that this grammar generates the language

L = {w ∈ {a, b, c}+ | #(a) = #(b) = #(c)},

which is not context-free.

Proposition 16.3. A language L is generated by a context-sensitive grammar iff it is gen-
erated by some monotonic grammar.

Proposition 16.3 is proved as follows:

16.3. TYPE-0 GRAMMARS AND CONTEXT-SENSITIVE GRAMMARS 393

Proof sketch.

Step 1 . Construct a new monotonic grammar G1 such that the rules are of the form

α→ β,

with |α| ≤ |β| and α ∈ N+, or S → ϵ, where S does not appear on the left-hand side of any
rule.

This can be achieved by replacing every terminal a occurring on the left hand-side of a
rule by a new nonterminal Xa and adding the rule

Xa → a.

Step 2 . Given a rule α→ β, let

w(G) = max{|β| | α→ β ∈ G}.

Construct a new monotonic grammar G2 such that the rules α→ β satisfy the conditions:

(1) α ∈ N+

(2) w(G2) ≤ 2.

Given a rule
π : A1 · · ·Am → B1 · · ·Bn,

with m ≤ n,

if n ≤ 2, OK;

If 2 ≤ m < n, create the two rules

A1 · · ·Am → B1 · · ·Bm−1Xπ,

Xπ → Bm · · ·Bn.

If m = 1 and n ≥ 3, create the n− 1 rules:

A1 → B1Xπ,1,

Xπ,1 → B2Xπ,2,

· · ·→ · · · ,
Xπ,n−2 → Bn−1Bn.

If m = n and n ≥ 3, create the n− 1 rules:

A1A2 → B1Xπ,1,

Xπ,1A3 → B2Xπ,2,

· · ·→ · · · ,
Xπ,n−2An → Bn−1Bn.

394CHAPTER 16. PHRASE-STRUCTURE AND CONTEXT-SENSITIVE GRAMMARS

In all cases, w(G2) is reduced.

Step 3 . Create a context-sensitive grammar as follows:

If A→ β, OK

If AB → CD and A = C or D = B, OK

If π : AB → CD, where A ̸= C and D ̸= B, create the four rules

AB → [π, A]B,

[π, A]B → [π, A][π, B],

[π, A][π, B]→ C[π, B],

C[π, B]→ CD.

This concludes the proof.

Context-sensitive languages are recursive. This is shown as follows.

For any n ≥ 1 define the sequence of sets W n
i ⊆ V +, as follows:

W n
0 = {S},

W n
i+1 = W n

i ∪ {β ∈ V + | α =⇒ β, α ∈ W n
i , |β| ≤ n}.

It is clear that
W n

0 ⊆W n
1 ⊆ · · · ⊆W n

i ⊆W n
i+1 ⊆ · · · ,

and if |V | = K, since V i contains Ki strings and since

W n
i ⊆

n⋃

j=1

V j,

every W n
i contains at most K +K2 + · · ·+Kn strings, and by the familiar argument, there

is some smallest i, say i0, such that

W n
i0 = W n

i0+1,

and W n
j = W n

i0 for all j > i0.

The following proposition holds.

Proposition 16.4. Given a context-sensitive grammar G, for every n ≥ 1, for every i ≥ 0,

W n
i = {β ∈ V + | S k

=⇒ β, k ≤ i, |β| ≤ n}.

Furthermore, there is some smallest i, say i0 such that

W n
i0 = {β ∈ V + | S ∗

=⇒ β, |β| ≤ n}.

16.3. TYPE-0 GRAMMARS AND CONTEXT-SENSITIVE GRAMMARS 395

Proof sketch. By definition of W n
i , it is obvious that

W n
i ⊆ {β ∈ V + | S k

=⇒ β, k ≤ i, |β| ≤ n}.

Conversely, to show that

{β ∈ V + | S k
=⇒ β, k ≤ i, |β| ≤ n} ⊆W n

i ,

we proceed by induction on i.

The claim is trivial for i = 0. Given a derivation

S
k

=⇒ δ =⇒ β, k ≤ i, |β| ≤ n,

we must have |δ| ≤ n, since otherwise, because the grammar is context-sensitive, we must
have |δ| ≤ |β|, and we would have |β| > n, a contradiction.

By the induction hypothesis, we get δ ∈ W n
i , and by the definition of W n

i+1, we have
β ∈ W n

i+1.

For the second part of the proposition, if |β| = n with n ≥ 1, there is some k ≥ 0 such

that S
k

=⇒ β.

But then, β ∈ W n
k , which implies that β ∈ W n

i0 , since

W n
0 ⊆W n

1 ⊆ · · · ⊆W n
i0 ,

and W n
j = W n

i0 for all j > i0.

As a corollary of Proposition 16.4, given any β ∈ V ∗, we can decide whether S
∗

=⇒ β.

Indeed, if β = ϵ, we must have the production S −→ ϵ.

Otherwise, if |β| = n with n ≥ 1, by Proposition 16.4, we have β ∈ W n
i0 .

Thus, is is enough to compute W n
i0 and to test whether β is in it.

Remark : If the grammar G is not context-sensitive, we can’t claim that

W n
i = {β ∈ V + | S k

=⇒ β, k ≤ i, |β| ≤ n},

but the other facts remain true. Unfortunately, W n
i0 may not be computable any more!

The context-sensitive languages are accepted by space-bounded Turing machines, defined
as follows.

Definition 16.7. A linear-bounded automaton (for short, lba) is a nondeterministic Turing
machine such that for every input w ∈ Σ∗, there is some accepting computation in which
the tape contains at most |w|+ 1 symbols.

Proposition 16.5. A language L is generated by a context-sensitive grammar iff it is ac-
cepted by a linear-bounded automaton.

The class of context-sensitive languages is very large. The main problem is that no
practical methods for constructing parsers from csg’s are known.

396CHAPTER 16. PHRASE-STRUCTURE AND CONTEXT-SENSITIVE GRAMMARS

Bibliography

[1] Tom M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in
Mathematics. Springer, first edition, 1976.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity. A Modern Approach. Cam-
bridge University Press, first edition, 2009.

[3] Pierre Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulations, and Queues.
TAM, Vol. 31. Springer Verlag, third edition, 2001.

[4] Erhan Cinlar. Introduction to Stochastic Processes. Dover, first edition, 2014.

[5] Richard Crandall and Carl Pomerance. Prime Numbers. A Computational Perspective.
Springer, second edition, 2005.

[6] Martin Davis. Hilbert’s tenth problem is unsolvable. American Mathematical Monthly,
80(3):233–269, 1973.

[7] Martin Davis, Yuri Matijasevich, and Julia Robinson. Hilbert’s tenth problem. diophan-
tine equations: Positive aspects of a negative solution. In Mathematical Developments
Arising from Hilbert Problems, volume XXVIII, Part 2, pages 323–378. AMS, 1976.

[8] Samuel Eilenberg. Automata, Languages and Machines, Volume A. Academic Press,
first edition, 1974.

[9] Jean Gallier and Jocelyn Quaintance. Notes on Primality Testing and Public Key Cryp-
tography. Part I: Randomized Algorithms, Miller–Rabin and Solovay–Strassen Tests.
Technical report, University of Pennsylvania, Levine Hall, Philadelphia, PA 19104, 2017.
pdf file available from http://www.cis.upenn.edu/∼jean/RSA-primality-testing.pdf.

[10] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford
University Press, third edition, 2001.

[11] John G. Kemeny, Snell J. Laurie, and Anthony W. Knapp. Denumerable Markov Chains.
GTM, Vol. No 40. Springer-Verlag, second edition, 1976.

[12] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, second edition, 1997.

397

398 BIBLIOGRAPHY

[13] Michael Machtey and Paul Young. An Introduction to the General Theory of Algorithms.
Elsevier North-Holland, first edition, 1978.

[14] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, first edition, 2005.

[15] Christos H. Papadimitriou. Computational Complexity. Pearson, first edition, 1993.

[16] Vaughan R. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing,
4(3):214–220, 1975.

[17] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[18] Paulo Ribenboim. The Little Book of Bigger Primes. Springer-Verlag, second edition,
2004.

[19] Elaine Rich. Automata, Computability, and Complexity. Theory and Applications. Pren-
tice Hall, first edition, 2007.

[20] Mark Stamp. A revealing introduction to hidden markov models. Technical report, San
Jose State University, Department of Computer Science, San Jose, California, 2015.

