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Chapter 1

Introduction

The theory of computation is concerned with algorithms and algorithmic systems: their
design and representation, their completeness, and their complexity.

The purpose of these notes is to introduce some of the basic notions of the theory of
computation, including concepts from formal languages and automata theory, the theory of
computability, some basics of recursive function theory, and an introduction to complexity
theory. Other topics such as correctness of programs will not be treated here (there just
isn’t enough time!).

The notes are divided into three parts. The first part is devoted to formal languages
and automata. The second part deals with models of computation, recursive functions, and
undecidability. The third part deals with computational complexity, in particular the classes
P and NP.
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Chapter 2

Basics of Formal Language Theory

2.1 Review of Some Basic Math Notation and

Definitions

N,Z,Q,R,C.

The natural numbers ,

N = {0, 1, 2, . . .}.

The integers ,

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

The rationals ,

Q =

{
p

q
| p, q ∈ Z, q 6= 0

}
.

The reals , R.

The complex numbers ,

C = {a+ ib | a, b ∈ R} .

Given any set X , the power set of X is the set of all subsets of X and is denoted 2X .

The notation

f : X → Y

denotes a function with domain X and range
(or codomain) Y .

graph(f) = {(x, f(x)) | x ∈ X} ⊆ X × Y

is the graph of f .
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8 CHAPTER 2. BASICS OF FORMAL LANGUAGE THEORY

Im(f) = f(X) = {y ∈ Y | ∃x ∈ X, y = f(x)} ⊆ Y

is the image of f .

More generally, if A ⊆ X , then

f(A) = {y ∈ Y | ∃x ∈ A, y = f(x)} ⊆ Y

is the (direct) image of A under f .

If B ⊆ Y , then
f−1(B) = {x ∈ X | f(x) ∈ B} ⊆ X

is the inverse image or preimage (or pullback) of B under f .

f−1(B) is a set; it might be empty even if B 6= ∅. The inverse image is defined for any
function and does not require f to be invertible.

Given two functions f : X → Y and g : Y → Z, the function g ◦ f : X → Z given by

(g ◦ f)(x) = g(f(x)) for all x ∈ X

is the composition of f and g.

The function idX : X → X given by

idX(x) = x for all x ∈ X

is the identity function (of X).

A function f : X → Y is injective (old terminology one-to-one) if for all x1, x2 ∈ X ,

if f(x1) = f(x2), then x1 = x2;

equivalently if x1 6= x2, then f(x1) 6= f(x2).

Fact: If X 6= ∅ (and so Y 6= ∅), a function f : X → Y is injective iff there is a function
r : Y → X (a left inverse) such that

r ◦ f = idX .

Note: r is surjective.

A function f : X → Y is surjective (old terminology onto) if for all y ∈ Y , there is some
x ∈ X such that y = f(x), iff

f(X) = Y.

Fact: If X 6= ∅ (and so Y 6= ∅), a function f : X → Y is surjective iff there is a function
s : Y → X (a right inverse or section) such that

f ◦ s = idY .
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Note: s is injective.

A function f : X → Y is bijective if it is injective and surjective.

Fact: If X 6= ∅ (and so Y 6= ∅), a function f : X → Y is bijective if there is a function
f−1 : Y → X which is a left and a right inverse, that is

f−1 ◦ f = idX , f ◦ f−1 = idY .

The function f−1 is unique and called the inverse of f . The function f is said to be
invertible.

A binary relation R between two sets X and Y is a subset

R ⊆ X × Y = {(x, y) | x ∈ X, y ∈ Y }.

dom(R) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ R} ⊆ X

is the domain of R.

range(R) = {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y

is the range of R.

We also write xRy instead of (x, y) ∈ R.

Given two relations R ⊆ X × Y and S ⊆ Y × Z, their composition R ◦ S ⊆ X × Z is
given by

R ◦ S = {(x, z) | ∃y ∈ Y, (x, y) ∈ R and (y, z) ∈ S}.

� Note that if R and S are the graphs of two functions f and g, then R ◦ S is the graph
of g ◦ f .

IX = {(x, x) | x ∈ X}

is the identity relation on X .

Given R ⊆ X × Y , the converse R−1 ⊆ Y ×X of R is given by

R−1 = {(x, y) ∈ Y ×X | (y, x) ∈ R}.

A relation R ⊆ X × X is transitive if for all x, y, z ∈ X , if (x, y) ∈ R and (y, z) ∈ R,
then (x, z) ∈ R.

A relation R ⊆ X ×X is transitive iff R ◦R ⊆ R.

A relation R ⊆ X ×X is reflexive if (x, x) ∈ R for all x ∈ X .

A relation R ⊆ X ×X is reflexive iff IX ⊆ R.
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A relation R ⊆ X ×X is symmetric if for all x, y ∈ X , if (x, y) ∈ R, then (y, x) ∈ R.

A relation R ⊆ X ×X is symmetric iff R−1 ⊆ R.

Given R ⊆ X ×X (a relation on X), define Rn by

R0 = IX

Rn+1 = R ◦Rn.

The transtive closure R+ of R is given by

R+ =
⋃

n≥1

Rn.

Fact. R+ is the smallest transitive relation containing R.

The reflexive and transitive closure R∗ of R is given by

R∗ =
⋃

n≥0

Rn = R+ ∪ IX .

Fact. R∗ is the smallest transitive and reflexive relation containing R.

A relation R ⊆ X×X is an equivalence relation if it is reflexive, symmetric, and transitive.

Fact. The smallest equivalence relation containing a relation R ⊆ X ×X is given by

(R ∪ R−1)∗.

A relation R ⊆ X ×X is antisymmetric if for all x, y ∈ X , if (x, y) ∈ R and (y, x) ∈ R,
then x = y.

A relation R ⊆ X ×X is a partial order if it is reflexive, transitive, and antisymmetic.

A partial order R ⊆ X × X is a total order if for all x, y ∈ X , either (x, y) ∈ R or
(y, x) ∈ R.

2.2 Alphabets, Strings, Languages

Our view of languages is that a language is a set of strings. In turn, a string is a finite
sequence of letters from some alphabet. These concepts are defined rigorously as follows.

Definition 2.1. An alphabet Σ is any finite set.
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We often write Σ = {a1, . . . , ak}. The ai are called the symbols of the alphabet.

Examples :

Σ = {a}

Σ = {a, b, c}

Σ = {0, 1}

Σ = {α, β, γ, δ, ǫ, λ, ϕ, ψ, ω, µ, ν, ρ, σ, η, ξ, ζ}

A string is a finite sequence of symbols. Technically, it is convenient to define strings as
functions. For any integer n ≥ 1, let

[n] = {1, 2, . . . , n},

and for n = 0, let
[0] = ∅.

Definition 2.2. Given an alphabet Σ, a string over Σ (or simply a string) of length n is
any function

u : [n]→ Σ.

The integer n is the length of the string u, and it is denoted as |u|. When n = 0, the
special string u : [0]→ Σ of length 0 is called the empty string, or null string , and is denoted
as ǫ.

Given a string u : [n]→ Σ of length n ≥ 1, u(i) is the i-th letter in the string u. For sim-
plicity of notation, we write ui instead of u(i), and we denote the string u = u(1)u(2) · · ·u(n)
as

u = u1u2 · · ·un,

with each ui ∈ Σ.

For example, if Σ = {a, b} and u : [3] → Σ is defined such that u(1) = a, u(2) = b, and
u(3) = a, we write

u = aba.

Other examples of strings are

work, fun, gabuzomeuh

Strings of length 1 are functions u : [1]→ Σ simply picking some element u(1) = ai in Σ.
Thus, we will identify every symbol ai ∈ Σ with the corresponding string of length 1.

The set of all strings over an alphabet Σ, including the empty string, is denoted as Σ∗.
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Observe that when Σ = ∅, then
∅∗ = {ǫ}.

When Σ 6= ∅, the set Σ∗ is countably infinite. Later on, we will see ways of ordering and
enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.3. Given an alphabet Σ, given any two strings u : [m] → Σ and v : [n] → Σ,
the concatenation u · v (also written uv) of u and v is the string
uv : [m+ n]→ Σ, defined such that

uv(i) =

{
u(i) if 1 ≤ i ≤ m,
v(i−m) if m+ 1 ≤ i ≤ m+ n.

In particular, uǫ = ǫu = u. Observe that

|uv| = |u|+ |v|.

For example, if u = ga, and v = buzo, then

uv = gabuzo

It is immediately verified that

u(vw) = (uv)w, for all u, v, w ∈ Σ∗. (assoc)

Thus, concatenation is a binary operation on Σ∗ which is associative and has ǫ as an identity.

Note that generally, uv 6= vu, for example for u = a and v = b.

Given a string u ∈ Σ∗ and n ≥ 0, we define un recursively as follows:

u0 = ǫ

un+1 = unu (n ≥ 0).

By setting n = 0 in
un+1 = unu

and using the fact that u0 = ǫ we get

u1 = u0+1 = u0u = ǫu = u,

so u1 = u. It is an easy exercise to show that

unu = uun, for all n ≥ 0.
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For the base case n = 0, since u0 = ǫ, we have

u0u = ǫu = u = uǫ = uu0.

For the induction step, we have

un+1u = (unu)u by definition of un+1

= (uun)u by the induction hypothesis

= u(unu) by associativity

= uun+1 by definition of un+1.

Definition 2.4. Given an alphabet Σ, given any two strings u, v ∈ Σ∗ we define the following
notions as follows:

u is a prefix of v iff there is some y ∈ Σ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ∗ such that

v = xu.

u is a substring of v iff there are some x, y ∈ Σ∗ such that

v = xuy.

We say that u is a proper prefix (suffix, substring) of v iff u is a prefix (suffix, substring)
of v and u 6= v.

For example, ga is a prefix of gabuzo,

zo is a suffix of gabuzo and

buz is a substring of gabuzo.

Recall that a partial ordering ≤ on a set S is a binary relation ≤ ⊆ S × S which is
reflexive, transitive, and antisymmetric.

The concepts of prefix, suffix, and substring, define binary relations on Σ∗ in the obvious
way. It can be shown that these relations are partial orderings.

Another important ordering on strings is the lexicographic (or dictionary) ordering.

Definition 2.5. Given an alphabet Σ = {a1, . . . , ak} assumed totally ordered such that
a1 < a2 < · · · < ak, given any two strings u, v ∈ Σ∗, we define the lexicographic ordering �
as follows:

u � v





(1) if v = uy, for some y ∈ Σ∗, or
(2) if u = xaiy, v = xajz, ai < aj,
with ai, aj ∈ Σ, and for some x, y, z ∈ Σ∗.
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The idea is that we scan u and v simultaneously from left to right, comparing the mth
symbol um in u to themth symbol vm in v, starting withm = 1. If no discrepancy arises, that
is, if the m-th symbol um in u agrees with the m-th symbol vm in v for m = 1, . . . , |u|, then
u is a prefix of v and we declare that u precedes v in the lexicographic ordering. Otherwise,
for a while u and v agree along a common prefix x (possibly the empty string), and then
there is a leftmost discrepancy , which means that u is of the form u = xaiy and v is of the
form v = xajz, with ai 6= aj (and x, y, z ∈ Σ∗ arbitrary). Then we need to break the tie, and
to do this we use the fact that the symbols a1 < a2 < · · · < ak are assumed to be (totally)
ordered, so we see which of ai and aj comes first, say ai < aj, and we declare that u = xaiy
precedes v = xajz in the lexicographic ordering.

Note that cases (1) and (2) are mutually exclusive. In case (1), u is a prefix of v. In case
(2) v 6� u and u 6= v.

For example
ab � b, gallhager � gallier.

It is fairly tedious to prove that the lexicographic ordering is in fact a partial ordering.
In fact, it is a total ordering , which means that for any two strings u, v ∈ Σ∗, either u � v,
or v � u.

The reversal wR of a string w is defined inductively as follows:

ǫR = ǫ,

(ua)R = auR,

where a ∈ Σ and u ∈ Σ∗.

For example
reillag = gallierR.

By setting u = ǫ in
(ua)R = auR,

since ǫR = ǫ and a = ǫa, we get

aR = (ǫa)R = aǫR = aǫ = a,

namely aR = a for all a ∈ Σ.

It can be shown by induction on |v| that

(uv)R = vRuR.

A useful trick that cuts down on cumbersome notation when doing induction on strings
is the observation that a nonempty string w ∈ Σ∗ of length n+ 1 (n ≥ 0) can be written as

w = ua, for some u ∈ Σ∗ and some symbol a ∈ Σ, with |u| = n.
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Since |w| = n + 1 (as w = ua), we can do induction on u. This trick saves us from using
many indices (you do not want to write w = w1 · · ·wn+1, etc.). Sometimes, it is more
convenient to write w = au, with a ∈ Σ, u ∈ Σ∗, and |u| = n.

It follows (by induction on n) that

(u1 . . . un)
R = uRn . . . u

R
1 ,

and when ui ∈ Σ, we have
(u1 . . . un)

R = un . . . u1.

We can now define languages.

Definition 2.6. Given an alphabet Σ, a language over Σ (or simply a language) is any
subset L of Σ∗.

If Σ 6= ∅, there are uncountably many languages.

A Quick Review of Finite, Infinite, Countable, and Uncountable Sets

For details and proofs, see Discrete Mathematics, by Gallier.

Let N = {0, 1, 2, . . .} be the set of natural numbers.

Recall that a set X is finite if there is some natural number n ∈ N and a bijection between
X and the set [n] = {1, 2, . . . , n}. (When n = 0, X = ∅, the empty set.)

The number n is uniquely determined. It is called the cardinality (or size) of X and is
denoted by |X|.

A set is infinite iff it is not finite.

Fact. Recall that any injection or surjection of a finite set to itself is in fact a bijection.

The above fails for infinite sets.

The pigeonhole principle asserts that there is no bijection between a finite set X and any
proper subset Y of X .

Consequence: If we think of X as a set of n pigeons and if there are only m < n boxes
(corresponding to the elements of Y ), then at least two of the pigeons must share the same
box.

As a consequence of the pigeonhole principle, a set X is infinite iff it is in bijection with
a proper subset of itself.

For example, we have a bijection n 7→ 2n between N and the set 2N of even natural
numbers, a proper subset of N, so N is infinite.

Definition 2.7. A set X is countable (or denumerable) if there is an injection from X into
N.
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IfX is not the empty set, since f : X → N is an injection iff there is a surjection r : N→ X
such that r ◦ f = idX , the set X is countable iff there is a surjection from N onto X .

Fact. It can be shown that a set X is countable if either it is finite or if it is in bijection
with N (in which case it is infinite).

We will see later that N×N is countable. As a consequence, the set Q of rational numbers
is countable.

A set is uncountable if it is not countable.

For example, R (the set of real numbers) is uncountable.

Similarly

(0, 1) = {x ∈ R | 0 < x < 1}

is uncountable. However, there is a bijection between (0, 1) and R (find one!)

The set 2N of all subsets of N is uncountable. This is a special case of Cantor’s theorem
discussed below.

Suppose |Σ| = k with Σ = {a1, . . . , ak}. First, observe that there are kn strings of length
n and (kn+1− 1)/(k− 1) strings of length at most n over Σ; when k = 1, the second formula
should be replaced by n + 1. Indeed, since a string is a function u : {1, . . . , n} → Σ, the
number of strings of length n is the number of functions from {1, . . . , n} to Σ, and since the
cardinality of Σ is k, there are kn such functions (this is immediately shown by induction on
n). Then the number of strings of length at most n is

1 + k + k2 + · · ·+ kn.

If k = 1, this number is n + 1, and if k ≥ 2, as the sum of a geometric series, it is
(kn+1 − 1)/(k − 1).

If Σ 6= ∅, then the set Σ∗ of all strings over Σ is infinite and countable, as we now show
by constructing an explicit bijection from Σ∗ onto N.

If k = 1 write a = a1, and then

{a}∗ = {ǫ, a, aa, aaa, . . . , an, . . .}.

We have the bijection n 7→ an from N to {a}∗.

If k ≥ 2, then we can think of the string

u = ai1 · · · ain

as a representation of the integer ν(u) in base k shifted by (kn − 1)/(k − 1), with
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ν(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in

=
kn − 1

k − 1
+ (i1 − 1)kn−1 + · · ·+ (in−1 − 1)k + in − 1.

(and with ν(ǫ) = 0), where 1 ≤ ij ≤ k for j = 1, . . . , n.

We leave it as an exercise to show that ν : Σ∗ → N is a bijection. Finding explicitly (that
is, a formula) for the inverse of ν is surprisingly difficult.

In fact, ν corresponds to the enumeration of Σ∗ where u precedes v if |u| < |v|, and
u precedes v in the lexicographic ordering if |u| = |v|. It is easy to check that the above
relation (u precedes v) is a total order.

For example, if k = 2 and if we write Σ = {a, b}, then the enumeration begins with

ǫ,

0

a, b,

1, 2,

aa, ab, ba, bb,

3, 4, 5, 6,

aaa, aab, aba, abb, baa, bab, bba, bbb

7, 8, 9, 10, 11, 12, 13, 14

To get the next row, concatenate a on the left, and then concatenate b on the left. We
have

ν(bab) = 2 · 22 + 1 · 21 + 2 = 8 + 2 + 2 = 12.

It works!

On the other hand, if Σ 6= ∅, the set 2Σ
∗

of all subsets of Σ∗ (all languages) is uncountable.

Indeed, we can show that there is no surjection from N onto 2Σ
∗

First, we will show that
there is no surjection from Σ∗ onto 2Σ

∗

. This is a special case of Cantor’s theorem.

We claim that if there is no surjection from Σ∗ onto 2Σ
∗

, then there is no surjection from
N onto 2Σ

∗

either.

Proof. Assume by contradiction that there is a surjection g : N → 2Σ
∗

. But, if Σ 6= ∅, then
Σ∗ is infinite and countable, thus we have the bijection ν : Σ∗ → N. Then the composition

Σ∗ ν // N
g // 2Σ

∗

is a surjection, because the bijection ν is a surjection, g is a surjection, and the composition
of surjections is a surjection, contradicting the hypothesis that there is no surjection from
Σ∗ onto 2Σ

∗

.
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The fact that there is no surjection from Σ∗ onto 2Σ
∗

is an instance of Cantor’s Theorem.

Theorem 2.1. (Cantor, 1873) For every set X, there is no surjection from X onto 2X .

Proof. Assume there is a surjection h : X → 2X , and consider the set

D = {x ∈ X | x /∈ h(x)} ∈ 2X .

By definition, for any x ∈ X we have x ∈ D iff x /∈ h(x). Since h is surjective, there is
some y ∈ X such that h(y) = D. Then, by definition of D and since D = h(y), we have

y ∈ D iff y /∈ h(y) = D,

a contradiction. Therefore, h is not surjective.

This is a beautiful proof but it is very abstract. The reader should experiment with
concrete examples. For example, if X = {a, b, c} and h1 : X → 2X is given by

h1(a) = {a}, h1(b) = {a, c}, h1(c) = {a, b},

we have D = {b, c}. Indeed, {b, c} is not in the image of h1.

For the function h2 : X → 2X given by

h2(a) = {a}, h2(b) = {a, c}, h2(c) = {a, c},

we have D = {b}. Indeed, {b} is not in the image of h2.

The proof of Theorem 2.1 actually shows a stronger fact: for every set X and every
function h : X → 2X , the subset D = {x ∈ X | x /∈ h(x)} is not in the image of h; that is,
there is no y ∈ X such that D = h(y).

Applying Theorem 2.1 to the case where X = Σ∗, we deduce that there is no surjection
from Σ∗ onto 2Σ

∗

. Therefore, if Σ 6= ∅, then 2Σ
∗

is uncountable.

Applying Theorem 2.1 to the case where X = N, we see that there is no surjection from
N onto 2N. This shows that 2N is uncountable, as we claimed earlier.

For any set X , there an injection of X into 2X obtained by mapping x ∈ X to {x} ∈ 2X .
Since 2∅ = {∅} is not the empty set(!), there is no injection from 2∅ into ∅ (a function with a
nonempty domain must have a nonempty range). If X 6= ∅, since by Cantor’s theorem, there
is no surjection from X onto 2X , there is no injection f : 2X → X of 2X into X . Otherwise,
by a fact stated earlier, there would be a surjection r : X → 2X such that r ◦ f = id2X , a
contradiction. Intuitively, 2X is strictly larger than X .

Since 2Σ
∗

is uncountable (if Σ 6= ∅), we will try to single out countable “tractable” families
of languages.

We will begin with the family of regular languages , and then proceed to the context-free
languages .

We now turn to operations on languages.



2.3. OPERATIONS ON LANGUAGES 19

2.3 Operations on Languages

A way of building more complex languages from simpler ones is to combine them using
various operations. First, we review the set-theoretic operations of union, intersection, and
complementation.

Given some alphabet Σ, for any two languages L1, L2 over Σ, the union L1 ∪ L2 of L1

and L2 is the language

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

The intersection L1 ∩ L2 of L1 and L2 is the language

L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}.

The difference L1 − L2 of L1 and L2 is the language

L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

The difference is also called the relative complement .

A special case of the difference is obtained when L1 = Σ∗, in which case we define the
complement L of a language L as

L = {w ∈ Σ∗ | w /∈ L}.

The above operations do not use the structure of strings. The following operations use
concatenation.

Definition 2.8. Given an alphabet Σ, for any two languages L1, L2 over Σ, the concatenation
L1L2 of L1 and L2 is the language

L1L2 = {w ∈ Σ∗ | ∃u ∈ L1, ∃v ∈ L2, w = uv}.

For any language L, we define Ln as follows:

L0 = {ǫ},

Ln+1 = LnL (n ≥ 0).

By setting n = 0 in Ln+1 = LnL, since L0 = {ǫ}, we get

L1 = L0+1 = L0L = {ǫ}L = L,

so L1 = L.
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The following properties are easily verified:

L∅ = ∅,

∅L = ∅,

L{ǫ} = L,

{ǫ}L = L,

(L1 ∪ {ǫ})L2 = L1L2 ∪ L2,

L1(L2 ∪ {ǫ}) = L1L2 ∪ L1,

(L1L2)L3 = L1(L2L3)

LnL = LLn.

In general, L1L2 6= L2L1.

We define the reversal LR of a language L ⊆ Σ∗ as

LR = {wR | w ∈ L}.

So far, the operations that we have introduced, except complementation (since L = Σ∗−L
is infinite if L is finite and Σ is nonempty), preserve the finiteness of languages. This is not
the case for the next two operations.

Definition 2.9. Given an alphabet Σ, for any language L over Σ, the Kleene ∗-closure L∗

of L is the language

L∗ =
⋃

n≥0

Ln.

The Kleene +-closure L+ of L is the language

L+ =
⋃

n≥1

Ln.

Thus, L∗ is the infinite union

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . ,

and L+ is the infinite union

L+ = L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . .

Since L1 = L, both L∗ and L+ contain L. In fact,

L+ = {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · · ∃un ∈ L, w = u1 · · ·un},
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and since L0 = {ǫ},

L∗ = {ǫ} ∪ {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · · ∃un ∈ L, w = u1 · · ·un}.

Thus, the language L∗ always contains ǫ, and we have

L∗ = L+ ∪ {ǫ}.

However, if ǫ /∈ L, then ǫ /∈ L+. The following is easily shown:

∅∗ = {ǫ},

L+ = L∗L,

L∗∗ = L∗,

L∗L∗ = L∗.

The Kleene closures have many other interesting properties.

Homomorphisms are also very useful.

Given two alphabets Σ,∆, a homomorphism h : Σ∗ → ∆∗ between Σ∗ and ∆∗ is a function
h : Σ∗ → ∆∗ such that

h(uv) = h(u)h(v) for all u, v ∈ Σ∗.

Letting u = v = ǫ, we get
h(ǫ) = h(ǫ)h(ǫ),

which implies that (why?)
h(ǫ) = ǫ.

If Σ = {a1, . . . , ak}, it is easily seen that h is completely determined by h(a1), . . . , h(ak)
(why?)

Example 2.1. Let Σ = {a, b, c}, ∆ = {0, 1}, and

h(a) = 01, h(b) = 011, h(c) = 0111.

For example,
h(abbc) = 010110110111.

Given any language L1 ⊆ Σ∗, we define the image h(L1) of L1 as

h(L1) = {h(u) ∈ ∆∗ | u ∈ L1}.

Given any language L2 ⊆ ∆∗, we define the inverse image h−1(L2) of L2 as

h−1(L2) = {u ∈ Σ∗ | h(u) ∈ L2}.

We now turn to the first formalism for defining languages, Deterministic Finite Automata
(DFA’s)
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Chapter 3

DFA’s, NFA’s, Regular Languages

The family of regular languages is the simplest, yet interesting family of languages.

We give six definitions of the regular languages.

1. Using deterministic finite automata (DFAs).

2. Using nondeterministic finite automata (NFAs).

3. Using a closure definition involving, union, concatenation, and Kleene ∗.

4. Using regular expressions .

5. Using right-invariant equivalence relations of finite index (the Myhill-Nerode charac-
terization).

6. Using right-linear context-free grammars .

We prove the equivalence of these definitions, often by providing an algorithm for con-
verting one formulation into another.

We find that the introduction of NFA’s is motivated by the conversion of regular expres-
sions into DFA’s.

To finish this conversion, we also show that every NFA can be converted into a DFA
(using the subset construction).

So, although NFA’s often allow for more concise descriptions, they do not have more
expressive power than DFA’s.

NFA’s operate according to the paradigm: guess a successful path and check it in poly-
nomial time.

This is the essence of an important class of hard problems known as NP which will be
investigated later.

23
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We will also discuss methods for proving that certain languages are not regular (Myhill-
Nerode, pumping lemma).

We present algorithms to convert a DFA to an equivalent one with a minimal number of
states.

3.1 Deterministic Finite Automata (DFA’s)

First we define what DFA’s are, and then we explain how they are used to accept or reject
strings. Roughly speaking, a DFA is a finite transition graph whose edges are labeled with
letters from an alphabet Σ.

The graph also satisfies certain properties that makes it deterministic. Basically, this
means that given any string w, starting from any node, there is a unique path in the graph
“parsing” the string w.

Example 3.1. A DFA for the language

L1 = {ab}
+ = {ab}∗{ab},

i.e.,

L1 = {ab, abab, ababab, . . . , (ab)
n, . . .}.

Input alphabet: Σ = {a, b}.

State set Q1 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F1 = {2}.

Transition table (function) δ1:

a b

0 1 3
1 3 2
2 1 3
3 3 3

Note that state 3 is a trap state or dead state.

Here is a graph representation of the DFA specified by the transition function shown
above:
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0 1 2

3

a

b

b

a

a

b

a, b

Figure 3.1: DFA for {ab}+.

Example 3.2. A DFA for the language

L2 = {ab}
∗ = L1 ∪ {ǫ}

i.e.,
L2 = {ǫ, ab, abab, ababab, . . . , (ab)

n, . . .}.

Input alphabet: Σ = {a, b}.

State set Q2 = {0, 1, 2}.

Start state: 0.

Set of accepting states: F2 = {0}. The convention for the empty string to be accepted is
that the start state is a final state.

Transition table (function) δ2:

a b

0 1 2
1 2 0
2 2 2

State 2 is a trap state or dead state.

Here is a graph representation of the DFA specified by the transition function shown
above:

0 1

2

b

a

b

a

a, b

Figure 3.2: DFA for {ab}∗.
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Example 3.3. A DFA for the language

L3 = {a, b}
∗{abb}.

Note that L3 consists of all strings of a’s and b’s ending in abb.

Input alphabet: Σ = {a, b}.

State set Q3 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F3 = {3}.

Transition table (function) δ3:

a b

0 1 0
1 1 2
2 1 3
3 1 0

Here is a graph representation of the DFA specified by the transition function shown
above:

0 1 2 3
a b

a

b

b a

b

a

Figure 3.3: DFA for {a, b}∗{abb}.

Is this a minimal DFA?

Definition 3.1. A deterministic finite automaton (or DFA) is a quintuple
D = (Q,Σ, δ, q0, F ), where

• Σ is a finite input alphabet ;

• Q is a finite set of states ;
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• F is a subset of Q of final (or accepting) states ;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ : Q× Σ→ Q.

For any state p ∈ Q and any input a ∈ Σ, the state q = δ(p, a) is uniquely determined.

Thus, it is possible to define the state reached from a given state p ∈ Q on input w ∈ Σ∗,
following the path specified by w.

Technically, this is done by defining the extended transition function δ∗ : Q× Σ∗ → Q.

Definition 3.2. Given a DFA D = (Q,Σ, δ, q0, F ), the extended transition function δ∗ : Q×
Σ∗ → Q is defined as follows:

δ∗(p, ǫ) = p,

δ∗(p, ua) = δ(δ∗(p, u), a),

where a ∈ Σ and u ∈ Σ∗.

If we let u = ǫ in
δ∗(p, ua) = δ(δ∗(p, u), a),

since δ∗(p, ǫ) = p, we get

δ∗(p, a) = δ∗(p, ǫa) = δ(δ∗(p, ǫ), a) = δ(p, a),

that is, δ∗(p, a) = δ(p, a) for a ∈ Σ.

The meaning of δ∗(p, w) is that it is the state reached from state p following the path
from p specified by w. The following fact will be used extensively.

Proposition 3.1. Given any DFA D = (Q,Σ, δ, q0, F ), we have the following equation:

δ∗(p, uv) = δ∗(δ∗(p, u), v) for all p ∈ Q and all u, v ∈ Σ∗.

Proof. We proceed by induction on the length of v. For the base case v = ǫ, since δ∗(q, ǫ) = q
for all q ∈ Q, we have

δ∗(p, uǫ) = δ∗(p, u) = δ∗(δ∗(p, u), ǫ).

For the induction step, for u ∈ Σ∗, and all v = ya with y ∈ Σ∗ and a ∈ Σ,

δ∗(p, uya) = δ(δ∗(p, uy), a) by definition of δ∗

= δ(δ∗(δ∗(p, u), y), a) by induction

= δ∗(δ∗(p, u), ya) by definition of δ∗,

establishing the induction step.
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We can now define how a DFA accepts or rejects a string.

Definition 3.3. Given a DFA D = (Q,Σ, δ, q0, F ), the language L(D) accepted (or recog-
nized) by D is the language

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Thus, a string w ∈ Σ∗ is accepted iff the path from q0 on input w ends in a final state.
Since δ∗(q0, ǫ) = q0, the empty string is accepted iff the start state is a final state, as we said
before.

The definition of a DFA does not prevent the possibility that a DFA may have states
that are not reachable from the start state q0, which means that there is no path from q0 to
such states.

For example, in the DFA D1 defined by the transition table below and the set of final
states F = {1, 2, 3}, the states in the set {0, 1} are reachable from the start state 0, but
the states in the set {2, 3, 4} are not (even though there are transitions from 2, 3, 4 to 0, but
they go in the wrong direction).

a b

0 1 0
1 0 1
2 3 0
3 4 0
4 2 0

Since there is no path from the start state 0 to any of the states in {2, 3, 4}, the states
2, 3, 4 are useless as far as acceptance of strings, so they should be deleted as well as the
transitions from them.

Given a DFA D = (Q,Σ, δ, q0, F ), the above suggests defining the following set.

Definition 3.4. Given any DFA D = (Q,Σ, δ, q0, F ), the set Qr of reachable (or accessible)
states is defined by

Qr = {p ∈ Q | (∃u ∈ Σ∗)(p = δ∗(q0, u))}.

The set Qr consists of those states p ∈ Q such that there is some path from q0 to p (along
some string u).

Computing the set Qr is a reachability problem in a directed graph. There are various
algorithms to solve this problem, including breadth-first search or depth-first search. They
all run in polynomial time (in the size of the graph). A simple method consists in computing
inductively the sequence of approximations (Qi

r)i≥0 defined as follows:

Q0
r = {q0}

Qi+1
r = Qi

r ∪ {q ∈ Q | (∃p ∈ Q
i
r)(∃a ∈ Σ) (q = δ(p, a))}.
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It is easy to prove that there is a smallest integer i0 ≤ |Q| − 1 such that

Qi0+1
r = Qi0

r = Qr.

The definition of the Qi
r and the proof that they stabilize and compute Qr is very similar to

the computation of the ǫ-closure; see Section 3.5.

Once the set Qr has been computed, we can clean up the DFAD by deleting all redundant
states in Q−Qr and all transitions from these states.

More precisely, we form the DFA defined as follows.

Definition 3.5. Given any DFA D = (Q,Σ, δ, q0, F ), the DFA Dr is defined as Dr =
(Qr,Σ, δr, q0, Qr ∩ F ), where δr : Qr × Σ→ Qr is the restriction of δ : Q× Σ→ Q to Qr. A
DFA D such that Q = Qr is said to be trim (or reduced).

It can be shown that L(Dr) = L(D) (see the homework problems). Observe that the
DFA Dr is trim. A minimal DFA must be trim.

If D1 is the DFA of the previous example, then the DFA (D1)r is obtained by deleting
the states 2, 3, 4:

a b

0 1 0
1 0 1

Computing Qr gives us a method to test whether a DFA D accepts a nonempty language.
Indeed

L(D) 6= ∅ iff Qr ∩ F 6= ∅. (∗emptyness)

We now come to the first of several equivalent definitions of the regular languages.

Regular Languages, Version 1

Definition 3.6. A language L is a regular language if it is accepted by some DFA.

Note that a regular language may be accepted by many different DFAs. Later on, we
will investigate how to find minimal DFA’s.

For a given regular language L, a minimal DFA for L is a DFA with the smallest number of
states among all DFA’s accepting L. A minimal DFA for L must exist since every nonempty
subset of natural numbers has a smallest element.

In order to understand how complex the regular languages are, we will investigate the
closure properties of the regular languages under union, intersection, complementation, con-
catenation, and Kleene ∗. It turns out that the family of regular languages is closed under
all these operations. For union, intersection, and complementation, we can use the cross-
product construction which preserves determinism.

However, for concatenation and Kleene ∗, there does not appear to be any method
involving DFA’s only. The way to do it is to introduce nondeterministic finite automata
(NFA’s), which we do a little later.
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3.2 The “Cross-product” Construction

Let Σ = {a1, . . . , am} be an alphabet.

Given any two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and D2 = (Q2,Σ, δ2, q0,2, F2), there is a
very useful construction for showing that the union, the intersection, or the relative comple-
ment of regular languages is a regular language.

Given any two languages L1, L2 over Σ, recall that

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2},

L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2},

L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

Let us first explain how to constuct a DFA accepting the intersection L1 ∩ L2. Let D1

and D2 be DFA’s such that L1 = L(D1) and L2 = L(D2). The idea is to construct a
DFA simulating D1 and D2 in parallel. This can be done by using states which are pairs
(p1, p2) ∈ Q1 ×Q2.

Thus, we define the DFA D as follows:

D = (Q1 ×Q2,Σ, δ, (q0,1, q0,2), F1 × F2),

where the transition function δ : (Q1 ×Q2)× Σ→ Q1 ×Q2 is defined as follows:

δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)),

for all p1 ∈ Q1, p2 ∈ Q2, and a ∈ Σ.

Clearly, D is a DFA, since D1 and D2 are. Also, by the definition of δ, we can show by
induction on |w| that we have

δ∗((p1, p2), w) = (δ∗1(p1, w), δ
∗
2(p2, w)),

for all p1 ∈ Q1, p2 ∈ Q2, and w ∈ Σ∗.

The base case is trivial, and for the induction step, if w = ua with u ∈ Σ∗ and a ∈ Σ, we
have

δ∗((p1, p2), ua) = δ(δ∗((p1, p2), u), a) by definition of δ∗

= δ((δ∗1(p1, u), δ
∗
2(p2, u)), a) by induction

= (δ1(δ
∗
1(p1, u), a), δ2(δ

∗
2(p1, u), a)) by definition of δ

= (δ∗1(p1, ua), δ
∗
2(p1, ua)).

The choice of F1×F2 for the final states is motivated by the fact that a string w belongs
to the intersection language L(D1)∩L(D2) iff w is accepted by D1 and w is accepted by D2
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iff the path in D1 from q0,1 on input w ends with a state in F1 and if the path in D2 from
q0,2 on input w ends with a state in F2. To prove rigorously that D accepts L(D1) ∩ L(D2)
we proceed as follows.

Now for every w ∈ Σ∗, we have w ∈ L(D1) ∩ L(D2)

iff w ∈ L(D1) and w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ F1 × F2,

iff δ∗((q0,1, q0,2), w) ∈ F1 × F2,

iff w ∈ L(D).

Thus L(D) = L(D1) ∩ L(D2), and our construction is correct.

We can now modify D very easily to accept L(D1) ∪ L(D2). We change the set of final
states so that it becomes (F1×Q2)∪(Q1×F2). The choice of (F1×Q2)∪(Q1×F2) for the final
states is motivated by the fact that a string w belongs to the union language L(D1)∪L(D2)
iff w is accepted by D1 or w is accepted by D2 iff the path in D1 from q0,1 on input w ends
with a state in F1 or if the path in D2 from q0,2 on input w ends with a state in F2. But if
the path in D1 from q0,1 on input w ends with a state in F1, then we don’t care where we
end in D2, so we let the set of ending states in D2 be the entire set Q2, so acceptance in
D1 corresponds to ending in F1 ×Q2. Similarly, if the path in D2 from q0,2 on input w ends
with a state in F2, then we don’t care where we end in D1, so we let the set of ending states
in D1 be the entire set Q1, so acceptance in D2 corresponds to ending in Q1 × F2. To prove
rigorously that D accepts L(D1) ∪ L(D2) we proceed as follows.

For all w ∈ Σ∗, we have w ∈ L(D1) ∪ L(D2)

iff w ∈ L(D1) or w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 or δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ (F1 ×Q2) ∪ (Q1 × F2),

iff δ∗((q0,1, q0,2), w) ∈ (F1 ×Q2) ∪ (Q1 × F2),

iff w ∈ L(D).

Thus L(D) = L(D1) ∪ L(D2), and our construction is correct.

We can also modify D very easily to accept L(D1)− L(D2). We change the set of final
states so that it becomes F1 × (Q2 − F2).

The choice of F1 × (Q2 − F2) for the final states is motivated by the fact that a string w
belongs to the relative complement language L(D1)− L(D2) iff w is accepted by D1 and w
is rejected by D2 iff the path in D1 from q0,1 on input w ends with a state in F1 and if the
path in D2 from q0,2 on input w does not end with a state in F2. Equivalently, the path in
D1 from q0,1 on input w ends with a state in F1 and the path in D2 from q0,2 on input w
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ends with a state in Q2−F2. To prove rigorously that D accepts L(D1)−L(D2) we proceed
as follows.

For all w ∈ Σ∗, we have w ∈ L(D1)− L(D2)

iff w ∈ L(D1) and w /∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) /∈ F2,

iff (δ∗1(q0,1, w), δ
∗
2(q0,2, w)) ∈ F1 × (Q2 − F2),

iff δ∗((q0,1, q0,2), w) ∈ F1 × (Q2 − F2),

iff w ∈ L(D).

Thus L(D) = L(D1)− L(D2), and our construction is correct.

In all cases, if D1 has n1 states and D2 has n2 states, the DFA D has n1n2 states.

Example 3.4. Let Σ = {a, b}. Consider the languages

L1 = {w ∈ Σ∗ | w contains an odd number of b’s}

and
L2 = {w ∈ Σ∗ | w contains a number of a’s divisible by 3}.

The language L1 is accepted by the DFA shown in Figure 3.4 and the language L2 is accepted
by the DFA shown in Figure 3.5.

0 1
b

b

a a

Figure 3.4: DFA for L1.

A B

C

a

aa

b b

b

Figure 3.5: DFA for L2.

The DFA accepting L3 = L1 ∪ L2 obtained by appying cross-product construction to D1

and D2 has the following transition table



3.2. THE “CROSS-PRODUCT” CONSTRUCTION 33

a b

(0, A) (0, B) (1, A)
(0, B) (0, C) (1, B)
(0, C) (0, A) (1, C)
(1, A) (1, B) (0, A)
(1, B) (1, C) (0, B)
(1, C) (1, A) (0, C)

The final states are: (0, A), (1, A), (1, B), (1, C) and the start state is (0, A). The cross-
product DFA is shown in Figure 3.6.

(0, A) (0, B) (0, C)

(1, A) (1, B) (1, C)

a a

a a

bb bb bb

a

a

Figure 3.6: DFA for L1 ∪ L2.

The fact that the regular languages are closed under union yields the useful fact that
every finite language is regular . Indeed, if L = {w1, . . . , wn}, we can write L as the finite
union

L = {w1} ∪ {w2} ∪ · · · ∪ {wn},

where each language {wi} is regular, because if |wi| = ni, then there is an obvious DFA with
ni + 2 states accepting wi.

As an application of the cross-product construction we show how to solve the following
important problem.

Definition 3.7. The equivalence problem for DFA’s is the following problem: given some
alphabet Σ, is there an algorithm which takes as input any two DFA’s D1 and D2 and decides
whether L(D1) = L(D2).
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Now L(D1) 6= L(D2) if either some string u ∈ Σ∗ is accepted by D1 and rejected by D2,
or some string v ∈ Σ∗ is accepted by D2 and rejected by D1. So if we enumerate all strings
in Σ∗ using the method of the section on countable and uncountable sets, eventually some
u or some v as above will show up and we will know that L(D1) 6= L(D2), but the problem
is that we know of no upper bound on the length of u or v.

To solve our problem we make use of the following fact: given any two sets X and Y ,

X = Y iff X − Y = ∅ and Y −X = ∅.

Applying the above fact to X = L(D1) and Y = L(D2), we get L(D1) = L(D2) iff
L(D1) − L(D2) = ∅ and L(D2) − L(D1) = ∅. But we just saw that the cross-product
construction (for relative complement) yields two DFA’s D12 and D21 such that L(D12) =
L(D1)− L(D2) and L(D21) = L(D2)− L(D1), so we get

L(D1) = L(D2) iff L(D12) = ∅ and L(D21) = ∅.

The problem is reduced to testing whether a DFA does not accept any string, that is,
L(D) = ∅. But we solved this problem before. Indeed, we know from (∗emptyness) that if Qr

is the set of reachable states of D, then L(D) = ∅ iff Qr ∩ F = ∅. Therefore, L(D12) = ∅ iff
(Q12)r ∩ (F1 × F2) = ∅, and L(D21) = ∅ iff (Q21)r ∩ (F2 ×F1) = ∅, where (Q12)r is the set of
states reachable from (q0,1, q0,2) in the DFA’s D12, and (Q21)r is the set of states reachable
from (q0,2, q0,1) in the DFA’s D21. But by definition of the cross-product, testing whether
(Q21)r ∩ (F2 × F1) = ∅ is equivalent to testing whether (Q12)r ∩ (F1 × F2) = ∅, so

L(D1) = L(D2) iff (Q12)r ∩ (F1 × F2) = ∅ and (Q12)r ∩ (F1 × F2) = ∅.

Therefore, we obtained an algorithm for deciding whether L(D1) = L(D2) using the
cross-product construction and reducing the problem to two reachability problems in the
graph associated with D12. This algorithm runs in time polynomial in n1n2, where n1 = |Q1|
and n2 = |Q2|. This is a pretty good algorithm, but there are faster algorithms based on
methods for testing state equivalence, as we will see later.

Given a DFA D = (Q,Σ, δ, q0, F ), informally, two states p, q ∈ Q are equivalent , written
p ≡ q, if they have the same acceptance/rejection behavior. This means that if we make two
copies Dp and Dq of D and if we view p as the start state of Dp and q as the start state of
Dq, then any string w ∈ Σ∗ is accepted by Dp iff it is accepted by Dq. We can make this
precise by setting

Dp = (Q,Σ, δ, p, F ), Dq = (Q,Σ, δ, q, F )

(note how in Dp, the old start state q0 is replaced by the new start state p, and in Dq, the
old start state q0 is replaced by the new start state q), and then

p, q ∈ Q are equivalent iff L(Dp) = L(Dq).

Our method for deciding whether L(Dp) = L(Dq) yields an algorithm for testing state
equivalence, but this is a rather inefficient method and there are much better methods
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discussed in Section 6.3. Nevertheless, it can be shown that if p ≡ q, then we can construct
a smaller DFA by merging p and q and also merging the transitions in and out of p and q.
By repeating this process, we will ultimately obtain a minimal DFA. Actually, it is better
to find the equivalence classes of states under state equivalence, and then merge all states
in each equivalence class. It is by no means obvious that this process is correct and that we
get a minimal DFA, but it is, as we will see in Section 6.3.

3.3 Morphisms, F -Maps, B-Maps and

Homomorphisms of DFA’s

It is natural to wonder whether there is a reasonable notion of a mapping between DFA’s.
It turns out that this is indeed the case and there is a notion of a map between DFA’s
which is very useful in the theory of DFA minimization (given a DFA, find an equivalent
DFA of minimal size). Obviously, a map between DFA’s should be a certain kind of graph
homomorphism, which means that given two DFA’s D1 = (Q1,Σ, δ1, q0,1, F1) and D2 =
(Q2,Σ, δ2, q0,2, F2), we have a function, h : Q1 → Q2, mapping every state p ∈ Q1 of D1 to
some state q = h(p) ∈ Q2 of D2, in such a way that for every input symbol a ∈ Σ, the
transition on a from p to δ1(p, a) is mapped to the transition on a from h(p) to h(δ1(p, a)),
so that

h(δ1(p, a)) = δ2(h(p), a),

which can be expressed by the commutativity of the following diagram:

p
h //

a

��

h(p)

a

��
δ1(p, a)

h // δ2(h(p), a).

In order to be useful, a map of DFA’s h : D1 → D2 should induce a relationship between
the languages, L(D1) and L(D2), such as L(D1) ⊆ L(D2), L(D2) ⊆ L(D1) or L(D1) = L(D2).
This can indeed be achieved by requiring some simple condition on the way final states are
related by h.

For any function, h : X → Y , and for any two subsets, A ⊆ X and B ⊆ Y , recall that

h(A) = {h(a) ∈ Y | a ∈ A}

is the (direct) image of A by h and

h−1(B) = {x ∈ X | h(x) ∈ B}

is the inverse image of B by h, and h−1(B) makes sense even if h is not invertible. The
following definition is adapted from Eilenberg [3] (Automata, Languages and Machines, Vol
A, Academic Press, 1974; see Chapter III, Section 4).
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Definition 3.8. Given two DFA’s, D1 = (Q1,Σ, δ1, q0,1, F1) and D2 = (Q2,Σ, δ2, q0,2, F2),
a morphism of DFA’s from D1 to D2 is a function h : Q1 → Q2 satisfying the following
conditions:

(1)

h(δ1(p, a)) = δ2(h(p), a), for all p ∈ Q1 and all a ∈ Σ,

which can be expressed by the commutativity of the following diagram:

p
h //

a

��

h(p)

a

��
δ1(p, a)

h // δ2(h(p), a).

(2) h(q0,1) = q0,2.

With a slight abuse of notation, we denote a morphism h : Q1 → Q2 of DFA’s from D1

to D2 as h : D1 → D2 (even though h is not a function from D1 to D2).

An F -map of DFA’s , for short, a map, is a morphism of DFA’s h : D1 → D2 that satisfies
the condition

(3a) h(F1) ⊆ F2.

A B-map of DFA’s is a morphism of DFA’s h : D1 → D2 that satisfies the condition

(3b) h−1(F2) ⊆ F1.

A proper homomorphism of DFA’s , for short, a homomorphism, is an F -map of DFA’s
that is also a B-map of DFA’s namely, a homomorphism satisfies (3a) & (3b).

Now, for any function f : X → Y and any two subsets A ⊆ X and B ⊆ Y , recall that

f(A) ⊆ B iff A ⊆ f−1(B).

Thus, (3a) & (3b) is equivalent to the condition (3c) below, that is, a homomorphism of
DFA’s is a morphism satisfying the condition

(3c) h−1(F2) = F1.

Note that the condition for being a proper homomorphism of DFA’s (condition (3c)) is
not equivalent to

h(F1) = F2.

Condition (3c) forces h(F1) = F2 ∩ h(Q1), and furthermore, for every p ∈ Q1, whenever
h(p) ∈ F2, then p ∈ F1.
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Example 3.5. Figure 3.7 shows a map, h, of DFA’s, with

h(A) = h(C) = 0

h(B) = 1

h(D) = 2

h(E) = 3.

It is easy to check that h is actually a (proper) homomorphism.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

0 1 2 3
a b

a

b

b a

b

a

A −→ 0; B −→ 1; C −→ 0; D −→ 2; E −→ 3

Figure 3.7: A map of DFA’s.

The reader should check that if f : D1 → D2 and g : D2 → D3 are morphisms (resp.
F -maps, resp. B-maps), then g ◦ f : D1 → D3 is also a morphism (resp. an F -map, resp. a
B-map).

Remark: In previous versions of these notes, an F -map was called simply a map and a
B-map was called an F−1-map. Over the years, the old terminology proved to be confusing.
We hope the new one is less confusing! Our intention is that the F in F -map indicates that
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final states are mapped forward and that the B in B-map indicates that final states are
mapped backward .

Note that an F -map or a B-map is a special case of the concept of simulation of automata.
A proper homomorphism is a special case of a bisimulation. Bisimulations play an important
role in real-time systems and in concurrency theory.

The main motivation behind these definitions is that when there is an F -map h : D1 →
D2, somehow, D2 simulates D1, and it turns out that L(D1) ⊆ L(D2).

When there is a B-map h : D1 → D2, somehow, D1 simulates D2, and it turns out that
L(D2) ⊆ L(D1).

When there is a proper homomorphism h : D1 → D2, somehow, D1 bisimulates D2, and
it turns out that L(D2) = L(D1).

Given a DFA D = (Q,Σ, δ, q0, F ), the identity function idQ : Q→ Q (given by idQ(q) = q
for all q ∈ Q) defines a morphism from D to itself, since the Conditions (1) and (2) of
Definition 3.8 are trivially satisfied. This morphism, called the identity morphism, is denoted
idD. Since idQ(F ) = F and id−1

Q (F ) = F , because id−1
Q = idQ, the identity morphism idQ is

also an F -map and a B-map (and a proper homomorphism).

Definition 3.9. A DFA morphism f : D1 → D2 is an isomorphism iff there is a DFA
morphism g : D2 → D1, so that

g ◦ f = idD1
and f ◦ g = idD2

.

Similarly an F -map f : D1 → D2 is an isomorphism iff there is an F -map g : D2 → D1, so
that

g ◦ f = idD1
and f ◦ g = idD2

.

Finally, a B-map f : D1 → D2 is an isomorphism iff there is a B-map g : D2 → D1, so that

g ◦ f = idD1
and f ◦ g = idD2

.

The map g is unique, and it is denoted f−1.

It is important to observe that in the definition of an F -map isomorphism, the inverse
map g is required to be an F -map. This property does not follow from the fact that f and
g are mutual inverses. Similarly, in the definition of a B-map isomorphism, the inverse map
g is required to be a B-map. This property does not follow from the fact that f and g are
mutual inverses.

The reader should prove that if a DFA F -map h is an isomorphism, then it is also a
proper homomorphism and if a DFA B-map h is an isomorphism, then it is also a proper
homomorphism. In fact, h(F1) = F2.

If h : D1 → D2 is a morphism of DFA’s, it is easily shown by induction on the length of
w that

h(δ∗1(p, w)) = δ∗2(h(p), w),
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for all p ∈ Q1 and all w ∈ Σ∗, which corresponds to the commutativity of the following
diagram:

p
h //

w

��

h(p)

w

��
δ∗1(p, w)

h // δ∗2(h(p), w).

This is the generalization of the commutativity of the diagram in Condition (1) of Definition
3.8, where any arbitrary string w ∈ Σ∗ is allowed instead of just a single symbol a ∈ Σ.

This is the crucial property of DFA morphisms. It says that for every string w ∈ Σ∗, if
we pick any state p ∈ Q1 as starting point in D1, then the image of the path from p on input
w in D1 is the path in D2 from the image h(p) ∈ Q2 of p on the same input w. In particular,
the image h(δ∗1(p, w)) of the state reached from p on input w in D1 is the state δ∗2(h(p), w)
in D2 reached from h(p) on input w.

Example 3.6. For example, going back to the DFA map shown in Figure 3.3, the image of
the path

C
a
−→ B

b
−→ D

a
−→ B

b
−→ D

b
−→ E

from C on input w = ababb in D1 is the path

0
a
−→ 1

b
−→ 2

a
−→ 1

b
−→ 2

b
−→ 3

from 0 on input w = ababb in D2.

As a consequence, we have the following proposition:

Proposition 3.2. If h : D1 → D2 is an F -map of DFA’s, then L(D1) ⊆ L(D2).
If h : D1 → D2 is a B-map of DFA’s, then L(D2) ⊆ L(D1). Finally, if h : D1 → D2 is a
proper homomorphism of DFA’s, then L(D1) = L(D2).

One might think that there may be many DFA morphisms between two DFA’s D1 and
D2, but this is not the case. In fact, if every state of D1 is reachable from the start state,
then there is at most one morphism from D1 to D2.

Given a DFA D = (Q,Σ, δ, q0, F ), recall that the set Qr of accessible or reachable states
is the subset of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qr can be easily computed by stages. A DFA is accessible, or trim, if Q = Qr; that
is, if every state is reachable from the start state.

Definition 3.10. A morphism (resp. F -map, B-map, proper homomorphism) h : D1 → D2

is surjective if h(Q1) = Q2.
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The following proposition is easy to show:

Proposition 3.3. If D1 is trim, then there is at most one morphism h : D1 → D2 (resp.
F -map, resp. B-map). If D2 is also trim and we have a morphism, h : D1 → D2, then h is
surjective.

It can also be shown that a minimal DFA DL for L is characterized by the property
that there is unique surjective proper homomorphism h : D → DL from any trim DFA D
accepting L to DL.

Another useful notion is the notion of a congruence on a DFA.

Definition 3.11. Given any DFA, D = (Q,Σ, δ, q0, F ), a congruence ≡ on D is an equiva-
lence relation ≡ on Q satisfying the following conditions: for all p, q ∈ Q and all a ∈ Σ,

(1) if p ≡ q, then δ(p, a) ≡ δ(q, a).

(2) if p ≡ q and p ∈ F , then q ∈ F .

It can be shown that a proper homomorphism of DFA’s h : D1 → D2 induces a congruence
≡h on D1 defined as follows:

p ≡h q iff h(p) = h(q).

Given a congruence ≡ on a DFA D, we can define the quotient DFA D/ ≡, and there is
a surjective proper homomorphism π : D → D/ ≡.

We will come back to this point when we study minimal DFA’s.

3.4 Nondeteterministic Finite Automata (NFA’s)

NFA’s are obtained from DFA’s by allowing multiple transitions from a given state on a
given input. This can be done by defining δ(p, a) as a subset of Q rather than a single state.
It will also be convenient to allow transitions on input ǫ.

We let 2Q denote the set of all subsets of Q, including the empty set. The set 2Q is the
power set of Q.

Example 3.7. A NFA for the language

L3 = {a, b}
∗{abb}.

Input alphabet: Σ = {a, b}.

State set Q4 = {0, 1, 2, 3}.
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Start state: 0.

Set of accepting states: F4 = {3}.

Transition table δ4:

a b

0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

0 1 2 3
a b b

a, b

Figure 3.8: NFA for {a, b}∗{abb}.

Example 3.8. Let Σ = {a1, . . . , an}, with n ≥ 2, let

Li
n = {w ∈ Σ∗ | w contains an odd number of ai’s},

and let
Ln = L1

n ∪ L
2
n ∪ · · · ∪ L

n
n.

The language Ln consists of those strings in Σ∗ that contain an odd number of some
letter ai ∈ Σ. Equivalently Σ∗ − Ln consists of those strings in Σ∗ with an even number of
every letter ai ∈ Σ.

It is easy to see that each Li
n is accepted by a 2-state DFA. As a consequence, Ln is

accepted by a DFA with 2n states. It can be shown that every DFA accepting Ln has at
least 2n states. However, there is an NFA with 2n + 1 states accepting Ln. This example
shows that there are regular languages that are accepted by NFA’s whose size is exponentially
smaller that any DFA accepting such languages. So NFA’s can be a lot more economical
that DFA’s, but this is because the notion of acceptance for NFA’s is much more lenient
than the notion of acceptanc for DFA’s.

We define NFA’s as follows.

Definition 3.12. A nondeterministic finite automaton (or NFA) is a quintuple
N = (Q,Σ, δ, q0, F ), where

• Σ is a finite input alphabet ;

• Q is a finite set of states ;
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• F is a subset of Q of final (or accepting) states ;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ : Q× (Σ ∪ {ǫ})→ 2Q.

For any state p ∈ Q and any input a ∈ Σ ∪ {ǫ}, the set of states δ(p, a) is uniquely
determined. We write q ∈ δ(p, a).

Given an NFA N = (Q,Σ, δ, q0, F ), we would like to define the language accepted by N .
However, given an NFA N , unlike the situation for DFA’s, given a state p ∈ Q and some
input w ∈ Σ∗, in general there is no unique path from p on input w, but instead a tree of
computation paths .

Example 3.9. Given the NFA shown below,

0 1 2 3
a b b

a, b

Figure 3.9: NFA for {a, b}∗{abb}.

from state 0 on input w = ababb we obtain the following tree of computation paths:

0

0

0

3

2

1

0

0

2

1

0
a a

b
b

a

b

b

a

b

b

Figure 3.10: A tree of computation paths on input ababb.
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Observe that there are three kinds of computation paths:

1. A path on input w ending in a rejecting state (for example, the leftmost path).

2. A path on some proper prefix of w, along which the computation gets stuck (for
example, the rightmost path).

3. A path on input w ending in an accepting state (such as the path ending in state 3).

The acceptance criterion for NFA is very lenient : a string w is accepted iff the tree of
computation paths contains some accepting path (of type (3)). Thus, all failed paths of type
(1) and (2) are ignored. Furthermore, there is no charge for failed paths.

A string w is rejected iff all computation paths are failed paths of type (1) or (2). The
“philosophy” of nondeterminism is that an NFA “guesses” an accepting path and then checks
it in polynomial time by following this path. We are only charged for one accepting path
(even if there are several accepting paths).

A way to capture this acceptance policy is to extend the transition function δ : Q× (Σ∪
{ǫ})→ 2Q to a function

δ∗ : Q× Σ∗ → 2Q.

The presence of ǫ-transitions (i.e., when q ∈ δ(p, ǫ)) causes technical problems, and to
overcome these problems, we introduce the notion of ǫ-closure.

3.5 ǫ-Closure

Definition 3.13. Given an NFA N = (Q,Σ, δ, q0, F ) (with ǫ-transitions) for every state
p ∈ Q, the ǫ-closure of p is set ǫ-closure(p) consisting of all states q such that there is a path
from p to q whose spelling is ǫ (an ǫ-path). This means that either q = p, or that all the
edges on the path from p to q have the label ǫ.

When N has no ǫ-transitions, i.e., when δ(p, ǫ) = ∅ for all p ∈ Q (which means that δ
can be viewed as a function δ : Q× Σ→ 2Q), we have

ǫ-closure(p) = {p}.

Example 3.10. Consider the NFA with ǫ-transitions accepting L = {a, b}∗{abb} shown in
Figure 3.11.

We have

ǫ-closure(0) = {0, 1, 2, 4, 7}

ǫ-closure(1) = {1, 2, 4}

ǫ-closure(3) = {1, 2, 3, 4, 6, 7}

ǫ-closure(5) = {1, 2, 4, 5, 6, 7}

ǫ-closure(6) = {1, 2, 4, 6, 7}.
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0 1
2 3

4 5
6 7 8 9

ǫ

10
ǫ

ǫ
a

ǫ
b

ǫ

ǫ

ǫ a b b

ǫ

Figure 3.11: An NFA for L = {a, b}∗{abb}.

Observe that the string ababb is accepted by following the path corresponding to the
sequence of states

0, 1, 2, 3, 6, 1, 4, 5, 6, 7, 8, 9, 10

involving seven ǫ-transitions.

We can compute ǫ-closure(p) using a sequence of approximations as follows. Define the
sequence of sets of states (ǫ-cloi(p))i≥0 as follows:

ǫ-clo0(p) = {p},

ǫ-cloi+1(p) = ǫ-cloi(p) ∪ {q ∈ Q | ∃s ∈ ǫ-cloi(p), q ∈ δ(s, ǫ)}.

Since ǫ-cloi(p) ⊆ ǫ-cloi+1(p), ǫ-cloi(p) ⊆ Q, for all i ≥ 0, and Q is finite, it can be shown
that

Fact 1. There is a smallest i, say i0, such that

ǫ-cloi0(p) = ǫ-cloi0+1(p).

It suffices to show that there is some i ≥ 0 such that ǫ-cloi(p) = ǫ-cloi+1(p), because then
there is a smallest such i (since every nonempty subset of N has a smallest element).

Proof. Assume by contradiction that

ǫ-cloi(p) ⊂ ǫ-cloi+1(p) for all i ≥ 0.

The symbol ⊂ means strict inclusion, so ǫ-cloi(p) ⊆ ǫ-cloi+1(p) and ǫ-cloi(p) 6= ǫ-cloi+1(p).

I claim that |ǫ-cloi(p)| ≥ i+ 1 for all i ≥ 0. We prove this by induction on i.

This is true for i = 0 since ǫ-clo0(p) = {p}.

For the induction step, since ǫ-cloi(p) ⊂ ǫ-cloi+1(p), there is some q ∈ ǫ-cloi+1(p) that
does not belong to ǫ-cloi(p), and since by induction |ǫ-cloi(p)| ≥ i+ 1, we get

|ǫ-cloi+1(p)| ≥ |ǫ-cloi(p)|+ 1 ≥ i+ 1 + 1 = i+ 2,
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establishing the induction step.

If n = |Q|, then |ǫ-clon(p)| ≥ n+ 1, a contradiction.

Therefore, there is indeed some i ≥ 0 such that ǫ-cloi(p) = ǫ-cloi+1(p), and for the least
such i = i0, we have i0 ≤ n− 1.

It can also be shown that

Fact 2.
ǫ-closure(p) = ǫ-cloi0(p).

For this, we prove (by induction on the length of paths) that

1. ǫ-cloi(p) ⊆ ǫ-closure(p), for all i ≥ 0.

2. ǫ-closure(p)i ⊆ ǫ-cloi0(p), for all i ≥ 0,

where ǫ-closure(p)i is the set of states reachable from p by an ǫ-path of length ≤ i.

Fact 1 proves that the method terminates and Fact 2 prove that it computes correctly
ǫ-closure(p) as ǫ-cloi0(p).

It should be noted that there are more efficient ways of computing ǫ-closure(p), for
example, using a stack (basically, a kind of depth-first search).

We present such an algorithm below. It is assumed that the types NFA and stack are
defined. If n is the number of states of an NFA N , we let

eclotype = array[1..n] of boolean

function eclosure[N : NFA, p : integer] : eclotype;

begin

var eclo : eclotype, q, s : integer, st : stack;

for each q ∈ setstates(N) do

eclo[q] := false;

endfor

eclo[p] := true; st := empty;

trans := deltatable(N);

st := push(st, p);

while st 6= emptystack do

q = pop(st);

for each s ∈ trans(q, ǫ) do

if eclo[s] = false then

eclo[s] := true; st := push(st, s)

endif
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endfor

endwhile;

eclosure := eclo

end

This algorithm can be easily adapted to compute the set of states reachable from a given
state p (in a DFA or an NFA).

Definition 3.14. Given a subset S of Q, we define ǫ-closure(S) as

ǫ-closure(S) =
⋃

s∈S

ǫ-closure(s),

with
ǫ-closure(∅) = ∅.

When N has no ǫ-transitions, we have

ǫ-closure(S) = S.

We are now ready to define the extension δ∗ : Q × Σ∗ → 2Q of the transition function
δ : Q× (Σ ∪ {ǫ})→ 2Q in order to convert an NFA into a DFA.

3.6 Converting an NFA into a DFA

The intuition behind the definition of the extended transition function is that δ∗(p, w) is the
set of all states reachable from p by a path whose spelling is w.

Definition 3.15. Given an NFA N = (Q,Σ, δ, q0, F ) (with ǫ-transitions), the extended
transition function δ∗ : Q × Σ∗ → 2Q is defined as follows: for every p ∈ Q, every u ∈ Σ∗,
and every a ∈ Σ,

δ∗(p, ǫ) = ǫ-closure({p}),

δ∗(p, ua) = ǫ-closure

( ⋃

s∈δ∗(p,u)

δ(s, a)

)
.

In the second equation, if δ∗(p, u) = ∅, then

δ∗(p, ua) = ∅.

The language L(N) accepted by an NFA N is the set

L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F 6= ∅}.
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Observe that the definition of L(N) conforms to the lenient acceptance policy: a string
w is accepted iff δ∗(q0, w) contains some final state. Also, since δ∗(q0, ǫ) = ǫ-closure({q0}),
the empty string is accepted iff some state in ǫ-closure({q0}) is a final state.

The function δ∗ satisfies the following property which generalizes the familiar property
of δ∗ when N is a DFA (see Proposition 3.1).

Proposition 3.4. Given any NFA N = (Q,Σ, δ, q0, F ), for any state p ∈ Q and for any two
strings u, v ∈ Σ∗, we have

δ∗(p, uv) =
⋃

s∈δ∗(p,u)

δ∗(s, v).

Proof. We proceed by induction on the length of v. First, it is shown immediately by the
definition of ǫ-closure that for any subset S ⊆ Q, we have

ǫ-closure(ǫ-closure(S)) = ǫ-closure(S).

A subset S ⊆ Q such that ǫ-closure(S) = S is said to be ǫ-closed . Observe that by definition,
δ∗(p, w) is ǫ-closed for all p ∈ Q and all w ∈ Σ∗. The following simple fact is left an exercise.

Fact 3. For any index set I and any family (Si)i∈I of subsets of Q,

ǫ-closure

(
⋃

i∈I

Si

)
=
⋃

i∈I

ǫ-closure(Si).

Consider the base case v = ǫ. We have

⋃

s∈δ∗(p,u)

δ∗(s, ǫ) =
⋃

s∈δ∗(p,u)

(ǫ-closure({s})

= ǫ-closure (δ∗(p, u))

= δ∗(p, u),

as desired.

For the induction step, assume v = wa, for some w ∈ Σ∗ and some a ∈ Σ. By the
induction hypothesis,

δ∗(p, uw) =
⋃

s∈δ∗(p,u)

δ∗(s, w).
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Then, using Fact 3 in the third step, we have

δ∗(p, uwa) = ǫ-closure

( ⋃

q∈δ∗(p,uw)

δ(q, a)

)

= ǫ-closure

( ⋃

s∈δ∗(p,u)

⋃

q∈δ∗(s,w)

δ(q, a)

)

=
⋃

s∈δ∗(p,u)

ǫ-closure

( ⋃

q∈δ∗(s,w)

δ(q, a)

)

=
⋃

s∈δ∗(p,u)

δ∗(s, wa),

proving the induction step.

In order to show how to convert an NFA to a DFA we also extend δ∗ : Q×Σ∗ → 2Q to a
function

δ̂ : 2Q × Σ∗ → 2Q

defined as follows:

Definition 3.16. For every subset S of Q, for every w ∈ Σ∗,

δ̂(S, w) =
⋃

s∈S

δ∗(s, w),

with
δ̂(∅, w) = ∅.

Let Q be the subset of 2Q consisting of those subsets S of Q that are ǫ-closed , i.e., such that

S = ǫ-closure(S).

We have the following version of Proposition 3.4 for δ̂.

Proposition 3.5. Given any NFA N = (Q,Σ, δ, q0, F ), for any subset S ⊆ Q and for any
two strings u, v ∈ Σ∗, we have

δ̂(S, uv) = δ̂(δ̂(S, u), v).

Proof. Using Proposition 3.4 and the definition of δ̂, we have

δ̂(δ̂(S, u), v) =
⋃

p∈δ̂(S,u)

δ∗(p, v)

=
⋃

s∈S

⋃

p∈δ∗(s,u)

δ∗(p, v)

=
⋃

s∈S

δ∗(s, uv)

= δ̂(S, uv),

as claimed.
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If we consider the restriction
∆: Q× Σ→ Q

of δ̂ : 2Q × Σ∗ → 2Q to Q and Σ, we observe that ∆ is the transition function of a DFA.

Indeed, this is the transition function of a DFA accepting L(N). It is easy to show that
∆ is defined directly as follows (on subsets S in Q):

∆(S, a) = ǫ-closure

(⋃

s∈S

δ(s, a)

)
,

with
∆(∅, a) = ∅.

Definition 3.17. The DFA D corresponding to N is defined as follows:

D = (Q,Σ,∆, ǫ-closure({q0}),F),

where F = {S ∈ Q | S ∩ F 6= ∅} and

∆(S, a) = ǫ-closure

(⋃

s∈S

δ(s, a)

)
,

with
∆(∅, a) = ∅.

Proposition 3.6. The DFA D of Definition 3.17 has the property that L(D) = L(N), that
is, D is a DFA accepting L(N).

Proof. To prove the proposition, we show that

∆∗(S, w) = δ̂(S, w) for all S ∈ Q and all w ∈ Σ∗ (∆)

by induction on |w|.

Proof of Equation (∆). For the base case w = ǫ, by definition of δ̂ we have

δ̂(S, ǫ) =
⋃

s∈S

δ∗(s, ǫ) =
⋃

s∈S

ǫ-closure({s}) = ǫ-closure(S) = S,

since S is ǫ-closed, and of course by definition ∆∗(S, ǫ) = S, so

∆∗(S, ǫ) = δ̂(S, ǫ).

For the induction step, using the induction hypothesis ∆∗(S, u) = δ̂(S, u) and the fact

that ∆ is the restriction of δ̂ to Σ (and Q), using Proposition 3.5, we have

∆∗(S, ua) = ∆(∆∗(S, u), a)

= δ̂(δ̂(S, u), a)

= δ̂(S, ua),

proving the induction step.
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We now prove that L(D) = L(N). For any w ∈ Σ∗, we have

∆∗(ǫ-closure({q0}), w) = δ̂(ǫ-closure({q0}), w)

=
⋃

p∈ǫ-closure({q0})

δ∗(p, w)

=
⋃

p∈δ∗(q0,ǫ)

δ∗(p, w).

By Proposition 3.4 applied to u = ǫ, v = w, and p = q0, we get

⋃

p∈δ∗(q0,ǫ)

δ∗(p, w) = δ∗(q0, w),

so we obtain
∆∗(ǫ-closure({q0}), w) = δ∗(q0, w). (∗∆)

By the choice of final states of D (F = {S ∈ Q | S ∩ F 6= ∅}), we have w ∈ L(D) iff
∆∗(ǫ-closure({q0}), w) ∈ F iff δ∗(q0, w) ∈ F iff δ∗(q0, w) ∩ F 6= ∅ (since δ∗(q0, w) ∈ Q) iff
w ∈ L(N). Therefore L(D) = L(N).

Thus, we have converted the NFA N into a DFA D (and gotten rid of ǫ-transitions).

Since DFA’s are special NFA’s, the subset construction shows that DFA’s and NFA’s
accept the same family of languages, the regular languages, version 1 (although not with
the same complexity).

The states of the DFA D equivalent to N are ǫ-closed subsets of Q. For this reason, the
above construction is often called the subset construction.

This construction is due to Michael Rabin and Dana Scott. Michael Rabin and Dana
Scott were awarded the prestigious Turing Award in 1976 for this important contribution
and many others.

Note that among the Turing award winners, Dijsktra received the Turing Award in 1972,
Donald Knuth in 1974, John Backus in 1977, Steve Cook in 1982, Richard Karp in 1985,
John Hopcroft and Robert André Tarjan in 1986, and Leslie Lamport in 2013.

Although theoretically fine, the method may construct useless sets S that are not reach-
able from the start state ǫ-closure({q0}). A more economical construction is given next.

An Algorithm to convert an NFA into a DFA:
The “subset construction”

Given an input NFA N = (Q,Σ, δ, q0, F ), a DFA D = (K,Σ,∆, S0,F) is constructed. It is
assumed that K is a linear array of sets of states S ⊆ Q, and ∆ is a 2-dimensional array,
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where ∆[i, a] is the index of the target state of the transition from K[i] = S on input a, with
S ∈ K, and a ∈ Σ.

S0 := ǫ-closure({q0}); total := 1; K[1] := S0;

marked := 0;

while marked < total do;

marked := marked + 1; S := K[marked];

for each a ∈ Σ do

U :=
⋃

s∈S δ(s, a); T := ǫ-closure(U);

if T /∈ K then

total := total + 1; K[total] := T

endif;

∆[marked, a] := index(T )

endfor

endwhile;

F := {S ∈ K | S ∩ F 6= ∅}

Let us illustrate the subset construction on the NFA of Example 3.7.

Example 3.11. A NFA for the language

L3 = {a, b}
∗{abb}

is given by the transition table δ4 below:

a b

0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

The set of accepting states is F4 = {3}.

0 1 2 3
a b b

a, b

Figure 3.12: NFA for {a, b}∗{abb}.

Here is the sequence of snapshots obtained by running the algorithm for converting an
NFA into a DFA The pointer ⇒ corresponds to marked and the pointer → to total.
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Initial transition table ∆.

Start state A = ǫ-closure({0}) = {0}.

⇒ index states a b
→ A {0}

Just after entering the while loop

index states a b
⇒→ A {0}

S = {0}.⋃
s∈{0} δ(s, a) = δ(0, a) = {0, 1}; new state B = {0, 1}.⋃
s∈{0} δ(s, b) = δ(0, b) = {0} = A.

After the first round through the while loop.

index states a b
⇒ A {0} B A
→ B {0, 1}

After just reentering the while loop.

index states a b
A {0} B A

⇒→ B {0, 1}

S = {0, 1}.⋃
s∈{0,1} δ(s, a) = δ(0, a) ∪ δ(1, a) = {0, 1} ∪ ∅ = {0, 1} = B.⋃
s∈{0,1} δ(s, b) = δ(0, b) ∪ δ(1, b) = {0} ∪ {2} = {0, 2}; new state C = {0, 2}.

After the second round through the while loop.

index states a b
A {0} B A

⇒ B {0, 1} B C
→ C {0, 2}

S = {0, 2}.⋃
s∈{0,2} δ(s, a) = δ(0, a) ∪ δ(2, a) = {0, 1} ∪ ∅ = {0, 1} = B.⋃
s∈{0,2} δ(s, b) = δ(0, b) ∪ δ(2, b) = {0} ∪ {3} = {0, 3}; new state D = {0, 3}.

After the third round through the while loop.

index states a b
A {0} B A
B {0, 1} B C

⇒ C {0, 2} B D
→ D {0, 3}
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S = {0, 3}.⋃
s∈{0,3} δ(s, a) = δ(0, a) ∪ δ(3, a) = {0, 1} ∪ ∅ = {0, 1} = B.⋃
s∈{0,3} δ(s, b) = δ(0, b) ∪ δ(3, b) = {0} ∪ ∅ = {0} = A.

After the fourth round through the while loop.

index states a b
A {0} B A
B {0, 1} B C
C {0, 2} B D

⇒→ D {0, 3} B A

This is the DFA of Figure 3.3, except that in that example A,B,C,D are renamed
0, 1, 2, 3.

0 1 2 3
a b

a

b

b a

b

a

Figure 3.13: DFA for {a, b}∗{abb}.

Here is another example invoving an ǫ-transition.

Example 3.12. Consider the language L = {aa, bb}∗. The transition table and the transi-
tion graph of an NFA with a single ǫ-transition accepting L = {aa, bb}∗ are shown below.

ǫ a b

0 ∅ 1 2
1 ∅ 3 ∅
2 ∅ ∅ 3
3 0 ∅ ∅

The result of applying the subset construction to the above NFA we obtain the five state
DFA with the transition table and graph shown in Figure 3.15.

subsets a b

A {0} B C
B {1} D E
C {2} E D
D {0, 3} B C
E ∅ E E
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0

1

2

3

a

b

a

b

ǫ

Figure 3.14: NFA for L = {aa, bb}∗.

The final states are A and D and the start state is A.

A

B

C

E D

a

b

b
a

a
b

a

b

a, b

Figure 3.15: DFA for L = {aa, bb}∗.

The next example requires computing bigger ǫ-closures.

Example 3.13. Consider the NFA with ǫ-transitions accepting L = {a, b}∗{abb} shown in
Figure 3.16.

The result of applying the subset constructions to the NFA shown in Figure 3.16 is the
DFA whose transition table is shown below:

subsets a b

A {0, 1, 2, 4, 7} B C
B {1, 2, 3, 4, 6, 7, 8} B D
C {1, 2, 4, 5, 6, 7} B C
D {1, 2, 4, 5, 6, 7, 9} B E
E {1, 2, 4, 5, 6, 7, 10} B C
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0 1
2 3

4 5
6 7 8 9

ǫ

10
ǫ

ǫ
a

ǫ
b

ǫ

ǫ

ǫ a b b

ǫ

Figure 3.16: An NFA for L = {a, b}∗{abb}.

We have the following steps. The start state A is ǫ-closure({0}) = {0, 1, 2, 4, 7}.

We have U =
⋃

s∈A δ(s, a) = ∅ ∪ ∅ ∪ δ(2, a) ∪ ∅ ∪ δ(7, a) = {3} ∪ {8} = {3, 8}. Then

T = ǫ-closure(U) = ǫ-closure({3, 8}) = ǫ-closure({3}) ∪ ǫ-closure({8})

= {3, 6, 7, 1, 2, 4} ∪ {8} = {1, 2, 3, 4, 6, 7, 8} = B.

We have U =
⋃

s∈A δ(s, b) = ∅ ∪ ∅ ∪ ∅ ∪ δ(4, b) ∪ ∅ = {5}. Then

ǫ-closure(U) = ǫ-closure({5}) = {1, 2, 4, 5, 6, 7} = C.

We have U =
⋃

s∈B δ(s, a) = ∅ ∪ δ(2, a) ∪ ∅ ∪ ∅ ∪ ∅ ∪ δ(7, a) ∪ ∅ = {3, 8}. Then

ǫ-closure(U) = ǫ-closure({3, 8}) = {1, 2, 4, 5, 6, 7, 8} = B.

We have U =
⋃

s∈B δ(s, b) = ∅ ∪ ∅ ∪ ∅ ∪ δ(4, b) ∪ ∅ ∪ ∅ ∪ δ(8, b) = {5, 9}. Then

ǫ-closure(U) = ǫ-closure({5, 9}) = ǫ-closure({5}) ∪ ǫ-closure({9})

= {1, 2, 4, 5, 6, 7} ∪ {9} = {1, 2, 4, 5, 6, 7, 9} = D.

We have U =
⋃

s∈C δ(s, a) = ∅ ∪ δ(2, a) ∪ ∅ ∪ ∅ ∪ ∅ ∪ δ(7, a) = {3, 8}. Then

ǫ-closure(U) = ǫ-closure({3, 8}) = {1, 2, 4, 5, 6, 7, 8} = B.

We have U =
⋃

s∈C δ(s, b) = ∅ ∪ ∅ ∪ δ(4, b) ∪ ∅ ∪ ∅ ∪ ∅ = {5}. Then

ǫ-closure(U) = ǫ-closure({5}) = {1, 2, 4, 5, 6, 7} = C.

We have U =
⋃

s∈D δ(s, a) = ∅ ∪ δ(2, a) ∪ ∅ ∪ ∅ ∪ ∅ ∪ δ(7, a) ∪ ∅ = {3, 8}. Then

ǫ-closure(U) = ǫ-closure({3, 8}) = {1, 2, 4, 5, 6, 7, 8} = B.
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We have U =
⋃

s∈D δ(s, b) = ∅ ∪ ∅ ∪ δ(4, b) ∪ ∅ ∪ ∅ ∪ ∅ ∪ δ(9, a) = {5} ∪ {10} = {5, 10}.
Then

ǫ-closure(U) = ǫ-closure({5, 10}) = ǫ-closure({5}) ∪ ǫ-closure({10})

= {1, 2, 4, 5, 6, 7} ∪ {10} = {1, 2, 4, 5, 6, 7, 10} = E.

We have U =
⋃

s∈E δ(s, a) = ∅ ∪ δ(2, a) ∪ ∅ ∪ ∅ ∪ ∅ ∪ δ(7, a) ∪ ∅ = {3, 8}. Then

ǫ-closure(U) = ǫ-closure({3, 8}) = {1, 2, 4, 5, 6, 7, 8} = B.

We have U =
⋃

s∈E δ(s, b) = ∅ ∪ ∅ ∪ δ(4, b) ∪ ∅ ∪ ∅ ∪ ∅ ∪ ∅ = {5}. Then

ǫ-closure(U) = ǫ-closure({5}) = {1, 2, 4, 5, 6, 7} = C.

The only final state is E. The graph of this DFA with 5 states is shown in Figure 3.17.
It is not a minimal DFA for L = {a, b}∗{abb}.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 3.17: A non-minimal DFA for {a, b}∗{abb}.

3.7 Finite State Automata With Output: Transducers

So far, we have only considered automata that recognize languages, i.e., automata that do
not produce any output on any input (except “accept” or “reject”).

It is interesting and useful to consider input/output finite state machines. Such automata
are called transducers . They compute functions or relations. First, we define a deterministic
kind of transducer.

Definition 3.18. A general sequential machine (gsm) is a sextuple M = (Q,Σ,∆, δ, λ, q0),
where

(1) Q is a finite set of states ,
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(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) δ : Q× Σ→ Q is the transition function,

(5) λ : Q× Σ→ ∆∗ is the output function and

(6) q0 is the initial (or start) state.

If λ(p, a) 6= ǫ, for all p ∈ Q and all a ∈ Σ, then M is nonerasing . If λ(p, a) ∈ ∆ for all
p ∈ Q and all a ∈ Σ, we say that M is a complete sequential machine (csm).

An example of a gsm for which Σ = {a, b} and ∆ = {0, 1, 2} is shown in Figure 3.18. For
example aab is converted to 102001.

0 1

2

a/00

b/01

a/10

b/11

a/20

b/21

Figure 3.18: Example of a gsm.

In order to define how a gsm works, we extend the transition and the output functions.
We define δ∗ : Q × Σ∗ → Q and λ∗ : Q × Σ∗ → ∆∗ recursively as follows: For all p ∈ Q, all
u ∈ Σ∗ and all a ∈ Σ

δ∗(p, ǫ) = p

δ∗(p, ua) = δ(δ∗(p, u), a)

λ∗(p, ǫ) = ǫ

λ∗(p, ua) = λ∗(p, u)λ(δ∗(p, u), a).

For any w ∈ Σ∗, we let
M(w) = λ∗(q0, w)

and for any L ⊆ Σ∗ and L′ ⊆ ∆∗, let

M(L) = {λ∗(q0, w) | w ∈ L}
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and
M−1(L′) = {w ∈ Σ∗ | λ∗(q0, w) ∈ L

′}.

The languageM(L) is said to be obtained by gsm mapping from L and the languageM−1(L′)
is said to be obtained by inverse gsm mapping from L′.

Note that if M is a csm, then |M(w)| = |w| for all w ∈ Σ∗. Also, a homomorphism is a
special kind of gsm—it can be realized by a gsm with one state.

We can use gsm’s and csm’s to compute certain kinds of functions.

Definition 3.19. A function f : Σ∗ → ∆∗ is a gsm (resp. csm) mapping iff there is a gsm
(resp. csm) M so that M(w) = f(w), for all w ∈ Σ∗.

Remark: Ginsburg and Rose (1966) characterized gsm mappings as follows:

A function f : Σ∗ → ∆∗ is a gsm mapping iff

(a) f preserves prefixes, i.e., f(x) is a prefix of f(xy);

(b) There is an integer, m, such that for all w ∈ Σ∗ and all a ∈ Σ, we have |f(wa)| −
|f(w)| ≤ m;

(c) f(ǫ) = ǫ;

(d) For every regular language, R ⊆ ∆∗, the language f−1(R) = {w ∈ Σ∗ | f(w) ∈ R} is
regular.

A function f : Σ∗ → ∆∗ is a csm mapping iff f satisfies (a) and (d), and for all w ∈ Σ∗,
|f(w)| = |w|. The following proposition is left as a homework problem.

Proposition 3.7. The family of regular languages (over an alphabet Σ) is closed under both
gsm and inverse gsm mappings.

We can generalize the gsm model so that

(1) the device is nondeterministic,

(2) the device has a set of accepting states,

(3) transitions are allowed to occur without new input being processed,

(4) transitions are defined for input strings instead of individual letters.

Here is the definition of such a model, the a-transducer . A much more powerful model
of transducer will be investigated later: the Turing machine.
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Definition 3.20. An a-transducer (or nondeterministic sequential transducer with accepting
states) is a sextuple M = (K,Σ,∆, λ, q0, F ), where

(1) K is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) q0 ∈ K is the start (or initial) state,

(5) F ⊆ K is the set of accepting (of final) states and

(6) λ ⊆ K ×Σ∗×∆∗×K is a finite set of quadruples called the transition function of M .

If λ ⊆ K × Σ∗ ×∆+ ×K, then M is ǫ-free

A gsm is a special kind of a-transducer. Indeed, given a gsm M = (Q,Σ,∆, δ, λ, q0), we
can define the a-transducer N whose transition function Λ is given by

Λ = {(p, a, λ(p, a), δ(p, a)) | p ∈ Q, a ∈ Σ}.

An a-transducer defines a binary relation between Σ∗ and ∆∗, or equivalently, a function
M : Σ∗ → 2∆

∗

.

We can explain what this function is by describing how an a-transducer makes a sequence
of moves from configurations to configurations.

The current configuration of an a-transducer is described by a triple

(p, u, v) ∈ K × Σ∗ ×∆∗,

where p is the current state, u is the remaining input, and v is some ouput produced so far.

We define the binary relation ⊢M on K ×Σ∗×∆∗ as follows: For all p, q ∈ K, u, α ∈ Σ∗,
β, v ∈ ∆∗, if (p, u, v, q) ∈ λ, then

(p, uα, β) ⊢M (q, α, βv).

Let ⊢∗M be the transitive and reflexive closure of ⊢M . The function M : Σ∗ → 2∆
∗

is
defined such that for every w ∈ Σ∗,

M(w) = {y ∈ ∆∗ | (q0, w, ǫ) ⊢
∗
M (f, ǫ, y), f ∈ F}.

For any language L ⊆ Σ∗ let

M(L) =
⋃

w∈L

M(w).
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For any y ∈ ∆∗, let
M−1(y) = {w ∈ Σ∗ | y ∈M(w)}

and for any language L′ ⊆ ∆∗, let

M−1(L′) =
⋃

y∈L′

M−1(y).

The language M(L) is said to be an a-transduction of L and the language M−1(L′) is said
to be an inverse a-transduction of L′.

Remark: Notice that if w ∈M−1(L′), then there exists some y ∈ L′ such that w ∈M−1(y),
i.e., y ∈M(w). This does not imply that M(w) ⊆ L′, only that M(w) ∩ L′ 6= ∅.

One should realize that for any L′ ⊆ ∆∗ and any a-transducer M , there is some a-
transducer M ′ (from ∆∗ to 2Σ

∗

) so that M ′(L′) =M−1(L′).

The following proposition is left as a homework problem:

Proposition 3.8. The family of regular languages (over an alphabet Σ) is closed under both
a-transductions and inverse a-transductions.

3.8 An Application of NFA’s: Text Search

A common problem in the age of the Web (and on-line text repositories) is the following:

Given a set of words, called the keywords , find all the documents that contain one (or
all) of those words. Search engines are a popular example of this process. Search engines
use inverted indexes (for each word appearing on the Web, a list of all the places where that
word occurs is stored).

However, there are applications that are unsuited for inverted indexes, but are good for
automaton-based techniques.

Some text-processing programs, such as advanced forms of the UNIX grep command
(such as egrep or fgrep) are based on automaton-based techniques.

The characteristics that make an application suitable for searches that use automata are:

(1) The repository on which the search is conducted is rapidly changing.

(2) The documents to be searched cannot be catalogued. For example, Amazon.com cre-
ates pages “on the fly” in response to queries.

We can use an NFA to find occurrences of a set of keywords in a text. This NFA signals
by entering a final state that it has seen one of the keywords. The form of such an NFA is
special.
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(1) There is a start state, q0, with a transition to itself on every input symbol from the
alphabet, Σ.

(2) For each keyword, w = w1 · · ·wk (with wi ∈ Σ), there are k states, q
(w)
1 , . . . , q

(w)
k , and

there is a transition from q0 to q
(w)
1 on input w1, a transition from q

(w)
1 to q

(w)
2 on input

w2, and so on, until a transition from q
(w)
k−1 to q

(w)
k on input wk. The state q

(w)
k is an

accepting state and indicates that the keyword w = w1 · · ·wk has been found.

The NFA constructed above can then be converted to a DFA using the subset construc-
tion.

Example 3.14. Here is an example where Σ = {a, b} and the set of keywords is

{aba, ab, ba}.

0

qaba1 qaba2 qaba3

qab1 qab2

qba1 qba2

a

b a

a b

b

a

a, b

Figure 3.19: NFA for the keywords aba, ab, ba.

Applying the subset construction to the NFA shown in Figure 3.19, we obtain the DFA
whose transition table is shown next. The graph corresponding to this transition table is
shown in Figure 3.20.
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a b

0 0 1 2

1 0, qaba1 , qab1 1 3

2 0, qba1 4 2

3 0, qba1 , q
aba
2 , qab2 5 2

4 0, qaba1 , qab1 , q
ba
2 1 3

5 0, qaba1 , qab1 , q
ba
2 , q

aba
3 1 3

0

1

2

3

4

5

a

b

b

a

ba

a

ba

b

a

b

Figure 3.20: DFA for the keywords aba, ab, ba.

The final states are: 3, 4, 5.

The good news news is that, due to the very special structure of the NFA, the number
of states of the corresponding DFA is at most the number of states of the original NFA!

We find that the states of the DFA are (check it yourself!):

(1) The set {q0}, associated with the start state q0 of the NFA.

(2) For any state p 6= q0 of the NFA reached from q0 along a path corresponding to a string
u = u1 · · ·um, the set consisting of:

(a) q0
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(b) p

(c) The set of all states q of the NFA reachable from q0 by following a path whose
symbols form a nonempty suffix of u, i.e., a string of the form
ujuj+1 · · ·um.

As a consequence, we get an efficient (w.r.t. time and space) method to recognize a set
of keywords. In fact, this DFA recognizes leftmost occurrences of keywords in a text (we can
stop as soon as we enter a final state).
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Chapter 4

Hidden Markov Models (HMMs)

4.1 Definition of a Hidden Markov Model (HMM)

There is a variant of the notion of DFA with output, for example a transducer such as
a gsm (generalized sequential machine), which is widely used in machine learning. This
machine model is known as hidden Markov model , for short HMM . These notes are only an
introduction to HMMs and are by no means complete. For more comprehensive presentations
of HMMs, see the references at the end of this chapter.

There are three new twists compared to traditional gsm models:

(1) There is a finite set of states Q with n elements, a bijection σ : Q → {1, . . . , n}, and
the transitions between states are labeled with probabilities rather that symbols from
an alphabet. For any two states p and q in Q, the edge from p to q is labeled with a
probability A(i, j), with i = σ(p) and j = σ(q). The probabilities A(i, j) form an n×n
matrix A = (A(i, j)).

(2) There is a finite set O of size m (called the observation space) of possible outputs that
can be emitted, a bijection ω : O → {1, . . . , m}, and for every state q ∈ Q, there is
a probability B(i, j) that output O ∈ O is emitted (produced), with i = σ(q) and
j = ω(O). The probabilities B(i, j) form an n×m matrix B = (B(i, j)).

(3) Sequences of outputs O = (O1, . . . , OT ) (with Ot ∈ O for t = 1, . . . , T ) emitted by
the model are directly observable, but the sequences of states S = (q1, . . . , qT ) (with
qt ∈ Q for t = 1, . . . , T ) that caused some sequence of output to be emitted are not
observable. In this sense the states are hidden, and this is the reason for calling this
model a hidden Markov model.

Remark: We could define a state transition probability function A : Q × Q → [0, 1] by
A(p, q) = A(σ(p), σ(q)), and a state observation probability function B : Q × O → [0, 1] by
B(p, O) = B(σ(p), ω(O)). The function A conveys exactly the same amount of information
as the matrix A, and the function B conveys exactly the same amount of information as the

65
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matrix B. The only difference is that the arguments of A are states rather than integers,
so in that sense it is perhaps more natural. We can think of A as an implementation of A.
Similarly, the arguments of B are states and outputs rather than integers. Again, we can
think of B as an implementation of B. Most of the literature is rather sloppy about this.
We will use matrices.

Here is an example illustrating the notion of HMM.

Example 4.1. Say we consider the following behavior of some professor at some university.
On a hot day (denoted by Hot), the professor comes to class with a drink (denoted D) with
probability 0.7, and with no drink (denoted N) with probability 0.3. On the other hand, on
a cold day (denoted Cold), the professor comes to class with a drink with probability 0.2,
and with no drink with probability 0.8.

Suppose a student intrigued by this behavior recorded a sequence showing whether the
professor came to class with a drink or not, say NNND. Several months later, the student
would like to know whether the weather was hot or cold the days he recorded the drinking
behavior of the professor.

Now the student heard about machine learning, so he constructs a probabilistic (hidden
Markov) model of the weather. Based on some experiments, he determines the probability
of going from a hot day to another hot day to be 0.75, the probability of going from a hot
to a cold day to be 0.25, the probability of going from a cold day to another cold day to be
0.7, and the probability of going from a cold day to a hot day to be 0.3. He also knows that
when he started his observations, it was a cold day with probability 0.45, and a hot day with
probability 0.55.

In this example, the set of states isQ = {Cold,Hot}, and the set of outputs isO = {N,D}.
We have the bijection σ : {Cold,Hot} → {1, 2} given by σ(Cold) = 1 and σ(Hot) = 2, and
the bijection ω : {N,D} → {1, 2} given by ω(N) = 1 and ω(D) = 2.

The above data determine an HMM depicted in Figure 4.1.

The portion of the state diagram involving the states Cold, Hot, is analogous to an NFA
in which the transition labels are probabilities; it is the underlying Markov model of the
HMM. For any given state, the probabilities on the outgoing edges sum to 1. The start state
is a convenient way to express the probabilities of starting either in state Cold or in state
Hot. Also, from each of the states Cold and Hot, we have emission probabilities of producing
the ouput N or D, and these probabilities also sum to 1.

We can also express these data using matrices. The matrix

A =

(
0.7 0.3

0.25 0.75

)

describes the transitions of the Markov model, the vector

π =

(
0.45

0.55

)
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start

Cold Hot

N D

0.45 0.55

0.3

0.25

0.8
0.2 0.3

0.7

0.7 0.75

Figure 4.1: Example of an HMM modeling the “drinking behavior” of a professor at the
University of Pennsylvania.

describes the probabilities of starting either in state Cold or in state Hot, and the matrix

B =

(
0.8 0.2

0.3 0.7

)

describes the emission probabilities. Observe that the rows of the matrices A and B sum to
1. Such matrices are called row-stochastic matrices . The entries in the vector π also sum to
1.

The student would like to solve what is known as the decoding problem. Namely, given
the output sequence NNND, find the most likely state sequence of the Markov model that
produces the output sequence NNND. Is it (Cold,Cold,Cold,Cold), or (Hot,Hot,Hot,Hot),
or (Hot,Cold,Cold,Hot), or (Cold,Cold,Cold,Hot)? Given the probabilities of the HMM,
it seems unlikely that it is (Hot,Hot,Hot,Hot), but how can we find the most likely one?

Before going any further, we wish to address a notational issue that everyone who writes
about state-processes faces. This issue is a bit of a headache which needs to be resolved to
avoid a lot of confusion.

The issue is how to denote the states, the ouputs, as well as (ordered) sequences of states
and sequences of output. In most problems, states and outputs have “meaningful” names.
For example, if we wish to describe the evolution of the temperature from day to day, it
makes sense to use two states “Cold” and “Hot,” and to describe whether a given individual
has a drink by “D,” and no drink by “N.” Thus our set of states is Q = {Cold,Hot}, and
our set of outputs is O = {N,D}.
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However, when computing probabilities, we need to use matrices whose rows and columns
are indexed by positive integers, so we need a mechanism to associate a numerical index to
every state and to every output, and this is the purpose of the bijections σ : Q→ {1, . . . , n}
and ω : O → {1, . . . , m}. In our example, we define σ by σ(Cold) = 1 and σ(Hot) = 2, and
ω by ω(N) = 1 and ω(D) = 2.

Some author circumvent (or do they?) this notational issue by assuming that the set of
outputs is O = {1, 2, . . . , m}, and that the set of states is Q = {1, 2, . . . , n}. The disad-
vantage of doing this is that in “real” situations, it is often more convenient to name the
outputs and the states with more meaningful names than 1, 2, 3 etc. With respect to this,
Mitch Marcus pointed out to me that the task of naming the elements of the output alphabet
can be challenging, for example in speech recognition.

Let us now turn to sequences. For example, consider the sequence of six states (from the
set Q = {Cold,Hot}),

S = (Cold,Cold,Hot,Cold,Hot,Hot).

Using the bijection σ : {Cold,Hot} → {1, 2} defined above, the sequence S is completely
determined by the sequence of indices

σ(S) = (σ(Cold), σ(Cold), σ(Hot), σ(Cold), σ(Hot), σ(Hot)) = (1, 1, 2, 1, 2, 2).

More generally, we will denote a sequence of length T ≥ 1 of states from a set Q of size
n by

S = (q1, q2, . . . , qT ),

with qt ∈ Q for t = 1, . . . , T . Note that sequences start at time t = 1, and not at time t = 0.
This is not the convention used in the theory of stochastic discrete-parameter processes where
the starting time is t = 0, but it has the advantage that a sequence of T elements is written
as (q1, q2, . . . , qT ) instead of (q0, q1, . . . , qT−1).

Using the bijection σ : Q→ {1, . . . , n}, the sequence S is completely determined by the
sequence of indices

σ(S) = (σ(q1), σ(q2), . . . , σ(qT )),

where σ(qt) is some index from the set {1, . . . , n}, for t = 1, . . . , T . The problem now is,
what is a better notation for the index denoted by σ(qt)?

Of course, we could use σ(qt), but this is a heavy notation, so we adopt the notational
convention to denote the index σ(qt) by it.

1

Going back to our example

S = (q1, q2, q3, q4, q4, q6) = (Cold,Cold,Hot,Cold,Hot,Hot),

1We contemplated using the notation σt for σ(qt) instead of it. However, we feel that this would deviate
too much from the common practice found in the literature, which uses the notation it. This is not to say
that the literature is free of horribly confusing notation!
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we have
σ(S) = (σ(q1), σ(q2), σ(q3), σ(q4), σ(q5), σ(q6)) = (1, 1, 2, 1, 2, 2),

so the sequence of indices (i1, i2, i3, i4, i5, i6) = (σ(q1), σ(q2), σ(q3), σ(q4), σ(q5), σ(q6)) is given
by

σ(S) = (i1, i2, i3, i4, i5, i6) = (1, 1, 2, 1, 2, 2).

So, the fourth index i4 is has the value 1.

We apply a similar convention to sequences of outputs. For example, consider the se-
quence of six outputs (from the set O = {N,D}),

O = (N,D,N,N,N,D).

Using the bijection ω : {N,D} → {1, 2} defined above, the sequence O is completely deter-
mined by the sequence of indices

ω(O) = (ω(N), ω(D), ω(N), ω(N), ω(N), ω(D)) = (1, 2, 1, 1, 1, 2).

More generally, we will denote a sequence of length T ≥ 1 of outputs from a set O of size
m by

O = (O1, O2, . . . , OT ),

with Ot ∈ O for t = 1, . . . , T . Using the bijection ω : O → {1, . . . , m}, the sequence O is
completely determined by the sequence of indices

ω(O) = (ω(O1), ω(O2), . . . , ω(OT )),

where ω(Ot) is some index from the set {1, . . . , m}, for t = 1, . . . , T . This time, we adopt
the notational convention to denote the index ω(Ot) by ωt.

Going back to our example

O = (O1, O2, O3, O4, O5, O6) = (N,D,N,N,N,D),

we have

ω(O) = (ω(O1), ω(O2), ω(O3), ω(O4), ω(O5), ω(O6)) = (1, 2, 1, 1, 1, 2),

so the sequence of indices (ω1, ω2, ω3, ω4, ω5, ω6) = (ω(O1), ω(O2), ω(O3), ω(O4), ω(O5),
ω(O6)) is given by

ω(O) = (ω1, ω2, ω3, ω4, ω5, ω6) = (1, 2, 1, 1, 1, 2).

Remark: What is very confusing is this: to assume that the state set is Q = {q1, . . . , qn},
and to denote a sequence of states of length T as S = (q1, q2, . . . , qT ). The symbol q1 in the
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sequence S may actually refer to q3 in Q, etc. At least, the states in Q or the states in the
sequences should be denoted using a different letter, say S = (s1, . . . , sT ).

We feel that the explicit introduction of the bijections σ : Q → {1, . . . , n} and ω : O →
{1, . . . , m}, although not standard in the literature, yields a mathematically clean way to
deal with sequences which is not too cumbersome, although this latter point is a matter of
taste.

HMM’s are among the most effective tools to solve the following types of problems:

(1) DNA and protein sequence alignment in the face of mutations and other kinds
of evolutionary change.

(2) Speech understanding, also called Automatic speech recognition. When we
talk, our mouths produce sequences of sounds from the sentences that we want to
say. This process is complex. Multiple words may map to the same sound, words are
pronounced differently as a function of the word before and after them, we all form
sounds slightly differently, and so on. All a listener can hear (perhaps a computer sys-
tem) is the sequence of sounds, and the listener would like to reconstruct the mapping
(backward) in order to determine what words we were attempting to say. For example,
when you “talk to your TV” to pick a program, say game of thrones , you don’t want
to get Jessica Jones.

(3) Optical character recognition (OCR). When we write, our hands map from an
idealized symbol to some set of marks on a page (or screen). The marks are observable,
but the process that generates them isn’t. A system performing OCR, such as a system
used by the post office to read addresses, must discover which word is most likely to
correspond to the mark it reads.

The reader should review Example 4.1 illustrating the notion of HMM. Let us consider
another example taken from Stamp [10].

Example 4.2. Suppose we want to determine the average annual temperature at a particular
location over a series of years in a distant past where thermometers did not exist. Since we
can’t go back in time, we look for indirect evidence of the temperature, say in terms of the
size of tree growth rings. For simplicity, assume that we consider the two temperatures Cold
and Hot, and three different sizes of tree rings: small, medium and large, which we denote
by S, M, L.

In this example, the set of states is Q = {Cold,Hot}, and the set of outputs is O =
{S,M,L}. We have the bijection σ : {Cold,Hot} → {1, 2} given by σ(Cold) = 1 and
σ(Hot) = 2, and the bijection ω : {S,M,L} → {1, 2, 3} given by ω(S) = 1, ω(M) = 2,
and ω(L) = 3. The HMM shown in Figure 4.2 is a model of the situation.

Suppose we observe the sequence of tree growth rings (S, M, S, L). What is the most
likely sequence of temperatures over a four-year period which yields the observations (S, M,
S, L)?
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Figure 4.2: Example of an HMM modeling the temperature in terms of tree growth rings.

Going back to Example 4.1, which corresponds to the HMM graph shown in Figure 4.3,
we need to figure out the probability that a sequence of states S = (q1, q2, . . . , qT ) produces
the output sequence O = (O1, O2, . . . , OT ).

start

Cold Hot

N D

0.45 0.55

0.3

0.25

0.8
0.2 0.3

0.7

0.7 0.75

Figure 4.3: Example of an HMM modeling the “drinking behavior” of a professor at the
University of Pennsylvania.

Then the probability that we want is just the product of the probability that we begin
with state q1, times the product of the probabilities of each of the transitions, times the
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product of the emission probabilities. With our notational conventions, σ(qt) = it and
ω(Ot) = ωt, so we have

Pr(S,O) = π(i1)B(i1, ω1)

T∏

t=2

A(it−1, it)B(it, ωt).

In our example, ω(O) = (ω1, ω2, ω3, ω4) = (1, 1, 1, 2), which corresponds to NNND. The
brute-force method is to compute these probabilities for all 24 = 16 sequences of states of
length 4 (in general, there are nT sequences of length T ). For example, for the sequence
S = (Cold,Cold,Cold,Hot), associated with the sequence of indices σ(S) = (i1, i2, i3, i4) =
(1, 1, 1, 2), we find that

Pr(S,NNND) = π(1)B(1, 1)A(1, 1)B(1, 1)A(1, 1)B(1, 1)A(1, 2)B(2, 2)

= 0.45× 0.8× 0.7× 0.8× 0.7× 0.8× 0.3× 0.7 = 0.0237.

A much more efficient way to proceed is to use a method based on dynamic programming .
Recall the bijection σ : {Cold,Hot} → {1, 2}, so that we will refer to the state Cold as 1,
and to the state Hot as 2. For t = 1, 2, 3, 4, for every state i = 1, 2, we compute score(i, t)
to be the highest probability that a sequence of length t ending in state i produces the output
sequence (O1, . . . , Ot), and for t ≥ 2, we let pred(i, t) be the state that precedes state i in a
best sequence of length t ending in i.

Recall that in our example, ω(O) = (ω1, ω2, ω3, ω4) = (1, 1, 1, 2), which corresponds to
NNND. Initially, we set

score(j, 1) = π(j)B(j, ω1), j = 1, 2,

and since ω1 = 1 we get score(1, 1) = 0.45× 0.8 = 0.36, which is the probability of starting
in state Cold and emitting N, and score(2, 1) = 0.55× 0.3 = 0.165, which is the probability
of starting in state Hot and emitting N.

Next we compute score(1, 2) and score(2, 2) as follows. For j = 1, 2, for i = 1, 2, compute
temporary scores

tscore(i, j) = score(i, 1)A(i, j)B(j, ω2);

then pick the best of the temporary scores,

score(j, 2) = max
i
tscore(i, j).

Since ω2 = 1, we get tscore(1, 1) = 0.36×0.7×0.8 = 0.2016, tscore(2, 1) = 0.165×0.25×0.8 =
0.0330, and tscore(1, 2) = 0.36×0.3×0.3 = 0.0324, tscore(2, 2) = 0.165×0.75×0.3 = 0.0371.
Then

score(1, 2) = max{tscore(1, 1), tscore(2, 1)} = max{0.2016, 0.0330} = 0.2016,
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which is the largest probability that a sequence of two states emitting the output (N,N)
ends in state Cold, and

score(2, 2) = max{tscore(1, 2), tscore(2, 2)} = max{0.0324, 0.0371} = 0.0371.

which is the largest probability that a sequence of two states emitting the output (N,N)
ends in state Hot. Since the state that leads to the optimal score score(1, 2) is 1, we let
pred(1, 2) = 1, and since the state that leads to the optimal score score(2, 2) is 2, we let
pred(2, 2) = 2.

We compute score(1, 3) and score(2, 3) in a similar way. For j = 1, 2, for i = 1, 2,
compute

tscore(i, j) = score(i, 2)A(i, j)B(j, ω3);

then pick the best of the temporary scores,

score(j, 3) = max
i
tscore(i, j).

Since ω3 = 1, we get tscore(1, 1) = 0.2016 × 0.7 × 0.8 = 0.1129, tscore(2, 1) = 0.0371 ×
0.25× 0.8 = 0.0074, and tscore(1, 2) = 0.2016× 0.3× 0.3 = 0.0181, tscore(2, 2) = 0.0371×
0.75× 0.3 = 0.0083. Then

score(1, 3) = max{tscore(1, 1), tscore(2, 1)} = max{0.1129, 0.0074} = 0.1129,

which is the largest probability that a sequence of three states emitting the output (N,N,N)
ends in state Cold, and

score(2, 3) = max{tscore(1, 2), tscore(2, 2)} = max{0.0181, 0.0083} = 0.0181,

which is the largest probability that a sequence of three states emitting the output (N,N,N)
ends in state Hot. We also get pred(1, 3) = 1 and pred(2, 3) = 1. Finally, we compute
score(1, 4) and score(2, 4) in a similar way. For j = 1, 2, for i = 1, 2, compute

tscore(i, j) = score(i, 3)A(i, j)B(j, ω4);

then pick the best of the temporary scores,

score(j, 4) = max
i
tscore(i, j).

Since ω4 = 2, we get tscore(1, 1) = 0.1129 × 0.7 × 0.2 = 0.0158, tscore(2, 1) = 0.0181 ×
0.25× 0.2 = 0.0009, and tscore(1, 2) = 0.1129× 0.3× 0.7 = 0.0237, tscore(2, 2) = 0.0181×
0.75× 0.7 = 0.0095. Then

score(1, 4) = max{tscore(1, 1), tscore(2, 1)} = max{0.0158, 0.0009} = 0.0158,
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which is the largest probability that a sequence of four states emitting the output (N,N,N,D)
ends in state Cold, and

score(2, 4) = max{tscore(1, 2), tscore(2, 2)} = max{0.0237, 0.0095} = 0.0237,

which is the largest probability that a sequence of four states emitting the output (N,N,N,D)
ends in state Hot, and pred(1, 4) = 1 and pred(2, 4) = 1

Since max{score(1, 4), score(2, 4)} = max{0.0158, 0.0237} = 0.0237, the state with the
maximum score is Hot, and by following the predecessor list (also called backpointer list),
we find that the most likely state sequence to produce the output sequence NNND is
(Cold,Cold,Cold,Hot).

The stages of the computations of score(j, t) for i = 1, 2 and t = 1, 2, 3, 4 can be recorded
in the following diagram called a lattice, or a trellis (which means lattice in French!):

Cold 0.36
0.2016 +3

0.0324

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
0.2016

0.1129 +3

0.0181

 (❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍
0.1129

0.0158 +3

0.0237

 (■
■■

■■
■■

■■
■■

■■
■■

■■

■■
■■

■■
■■

■■
■■

■■
■■

■
0.0158

Hot 0.1650
0.0371

+3

0.033

;;✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈
0.0371

0.0083
//

0.0074

;;✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈
0.0181

0.0095
//

0.0009

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉
0.0237

Note that the trellis contains 16 paths corresponding to the 16 sequences of states of
length 4. Double arrows represent the predecessor edges. For example, the predecessor
pred(2, 3) of the third node on the bottom row labeled with the score 0.0181 (which cor-
responds to Hot), is the second node on the first row labeled with the score 0.2016 (which
corresponds to Cold). The two incoming arrows to the third node on the bottom row are
labeled with the temporary scores 0.0181 and 0.0083. The node with the highest score at
time t = 4 is Hot, with score 0.0237 (showed in bold), and by following the double arrows
backward from this node, we obtain the most likely state sequence (Cold,Cold,Cold,Hot).

The method we just described is known as the Viterbi algorithm. We now define HHM’s
in general, and then present the Viterbi algorithm.

Definition 4.1. A hidden Markov model , for short HMM , is a quintupleM = (Q,O, π, A,B)
where

• Q is a finite set of states with n elements, and there is a bijection σ : Q→ {1, . . . , n}.

• O is a finite output alphabet (also called set of possible observations) with m observa-
tions, and there is a bijection ω : O→ {1, . . . , m}.

• A = (A(i, j)) is an n× n matrix called the state transition probability matrix , with

A(i, j) ≥ 0, 1 ≤ i, j ≤ n, and

n∑

j=1

A(i, j) = 1, i = 1, . . . , n.
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• B = (B(i, j)) is an n×m matrix called the state observation probability matrix (also
called confusion matrix ), with

B(i, j) ≥ 0, 1 ≤ i, j ≤ n, and
m∑

j=1

B(i, j) = 1, i = 1, . . . , n.

A matrix satisfying the above conditions is said to be row stochastic. Both A and B
are row-stochastic.

We also need to state the conditions that makeM a Markov model. To do this rigorously
requires the notion of random variable and is a bit tricky (see the remark below), so we will
cheat as follows:

(a) Given any sequence of states (q1, . . . , qt−2, p, q), the conditional probability that q is the
tth state given that the previous states were q1, . . . , qt−2, p is equal to the conditional
probability that q is the tth state given that the previous state at time t− 1 is p:

Pr(q | q1, . . . , qt−2, p) = Pr(q | p).

This is the Markov property . Informally, the “next” state q of the process at time t
is independent of the “past” states q1, . . . , qt−2, provided that the “present” state p at
time t− 1 is known.

(b) Given any sequence of states (q1, . . . , qi, . . . , qt), and given any sequence of outputs
(O1, . . . , Oi, . . . , Ot), the conditional probability that the output Oi is emitted depends
only on the state qi, and not any other states or any other observations:

Pr(Oi | q1, . . . , qi, . . . , qt, O1, . . . , Oi, . . . , Ot) = Pr(Oi | qi).

This is the output independence condition. Informally, the output function is near-
sighted.

Examples of HMMs are shown in Figure 4.1 and Figure 4.2 (see also Figure 4.4 below).
Note that an output is emitted when visiting a state, not when making a transition, as

in the case of a gsm. So the analogy with the gsm model is only partial; it is meant as a
motivation for HMMs.

The hidden Markov model was developed by L. E. Baum and colleagues at the Institue
for Defence Analysis at Princeton (including Petrie, Eagon, Sell, Soules, and Weiss) starting
in 1966.

If we ignore the output components O and B, then we have what is called a Markov
chain. A good interpretation of a Markov chain is the evolution over (discrete) time of
the populations of n species that may change from one species to another. The probability
A(i, j) is the fraction of the population of the ith species that changes to the jth species. If
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we denote the populations at time t by the row vector x = (x1, . . . , xn), and the populations
at time t + 1 by y = (y1, . . . , yn), then

yj = A(1, j)x1 + · · ·+ A(i, j)xi + · · ·+ A(n, j)xn, 1 ≤ j ≤ n,

in matrix form, y = xA. The condition
∑n

j=1A(i, j) = 1 expresses that the total population
is preserved, namely y1 + · · ·+ yn = x1 + · · ·+ xn.

Remark: This remark is intended for the reader who knows some probability theory, and it
can be skipped without any negative effect on understanding the rest of this chapter . Given
a probability space (Ω,F , µ) and any countable set Q (for simplicity we may assume Q
is finite), a stochastic discrete-parameter process with state space Q is a countable family
(Xt)t∈N of random variables Xt : Ω → Q. We can think of t as time, and for any q ∈ Q, of
Pr(Xt = q) as the probability that the process X is in state q at time t. Note that for such
a process, the stating time is t = 0. If

Pr(Xt = q | X0 = q0, . . . , Xt−2 = qt−2, Xt−1 = p) = Pr(Xt = q | Xt−1 = p)

for all q0, , . . . , qt−2, p, q ∈ Q and for all t ≥ 1, and if the probability on the right-hand side
is independent of t, then we say that X = (Xt)t∈N is a time-homogeneous Markov chain, for
short, Markov chain. Informally, the “next” state Xt of the process is independent of the
“past” states X0, . . . , Xt−2, provided that the “present” state Xt−1 is known.

Since for simplicity Q is assumed to be finite, there is a bijection σ : Q→ {1, . . . , n}, and
then, the process X is completely determined by the probabilities

aij = Pr(Xt = q | Xt−1 = p), i = σ(p), j = σ(q), p, q ∈ Q,

and if Q is a finite state space of size n, these form an n × n matrix A = (aij) called the
Markov matrix of the process X . It is a row-stochastic matrix.

The beauty of Markov chains is that if we write

π(i) = Pr(X0 = i)

for the initial probability distribution, then the joint probability distribution of X0, X1, . . .,
Xt is given by

Pr(X0 = i0, X1 = i1, . . . , Xt = it) = π(i0)A(i0, i1) · · ·A(it−1, it).

The above expression only involves π and the matrix A, and makes no mention of the original
measure space. Therefore, it doesn’t matter what the probability space is!

Conversely, given an n × n row-stochastic matrix A, let Ω be the set of all countable
sequences ω = (ω0, ω1, . . . , ωt, . . .) with ωt ∈ Q = {1, . . . , n} for all t ∈ N, and let Xt : Ω→ Q
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be the projection on the tth component, namely Xt(ω) = ωt.
2 Then it is possible to define a

σ-algebra (also called a σ-field) B and a measure µ on B such that (Ω,B, µ) is a probability
space, and X = (Xt)t∈N is a Markov chain with corresponding Markov matrix A.

To define B, proceed as follows. For every t ∈ N, let Ft be the family of all unions of
subsets of Ω of the form

{ω ∈ Ω | (X0(ω) ∈ S0) ∧ (X1(ω) ∈ S1) ∧ · · · ∧ (Xt(ω) ∈ St)},

where S0, S1, . . . , St are subsets of the state space Q = {1, . . . , n}. It is not hard to show
that each Ft is a σ-algebra. Then let

F =
⋃

t≥0

Ft.

Each set in F is a set of paths for which a finite number of outcomes are restricted to lie in
certain subsets of Q = {1, . . . , n}. All other outcomes are unrestricted. In fact, every subset
C in F is a countable union

C =
⋃

i∈N

B
(t)
i

of sets of the form

B
(t)
i = {ω ∈ Ω | ω = (q0, q1, . . . , qt, st+1, . . . .sj , . . . , ) | q0, q1, . . . , qt ∈ Q}

= {ω ∈ Ω | X0(ω) = q0, X1(ω) = q1, . . . , Xt(ω) = qt}.

The sequences in B
(t)
i are those beginning with the fixed sequence (q0, q1, . . . , qt). One can

show that F is a field of sets (a boolean algebra), but not necessarily a σ-algebra, so we form
the smallest σ-algebra G containing F .

Using the matrix A we can define the measure ν(B
(t)
i ) as the product of the probabilities

along the sequence (q0, q1, . . . , qt). Then it can be shown that ν can be extended to a measure
µ on G, and we let B be the σ-algebra obtained by adding to G all subsets of sets of measure
zero. The resulting probability space (Ω,B, µ) is usually called the sequence space, and the
measure µ is called the tree measure. Then it is easy to show that the family of random
variables Xt : Ω→ Q on the probability space(Ω,B, µ) is a time-homogeneous Markov chain
whose Markov matrix is the original matrix A. The above construction is presented in full
detail in Kemeny, Snell, and Knapp [6] (Chapter 2, Sections 1 and 2).

Most presentations of Markov chains do not even mention the probability space over
which the random variables Xt are defined. This makes the whole thing quite mysterious,
since the probabilities Pr(Xt = q) are by definition given by

Pr(Xt = q) = µ({ω ∈ Ω | Xt(ω) = q}),

2It is customary in probability theory to denote events by the letter ω. In the present case, ω denotes a
countable sequence of elements from Q. This notation has nothing do with the bijection ω : O→ {1, . . . ,m}
occurring in Definition 4.1.
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which requires knowing the measure µ. This is more problematic if we start with a stochastic
matrix. What are the random variables Xt, what are they defined on? The above construc-
tion puts things on firm grounds.

After this long digression we now return to HMM’s. There are three types of problems
that can be solved using HMMs:

(1) The decoding problem: Given an HMM M = (Q,O, π, A,B), for any observed
output sequence O = (O1, O2, . . . , OT ) of length T ≥ 1, find a most likely sequence
of states S = (q1, q2, . . . , qT ) that produces the output sequence O. More precisely,
with our notational convention that σ(qt) = it and ω(Ot) = ωt, this means finding a
sequence S such that the probability

Pr(S,O) = π(i1)B(i1, ω1)
T∏

t=2

A(it−1, it)B(it, ωt)

is maximal. This problem is solved effectively by the Viterbi algorithm that we outlined
before.

(2) The evaluation problem, also called the likelyhood problem: Given a finite
collection {M1, . . . ,ML} of HMM’s with the same output alphabet O, for any output
sequence O = (O1, O2, . . . , OT ) of length T ≥ 1, find which model Mℓ is most likely to
have generated O. More precisely, given any model Mk, we compute the probability
tprobk that Mk could have produced O along any path. Then we pick an HMM Mℓ

for which tprobℓ is maximal. We will return to this point after having described the
Viterbi algoritm. A variation of the Viterbi algorithm called the forward algorithm
effectively solves the evaluation problem.

(3) The training problem, also called the learning problem: Given a set {O1, . . . ,Or}
of output sequences on the same output alpabet O, usually called a set of training data,
given Q, find the “best” π,A, and B for an HMM M that produces all the sequences
in the training set, in the sense that the HMM M = (Q,O, π, A,B) is the most likely
to have produced the sequences in the training set. The technique used here is called
expectation maximization, or EM . It is an iterative method that starts with an initial
triple π,A,B, and tries to impove it. There is such an algorithm known as the Baum-
Welch or forward-backward algorithm, but it is beyond the scope of this introduction.

Let us now describe the Viterbi algorithm in more details.

4.2 The Viterbi Algorithm and the Forward Algorithm

Given an HMM M = (Q,O, π, A,B), for any observed output sequence O = (O1, O2, . . .,
OT ) of length T ≥ 1, we want to find a most likely sequence of states S = (q1, q2, . . . , qT )
that produces the output sequence O.
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Using the bijections σ : Q → {1, . . . , n} and ω : O → {1, . . . , m}, we can work with
sequences of indices, and recall that we denote the index σ(qt) associated with the tth state
qt in the sequence S by it, and the index ω(Ot) associated with the tth output Ot in the
sequence O by ωt. Then we need to find a sequence S such that the probability

Pr(S,O) = π(i1)B(i1, ω1)
T∏

t=2

A(it−1, it)B(it, ωt)

is maximal.

In general, there are nT sequences of length T . We can draw a trellis consisting of T
verticals layers of n nodes (the states), and draw n oriented edges from the ith state in the
jth vertical layer to all n states in the (j + 1)th vertical layer (1 ≤ i ≤ n, 1 ≤ j ≤ T − 1).
There are exactly nT paths in this trellis.

The problem can be solved efficiently by a method based on dynamic programming . For
any t, 1 ≤ t ≤ T , for any state q ∈ Q, if σ(q) = j, then we compute score(j, t), which is the
largest probability that a sequence (q1, . . . , qt−1, q) of length t ending with q has produced
the output sequence (O1, . . . , Ot−1, Ot).

The point is that if we know score(k, t − 1) for k = 1, . . . , n (with t ≥ 2), then we can
find score(j, t) for j = 1, . . . , n, because if we write k = σ(qt−1) and j = σ(q) (recall that
ωt = ω(Ot)), then the probability associated with the path (q1, . . . , qt−1, q) is

tscore(k, j) = score(k, t− 1)A(k, j)B(j, ωt).

See the illustration below:

state indices i1 . . . k j

states q1

σ

OO

��

. . .
score(k,t−1) // qt−1

σ

OO

��

A(k,j) // q

σ

OO

B(j,ωt)
��

outputs O1

ω

��

. . . Ot−1

ω

��

Ot

ω

��
output indices ω1 . . . ωt−1 ωt

So to maximize this probability, we just have to find the maximum of the probabilities
tscore(k, j) over all k, that is, we must have

score(j, t) = max
k
tscore(k, j).
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See the illustration below:

σ−1(1)

tscore(1,j)

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

σ−1(k)
tscore(k,j) // q = σ−1(j)

σ−1(n)

tscore(n,j)

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

To get started, we set score(j, 1) = π(j)B(j, ω1) for j = 1, . . . , n.

The algorithm goes through a forward phase for t = 1, . . . , T , during which it computes
the probabilities score(j, t) for j = 1, . . . , n. When t = T , we pick an index j such that
score(j, T ) is maximal. The machine learning community is fond of the notation

j = argmax
k

score(k, T )

to express the above fact. Typically, the smallest index j corresponding the maximum
element in the list of probabilities

(score(1, T ), score(2, T ), . . . , score(n, T ))

is returned. This gives us the last state qT = σ−1(j) in an optimal sequence that yields the
output sequence O.

The algorithm then goes through a path retrieval phase. To do this, when we compute

score(j, t) = max
k
tscore(k, j),

we also record the index k = σ(qt−1) of the state qt−1 in the best sequence (q1, . . . , qt−1, qt)
for which tscore(k, j) is maximal (with j = σ(qt)), as pred(j, t) = k. The index k is often
called the backpointer of j at time t. This index may not be unique, we just pick one of
them. Again, this can be expressed by

pred(j, t) = argmax
k

tscore(k, j).

Typically, the smallest index k corresponding the maximum element in the list of probabil-
ities

(tscore(1, j), tscore(2, j), . . . , tscore(n, j))

is returned.

The predecessors pred(j, t) are only defined for t = 2, . . . , T , but we can let pred(j, 1) = 0.
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Observe that the path retrieval phase of the Viterbi algorithm is very similar to the
phase of Dijkstra’s algorithm for finding a shortest path that follows the prev array. One
should not confuse this phase with what is called the backward algorithm, which is used in
solving the learning problem. The forward phase of the Viterbi algorithm is quite different
from the Dijkstra’s algorithm, and the Viterbi algorithm is actually simpler (it computes
score(j, t) for all states and for t = 1, . . . , T ), whereas Dijkstra’s algorithm maintains a list
of unvisited vertices, and needs to pick the next vertex). The major difference is that the
Viterbi algorithm maximizes a product of weights along a path, but Dijkstra’s algorithm
minimizes a sum of weights along a path. Also, the Viterbi algorithm knows the length of
the path (T ) ahead of time, but Dijkstra’s algorithm does not.

The Viterbi algorithm, invented by Andrew Viterbi in 1967, is shown below.

The input to the algorithm is M = (Q,O, π, A,B) and the sequence of indices ω(O) =
(ω1, . . . , ωT ) associated with the observed sequence O = (O1, O2, . . . , OT ) of length T ≥ 1,
with ωt = ω(Ot) for t = 1, . . . , T .

The output is a sequence of states (q1, . . . , qT ). This sequence is determined by the
sequence of indices (I1, . . . , IT ); namely, qt = σ−1(It).

The Viterbi Algorithm

begin

for j = 1 to n do

score(j, 1) = π(j)B(j, ω1)

endfor;

(∗ forward phase to find the best (highest) scores ∗)

for t = 2 to T do

for j = 1 to n do

for k = 1 to n do

tscore(k) = score(k, t− 1)A(k, j)B(j, ωt)

endfor;

score(j, t) = maxk tscore(k);

pred(j, t) = argmaxk tscore(k)

endfor

endfor;

(∗ second phase to retrieve the optimal path ∗)

IT = argmaxj score(j, T );

qT = σ−1(IT );

for t = T to 2 by −1 do

It−1 = pred(It, t);
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qt−1 = σ−1(It−1)

endfor

end

An illustration of the Viterbi algorithm applied to Example 4.1 was presented after
Example 4.2. If we run the Viterbi algorithm on the output sequence (S, M, S, L) of
Example 4.2, we find that the sequence (Cold,Cold,Cold,Hot) has the highest probability,
0.00282, among all sequences of length four.

One may have noticed that the numbers involved, being products of probabilities, become
quite small. Indeed, underflow may arise in dynamic programming. Fortunately, there
is a simple way to avoid underflow by taking logarithms. We initialize the algorithm by
computing

score(j, 1) = log[π(j)] + log[B(j, ω1)],

and in the step where tscore is computed we use the formula

tscore(k) = score(k, t− 1) + log[A(k, j)] + log[B(j, ωt)].

It immediately verified that the time complexity of the Viterbi algorithm is O(n2T ).

Let us now to turn to the second problem, the evaluation problem (or likelyhood problem).

This time, given a finite collection {M1, . . . ,ML} of HMM’s with the same output al-
phabet O, for any observed output sequence O = (O1, O2, . . . , OT ) of length T ≥ 1, find
which model Mℓ is most likely to have generated O. More precisely, given any model Mk,
we compute the probability tprobk that Mk could have produced O along any sequence of
states S = (q1, . . . , qT ). Then we pick an HMM Mℓ for which tprobℓ is maximal.

The probability tprobk that we are seeking is given by

tprobk = Pr(O)

=
∑

(i1,...,iT )∈{1,...,n}T

Pr((qi1 , . . . , qiT ),O)

=
∑

(i1,...,iT )∈{1,...,n}T

π(i1)B(i1, ω1)

T∏

t=2

A(it−1, it)B(it, ωt),

where {1, . . . , n}T denotes the set of all sequences of length T consisting of elements from
the set {1, . . . , n}.

It is not hard to see that a brute-force computation requires 2TnT multiplications. For-
tunately, it is easy to adapt the Viterbi algorithm to compute tprobk efficiently. Since we
are not looking for an explicity path, there is no need for the second phase, and during the
forward phase, going from t−1 to t, rather than finding the maximum of the scores tscore(k)
for k = 1, . . . , n, we just set score(j, t) to the sum over k of the temporary scores tscore(k).
At the end, tprobk is the sum over j of the probabilities score(j, T ).
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The algorithm solving the evaluation problem known as the forward algorithm is shown
below.

The input to the algorithm is M = (Q,O, π, A,B) and the sequence of indices ω(O) =
(ω1, . . . , ωT ) associated with the observed sequence O = (O1, O2, . . . , OT ) of length T ≥ 1,
with ωt = ω(Ot) for t = 1, . . . , T . The output is the probability tprob.

The Foward Algorithm

begin

for j = 1 to n do

score(j, 1) = π(j)B(j, ω1)

endfor;

for t = 2 to T do

for j = 1 to n do

for k = 1 to n do

tscore(k) = score(k, t− 1)A(k, j)B(j, ωt)

endfor;

score(j, t) =
∑

k tscore(k)

endfor

endfor;

tprob =
∑

j score(j, T )

end

We can now run the above algorithm on M1, . . . ,ML to compute tprob1, . . . , tprobL, and
we pick the model Mℓ for which tprobℓ is maximum.

As for the Viterbi algorithm, the time complexity of the forward algorithm is O(n2T ).

Underflow is also a problem with the forward algorithm. At first glance it looks like
taking logarithms does not help because there is no simple expression for log(x1 + · · ·+ xn)
in terms of the log xi. Fortunately, we can use the log-sum exp trick (which I learned from
Mitch Marcus), namely the identity

log

(
n∑

i=1

exi

)
= a+ log

(
n∑

i=1

exi−a

)

for all x1, . . . , xn ∈ R and a ∈ R (take exponentials on both sides). Then, if we pick
a = max1≤i≤n xi, we get

1 ≤
n∑

i=1

exi−a ≤ n,
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so

max
1≤i≤n

xi ≤ log

(
n∑

i=1

exi

)
≤ max

1≤i≤n
xi + log n,

which shows that max1≤i≤n xi is a good approximation for log (
∑n

i=1 e
xi). For any positive

reals y1, . . . , yn, if we let xi = log yi, then we get

log

(
n∑

i=1

yi

)
= max

1≤i≤n
log yi + log

(
n∑

i=1

elog(yi)−a

)
, with a = max

1≤i≤n
log yi.

We will use this trick to compute

log(score(j, k)) = log

(
n∑

k=1

elog(tscore(k))

)
= a+ log

(
n∑

k=1

elog(tscore(k))−a

)

with a = max1≤k≤n log(tscore(k)), where tscore((k) could be very small, but log(tscore(k))
is not, so computing log(tscore(k))− a does not cause underflow, and

1 ≤
n∑

k=1

elog(tscore(k))−a ≤ n,

since log(tscore(k)) − a ≤ 0 and one of these terms is equal to zero, so even if some of the
terms elog(tscore(k))−a are very small, this does not cause any trouble. We will also use this

trick to compute log(tprob) = log
(∑n

j=1 score(j, T )
)
in terms of the log(score(j, T )).

We leave it as an exercise to the reader to modify the forward algorithm so that it
computes log(score(j, t)) and log(tprob) using the log-sum exp trick. If you use Matlab,
then this is quite easy because Matlab does a lot of the work for you since it can apply
operators such as exp or

∑
(sum) to vectors.

Example 4.3. To illustrate the forward algorithm, assume that our observant student also
recorded the drinking behavior of a professor at Harvard, and that he came up with the
HHM shown in Figure 4.4.

However, the student can’t remember whether he observed the sequence NNND at Penn
or at Harvard. So he runs the forward algorithm on both HMM’s to find the most likely
model. Do it!

Following Jurafsky, the following chronology shows how of the Viterbi algorithm has had
applications in many separate fields.
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0.13 0.87

0.67

0.1
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0.33 0.9

Figure 4.4: Example of an HMM modeling the “drinking behavior” of a professor at Harvard.

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

Readers who wish to learn more about HMMs should begin with Stamp [10], a great
tutorial which contains a very clear and easy to read presentation. Another nice intro-
duction is given in Rich [9] (Chapter 5, Section 5.11). A much more complete, yet ac-
cessible, coverage of HMMs is found in Rabiner’s tutorial [8]. Jurafsky and Martin’s on-
line Chapter 9 (Hidden Markov Models) is also a very good and informal tutorial (see
https://web.stanford.edu/̃ jurafsky/slp3/9.pdf).

A very clear and quite accessible presentation of Markov chains is given in Cinlar [2].
Another thorough but a bit more advanced presentation is given in Brémaud [1]. Other
presentations of Markov chains can be found in Mitzenmacher and Upfal [7], and in Grimmett
and Stirzaker [5].

Acknowledgments: I would like to thank Mitch Marcus, Jocelyn Qaintance, and Joao
Sedoc, for scrutinizing my work and for many insightful comments.
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Chapter 5

Regular Languages and Regular
Expressions

5.1 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled directed graphs. Since DFA’s and
NFA’s may have several edges labeled with distinct symbols (from the alphabet Σ) between
two states p and q, the usual definition (V,E) of a directed graph in which V is a set of
vertices and the set E of edges is a subset E ⊆ V × V of ordered pairs from elements in V
is not adequate, since this definition only allows a single edge between two vertices.

A way to deal with the issue that distinct edges may have the same source and the same
target is to introduce two functions s, t : E → V , such that given any edge e ∈ E, the vertex
s(e) ∈ V is the source of e and the vertex t(e) ∈ V is the target of e. We allow the possibility
s(e) = t(e), namely, that there are distinct self-loops from a vertex to itself. For simplicity
we proceed in two stages. First we define directed graphs, and then labeled directed graphs.

Definition 5.1. A directed graph is a quadruple G = (V,E, s, t), where V is a set of vertices,
or nodes , E is a set of edges, or arcs , and s, t : E → V are two functions, s being called the
source function, and t the target function. Given an edge e ∈ E, we also call s(e) the origin
(or source) of e, and t(e) the endpoint (or target) of e.

Remark: The functions s, t need not be injective or surjective. Thus, we allow “isolated
vertices.”

Example 5.1. Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8}

V = {v1, v2, v3, v4, v5, v6},

87
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and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

Such a graph can be represented by the diagram shown in Figure 5.1.

e7

e8

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 5.1: A directed graph.

In drawing directed graphs, we will usually omit edge names (the ei), and sometimes
even the node names (the vj).

We now define paths in a directed graph.

Definition 5.2. Given a directed graph G = (V,E, s, t), for any two nodes u, v ∈ V , a path
from u to v is a triple π = (u, e1 . . . en, v), where e1 . . . en is a string (sequence) of edges in E
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such that, s(e1) = u, t(en) = v, and t(ei) = s(ei+1), for all i such that 1 ≤ i ≤ n− 1. When
n = 0, we must have u = v, and the path (u, ǫ, u) is called the null path from u to u. The
number n is the length of the path. We also call u the source (or origin) of the path, and
v the target (or endpoint) of the path. When there is a nonnull path π from u to v, we say
that u and v are connected .

Remark: In a path π = (u, e1 . . . en, v), the expression e1 . . . en is a sequence, and thus,
the ei are not necessarily distinct.

Example 5.2. The following are paths in the graph of Example 5.1:

π1 = (v1, e1e5e7, v6),

π2 = (v2, e2e3e4e2e3e4e2e3e4, v2),

and
π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6).

Clearly, π2 and π3 are of a different nature from π1. Indeed, they contain cycles. This is
formalized as follows.

Definition 5.3. Given a directed graph G = (V,E, s, t), for any node u ∈ V a cycle (or
loop) through u is a nonnull path of the form π = (u, e1 . . . en, u) (equivalently, t(en) = s(e1)).
More generally, a nonnull path π = (u, e1 . . . en, v) contains a cycle iff for some i, j, with
1 ≤ i ≤ j ≤ n, t(ej) = s(ei). In this case, letting w = t(ej) = s(ei), the path (w, ei . . . ej , w)
is a cycle through w. A path π is acyclic iff it does not contain any cycle. Note that each
null path (u, ǫ, u) is acyclic.

Obviously, a cycle π = (u, e1 . . . en, u) through u is also a cycle through every node t(ei).
Also, a path π may contain several different cycles.

Paths can be concatenated as follows.

Definition 5.4. Given a directed graph G = (V,E, s, t), two paths π1 = (u, e1 . . . em, v)
and π2 = (u′, e′1 . . . e

′
n, v

′) can be concatenated provided that v = u′, in which case their
concatenation is the path

π1π2 = (u, e1 . . . eme
′
1 . . . e

′
n, v

′).

It is immediately verified that the concatenation of paths is associative, and that the
concatenation of the path π = (u, e1 . . . em, v) with the null path (u, ǫ, u) or with the null
path (v, ǫ, v) is the path π itself.

Example 5.3. The paths in the graph of Example 5.1 given by

π1 = (v1, e1e2, v3),

π2 = (v3, e3e4e5, v5),

are concatenated into the path

π3 = (v1, e1e2e3e4e5, v5).
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The following fact, although almost trivial, is used all the time, and is worth stating in
detail. The proof uses the pigeonhole principle.

Proposition 5.1. Given a directed graph G = (V,E, s, t), if the set of nodes V contains
m ≥ 1 nodes, then every path π of length at least m contains some cycle.

A consequence of Proposition 5.1 is that in a finite graph with m nodes, given any two
nodes u, v ∈ V , in order to find out whether there is a path from u to v, it is enough to
consider paths of length ≤ m − 1. Indeed, if there is path between u and v, then there is
some path π of minimal length (not necessarily unique, but this doesn’t matter).

If this minimal path has length at least m, then by Proposition 5.1, it contains a cycle.
However, by deleting this cycle from the path π, we get an even shorter path from u to v,
contradicting the minimality of π.

We now turn to labeled graphs.

5.2 Labeled Graphs and Automata

In fact, we only need edge-labeled graphs.

Definition 5.5. A labeled directed graph is a tuple G = (V,E, L, s, t, λ), where V is a set
of vertices, or nodes , E is a set of edges, or arcs , L is a set of labels , s, t : E → V are two
functions, s being called the source function, and t the target function, and λ : E → L is the
labeling function. Given an edge e ∈ E, we also call s(e) the origin (or source) of e, t(e) the
endpoint (or target) of e, and λ(e) the label of e.

Note that the function λ need not be injective or surjective. Thus, distinct edges may
have the same label.

Example 5.4. Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6},

L = {a, b},

and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6

λ(e1) = a, λ(e2) = b, λ(e3) = a, λ(e4) = a,

λ(e5) = b, λ(e6) = a, λ(e7) = a, λ(e8) = b.

Such a labeled graph can be represented by the diagram shown in Figure 5.2.
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a

b

a

a

b

e7

a

e8

b

a

v1 v2

v3

v4

v5
v6

e1

e2

e3

e4

e5

e6

Figure 5.2: A labeled directed graph.

In drawing labeled graphs, we will usually omit edge names (the ei), and sometimes even
the node names (the vj).

Paths, cycles, and concatenation of paths are defined just as before (that is, we ignore
the labels). However, we can now define the spelling of a path.

Definition 5.6. Given a labeled directed graph G = (V,E, L, s, t, λ) for any two nodes
u, v ∈ V , for any path π = (u, e1 . . . en, v), the spelling of the path π is the string of labels

λ(e1) · · ·λ(en).

When n = 0, the spelling of the null path (u, ǫ, u) is the null string ǫ.

Example 5.5. The spelling of the path

π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6)

in the graph of Example 5.4 is
abaabaabaab.
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Every DFA and every NFA can be viewed as a labeled graph in such a way that the set
of spellings of paths from the start state to some final state is the language accepted by the
automaton in question.

Definition 5.7. Given a DFA D = (Q,Σ, δ, q0, F ), where δ : Q × Σ → Q, we associate the
labeled directed graph GD = (V,E, L, s, t, λ) defined as follows:

V = Q

E = {(p, a, q) | q = δ(p, a), p, q ∈ Q, a ∈ Σ},

L = Σ,

s((p, a, q)) = p, t((p, a, q)) = q,

λ((p, a, q)) = a.

Such labeled graphs have a special structure that can easily be characterized.

It is easily shown that a string w ∈ Σ∗ is in the language L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}
iff w is the spelling of some path in GD from q0 to some final state.

Definition 5.8. Given an NFA N = (Q,Σ, δ, q0, F ), where δ : Q × (Σ ∪ {ǫ}) → 2Q, we
associate the labeled directed graph GN = (V,E, L, s, t, λ) defined as follows:

V = Q

E = {(p, a, q) | q ∈ δ(p, a), p, q ∈ Q, a ∈ Σ ∪ {ǫ}},

L = Σ ∪ {ǫ},

s((p, a, q)) = p, t((p, a, q) = q,

λ((p, a, q)) = a.

Remark: : When N has no ǫ-transitions, we can let L = Σ.

Such labeled graphs have also a special structure that can easily be characterized.

Again, a string w ∈ Σ∗ is in the language L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F 6= ∅} iff w is
the spelling of some path in GN from q0 to some final state.

5.3 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be some alphabet. We would like to define a family of languages, R(Σ),
by singling out some very basic (atomic) languages, namely the languages {a1}, . . . , {am},
the empty language, and the trivial language, {ǫ}, and then forming more complicated
languages by repeatedly forming union, concatenation and Kleene ∗ of previously constructed
languages. By doing so, we hope to get a family of languages (R(Σ)) that is closed under
union, concatenation, and Kleene ∗. This means that for any two languages, L1, L2 ∈ R(Σ),
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we also have L1 ∪ L2 ∈ R(Σ) and L1L2 ∈ R(Σ), and for any language L ∈ R(Σ), we have
L∗ ∈ R(Σ). Furthermore, we would like R(Σ) to be the smallest family with these properties.
How do we achieve this rigorously?

Informally, we define the family of languages R(Σ) using the following rules:

(1) The languages {a1}, . . . , {am}, the empty language, and the trivial language {ǫ}, called
base languages or atomic languages , belong to R(Σ).

(2a) If L1 and L2 belong to R(Σ), then L1 ∪ L2 also belongs to R(Σ).

(2b) If L1 and L2 belong to R(Σ), then L1L2 also belongs to R(Σ).

(2c) If L belongs to R(Σ), then L∗ also belongs to R(Σ).

The issue is to show that the above rules define a family of languages which is the smallest
family containing the base languages and closed under union, concaternation, and Kleene ∗.

First, let us look more closely at what we mean by a family of languages. Recall that a
language (over Σ) is any subset, L, of Σ∗. Thus, the set of all languages is 2Σ

∗

, the power
set of Σ∗. If Σ is nonempty, this is an uncountable set.

Definition 5.9. We define a family L of languages over Σ to be any set of languages over
Σ, or equivalently any subset of 2Σ

∗

.

The set of families of languages is 22
Σ
∗

. This is a huge set. We can use the inclusion

relation on 22
Σ
∗

to define a partial order on families of languages. So, L1 ⊆ L2 iff for every
language L, if L ∈ L1 then L ∈ L2.

We can now state more precisely what we are trying to do.

Definition 5.10. We say that a family L of languages contains the atomic languages and
is closed under union, concatenation and Kleene ∗ if it satisfies the following properties:

(1) We have {a1}, . . . , {am}, ∅, {ǫ} ∈ L, i.e., L contains the atomic languages.

(2a) For all L1, L2 ∈ L, we also have L1 ∪ L2 ∈ L.

(2b) For all L1, L2 ∈ L, we also have L1L2 ∈ L.

(2c) For all L ∈ L, we also have L∗ ∈ L.

Now, what we want is the smallest (w.r.t. inclusion) family of languages that satisfies
Properties (1) and (2)(a)(b)(c). We can construct such a family using an inductive definition.
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Definition 5.11. We construct a sequence of families of languages, (R(Σ)n)n≥0, called the
stages of the inductive definition, as follows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ǫ}}

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L
∗ | L1, L2, L ∈ R(Σ)n}.

Then we define R(Σ) by

R(Σ) =
⋃

n≥0

R(Σ)n.

Thus, a language L belongs to R(Σ) iff it belongs to R(Σ)n, for some n ≥ 0.

Example 5.6. If Σ = {a, b}, we have

R(Σ)0 = {{a}, {b}, ∅, {ǫ}},

R(Σ)1 = {{a}, {b}, ∅, {ǫ},

{a, b}, {a, ǫ}, {b, ǫ},

{ab}, {ba}, {aa}, {bb}, {a}∗, {b}∗}.

Some of the languages that will appear in R(Σ)2 are

{a, bb}, {ab, ba}, {abb}, {aabb}, {a}{a}∗, {aa}{b}∗, {bb}∗.

Observe that

R(Σ)0 ⊆ R(Σ)1 ⊆ R(Σ)2 ⊆ · · ·R(Σ)n ⊆ R(Σ)n+1 ⊆ · · · ⊆ R(Σ),

so that if L ∈ R(Σ)n, then L ∈ R(Σ)p, for all p ≥ n. Also, there is some smallest n for
which L ∈ R(Σ)n (the birthdate of L!). In fact, all these inclusions are strict. Note that each
R(Σ)n only contains a finite number of languages (but some of the languages in R(Σ)n are
infinite because of Kleene ∗).

Definition 5.12. We define the regular languages, version 2 , as the family R(Σ).

Of course, it is far from obvious that R(Σ) coincides with the family of languages accepted
by DFA’s (or NFA’s), what we call the regular languages, version 1. However, this is the
case, and this can be demonstrated by giving two algorithms.

Actually, it will be slightly more convenient to define a notation system, the regular
expressions , to denote the languages in R(Σ). Then we will give an algorithm that converts
a regular expression R into an NFA NR, so that LR = L(NR), where LR is the language (in
R(Σ)) denoted by R (see Definition 5.15). We will also give an algorithm that converts an
NFA N into a regular expression RN , so that L(RN ) = L(N).

But before doing all this, we should make sure that R(Σ) is indeed the family that we
are seeking. This is the content of the following proposition.
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Proposition 5.2. The family, R(Σ), is the smallest family of languages which contains
the atomic languages {a1}, . . . , {am}, ∅, {ǫ} and is closed under union, concatenation, and
Kleene ∗.

Proof. There are two things to prove.

(i) We need to prove that R(Σ) has Properties (1) and (2)(a)(b)(c).

(ii) We need to prove thatR(Σ) is the smallest family having Properties (1) and (2)(a)(b)(c).

(i) Since

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ǫ}},

it is obvious that Property (1) holds. Next, assume that L1, L2 ∈ R(Σ). This means that
there are some integers n1, n2 ≥ 0, so that L1 ∈ R(Σ)n1

and L2 ∈ R(Σ)n2
. Now, it is

possible that n1 6= n2, but if we let n = max{n1, n2}, as we observed that R(Σ)p ⊆ R(Σ)q
whenever p ≤ q, we are guaranteed that both L1, L2 ∈ R(Σ)n. However, by the definition
of R(Σ)n+1 (that’s why we defined it this way!), we have L1 ∪ L2 ∈ R(Σ)n+1 ⊆ R(Σ). The
same argument proves that L1L2 ∈ R(Σ)n+1 ⊆ R(Σ). Also, if L ∈ R(Σ)n, we immediately
have L∗ ∈ R(Σ)n+1 ⊆ R(Σ). Therefore, R(Σ) has Properties (1) and (2)(a)(b)(c).

(ii) Let L be any family of languages having Properties (1) and (2)(a)(b)(c). We need
to prove that R(Σ) ⊆ L. If we can prove that R(Σ)n ⊆ L, for all n ≥ 0, we are done (since
then, R(Σ) =

⋃
n≥0R(Σ)n ⊆ L). We prove by induction on n that R(Σ)n ⊆ L, for all n ≥ 0.

The base case n = 0 is trivial, since L has Property (1), which says that R(Σ)0 ⊆ L.
Assume inductively that R(Σ)n ⊆ L. We need to prove that R(Σ)n+1 ⊆ L. Pick any
L ∈ R(Σ)n+1. Recall that

R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L
∗ | L1, L2, L ∈ R(Σ)n}.

If L ∈ R(Σ)n, then L ∈ L, since R(Σ)n ⊆ L, by the induction hypothesis. Otherwise, there
are three cases:

(a) L = L1 ∪ L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we
get L1, L2 ∈ L; since L has Property 2(a), we have L1 ∪ L2 ∈ L.

(b) L = L1L2, where L1, L2 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get
L1, L2 ∈ L; since L has Property 2(b), we have L1L2 ∈ L.

(c) L = L∗
1, where L1 ∈ R(Σ)n. By the induction hypothesis, R(Σ)n ⊆ L, so, we get

L1 ∈ L; since L has Property 2(c), we have L∗
1 ∈ L.

Thus, in all cases, we showed that if L ∈ R(Σ)n+1, then L ∈ L, and so R(Σ)n+1 ⊆ L, which
proves the induction step.
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Remark: A given language L may be built up in different ways. For example,

{a, b}∗ = ({a}∗{b}∗)∗.

Students should study carefully the above proof. Although simple, it is the prototype of
many proofs appearing in the theory of computation.

5.4 Regular Expressions

The definition of the family of languages R(Σ) given in the previous section in terms of
an inductive definition is good to prove properties of these languages but is it not very
convenient to manipulate them in a practical way. To do so, it is better to introduce a
symbolic notation system, the regular expressions .

Regular expressions are certain strings formed according to rules that mimic the inductive
rules for constructing the families R(Σ)n. The set of regular expressions R(Σ) over an
alphabet Σ is a language defined on an alphabet ∆ defined as follows.

Given an alphabet Σ = {a1, . . . , am}, consider the new alphabet

∆ = Σ ∪ {+, ·, ∗, (, ), ∅, ǫ},

where the symbols in {+, ·, ∗, (, ), ∅, ǫ} do not belong to Σ. Informally, we define the family
of regular expressions R(Σ) using the following rules:

(1) The strings a1, . . . , am, the empty string ǫ, and the empty set ∅, called base regular
expressions , belong to R(Σ).

(2a) If R1 and R2 are regular expressions (i.e., belong to R(Σ)), then (R1+R2) is a regular
expression (i.e., belongs to R(Σ)).

(2b) If R1 and R2 are regular expressions (i.e., belong to R(Σ)), then (R1 ·R2) is a regular
expression (i.e., belongs to R(Σ)).

(2c) If R is a regular expression (i.e., belongs to R(Σ)), then R∗ is a regular expression
(i.e., belongs to R(Σ)).

Formally we have the following definition.

Definition 5.13. Given an alphabet Σ = {a1, . . . , am}, we define the family (R(Σ)n) of
languages over ∆ as follows:

R(Σ)0 = {a1, . . . , am, ∅, ǫ},

R(Σ)n+1 = R(Σ)n ∪ {(R1 +R2), (R1 ·R2), R
∗ | R1, R2, R ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.
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Note that every language R(Σ)n is finite. At this stage, +, ·, ∗, (, ), ∅, ǫ are just symbols
with no particular meaning, but Definition 5.15 will assign a meaning to these symbols. In
particular, + will be interpreted as union, · as concatenation, and ∗ as Kleene star.

Example 5.7. If Σ = {a, b}, we have

R(Σ)1 = {a, b, ∅, ǫ,

(a+ b), (b+ a), (a+ a), (b+ b), (a + ǫ), (ǫ+ a),

(b+ ǫ), (ǫ+ b), (a+ ∅), (∅+ a), (b+ ∅), (∅+ b),

(ǫ+ ǫ), (ǫ+ ∅), (∅+ ǫ), (∅+ ∅),

(a · b), (b · a), (a · a), (b · b), (a · ǫ), (ǫ · a),

(b · ǫ), (ǫ · b), (ǫ · ǫ), (a · ∅), (∅ · a),

(b · ∅), (∅ · b), (ǫ · ∅), (∅ · ǫ), (∅ · ∅),

a∗, b∗, ǫ∗, ∅∗}.

Some of the regular expressions appearing in R(Σ)2 are:

(a+ (b · b)), ((a · b) + (b · a)), ((a · b) · b),

((a · a) · (b · b)), (a · a∗), ((a · a) · b∗), (b · b)∗.

Definition 5.14. The set R(Σ) is the set of regular expressions (over Σ).

The following result is analogous to Proposition 5.2 and is proved in a similar fashion.

Proposition 5.3. The language R(Σ) is the smallest language which contains the symbols
a1, . . . , am, ∅, ǫ from ∆, and such that (R1 + R2), (R1 · R2), and R

∗, also belong to R(Σ),
when R1, R2, R ∈ R(Σ).

For simplicity of notation, we write

(R1R2)

instead of

(R1 ·R2).

Example 5.8. The following are regular expressions. R = (a + b)∗, S = (a∗b∗)∗,

T = ((a + b)∗a)((a+ b) · · · (a+ b)︸ ︷︷ ︸
n

).
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5.5 Regular Expressions and Regular Languages

Every regular expression R ∈ R(Σ) can be viewed as the name, or denotation, of some
language L ∈ R(Σ). Similarly, every language L ∈ R(Σ) is the interpretation (or meaning)
of some regular expression R ∈ R(Σ).

Think of a regular expression R as a program, and of L(R) as the result of the execution,
or evaluation, of R by L. This can be made rigorous by defining a function

L : R(Σ)→ R(Σ).

Definition 5.15. The function L : R(Σ)→ R(Σ) is defined recursively as follows:

L[ai] = {ai},

L[∅] = ∅,

L[ǫ] = {ǫ},

L[(R1 +R2)] = L[R1] ∪ L[R2],

L[(R1R2)] = L[R1]L[R2],

L[R∗] = L[R]∗.

Proposition 5.4. For every regular expression R ∈ R(Σ), the language L[R] is regular
(version 2), i.e. L[R] ∈ R(Σ). Conversely, for every regular (version 2) language L ∈ R(Σ),
there is some regular expression R ∈ R(Σ) such that L = L[R].

Proof. To prove that L[R] ∈ R(Σ) for all R ∈ R(Σ), we prove by induction on n ≥ 0 that
if R ∈ R(Σ)n, then L[R] ∈ R(Σ)n. To prove that L is surjective, we prove by induction on
n ≥ 0 that if L ∈ R(Σ)n, then there is some R ∈ R(Σ)n such that L = L[R]. The details
are left as an exercise.

Remark: The function L is not injective. Also, the fact that the function L is well-defined
is not a trivial matter. It follows from the fact that the expressions in R(Σ) are freely
generated. This means that every nonatomic expression R can be expressed in a unique way
as (R1 + R2), (R1 · R2), or R

∗
1. A rigorous proof is quite tedious and is omitted here. A

similar proof occurs when constructing logical formulae in terms of ∧,∨,¬ and =⇒ . For
details, see Gallier [4].

Example 5.9. If R = (a+ b)∗, S = (a∗b∗)∗, then

L[R] = L[S] = {a, b}∗.

For simplicity, we often denote L[R] as LR.
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Example 5.10. As examples, we have

L[(((ab)b) + a)] = {a, abb}

L[((((a∗b)a∗)b)a∗)] = {w ∈ {a, b}∗ | w has two b’s}

L[(((((a∗b)a∗)b)a∗)∗a∗)] = {w ∈ {a, b}∗ | w has an even # of b’s}

L[(((((((a∗b)a∗)b)a∗)∗a∗)b)a∗)] = {w ∈ {a, b}∗ | w has an odd # of b’s}

Remark: If
R = ((a+ b)∗a)((a+ b) · · · (a+ b)︸ ︷︷ ︸

n

),

it can be shown that any minimal DFA accepting LR has 2n+1 states. Yet, both ((a+ b)∗a)
and ((a + b) · · · (a + b)︸ ︷︷ ︸

n

) denote languages that can be accepted by “small” DFA’s (of size 2

and n+ 2).

Definition 5.16. Two regular expressions R, S ∈ R(Σ) are equivalent , denoted as R ∼= S,
iff L[R] = L[S].

It is immediate that ∼= is an equivalence relation. The relation ∼= satisfies some (nice)
identities. For example:

(((aa) + b) + c) ∼= ((aa) + (b+ c))

((aa)(b(cc))) ∼= (((aa)b)(cc))

(a∗a∗) ∼= a∗,

and more generally

((R1 +R2) +R3) ∼= (R1 + (R2 +R3)),

((R1R2)R3) ∼= (R1(R2R3)),

(R1 +R2) ∼= (R2 +R1),

(R∗R∗) ∼= R∗,

R∗∗ ∼= R∗.

There is an algorithm to test the equivalence of regular expressions, but its complexity
is exponential. Such an algorithm uses the conversion of a regular expression to an NFA,
and the subset construction for converting an NFA to a DFA. Then the problem of decid-
ing whether two regular expressions R and S are equivalent is reduced to testing whether
two DFA’s D1 and D2 accept the same languages (the equivalence problem for DFA’s; see
Definition 3.7). As shown in Section 3.2, this last problem is equivalent to testing whether

L(D1)− L(D2) = ∅ and L(D2)− L(D1) = ∅.
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But L(D1) − L(D2) (and similarly L(D2) − L(D1)) is accepted by a DFA obtained by the
cross-product construction for the relative complement (with final states F1×F2 and F2×F1).
Thus in the end, the equivalence problem for regular expressions reduces to the problem of
testing whether a DFA D = (Q,Σ, δ, q0, F ) accepts the empty language, which is equivalent
to Qr ∩ F = ∅. This last problem is a reachability problem in a directed graph which is
easily solved in polynomial time.

It is an open problem to prove that the problem of testing the equivalence of regular
expressions cannot be decided in polynomial time.

In the next two sections we show the equivalence of NFA’s and regular expressions by
providing an algorithm to construct an NFA from a regular expression, and an algorithm for
constructing a regular expression from an NFA. This will show that the regular languages
version 1 coincide with the regular languages version 2.

5.6 Regular Expressions and NFA’s

Proposition 5.5. There is an algorithm which given any regular expression R ∈ R(Σ),
constructs an NFA NR accepting LR, i.e., such that LR = L(NR).

Proof. In order to ensure the correctness of the construction as well as to simplify the
description of the algorithm it is convenient to assume that our NFA’s satisfy the following
conditions:

1. Each NFA has a single final state, t, distinct from the start state, s.

2. There are no incoming transitions into the the start state, s, and no outgoing transi-
tions from the final state, t.

3. Every state has at most two incoming and two outgoing transitions.

Here is the algorithm.

For the base case, either

(a) R = ai, in which case, NR is the NFA shown in Figure 5.3:

s t
ai

Figure 5.3: NFA for ai.

(b) R = ǫ, in which case, NR is the NFA shown in Figure 5.4:

(c) R = ∅, in which case, NR is the NFA shown in Figure 5.5:
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s t
ǫ

Figure 5.4: NFA for ǫ.

s t

Figure 5.5: NFA for ∅.

The recursive clauses are as follows:

(i) If our expression is (R+S), the algorithm is applied recursively to R and S, generating
NFA’s NR and NS, and then these two NFA’s are combined in parallel as shown in Figure
5.6:

s

s2

s1

t2

t1

t

ǫ

ǫ

ǫ

ǫ

NS

NR

Figure 5.6: NFA for (R + S).

(ii) If our expression is (R ·S), the algorithm is applied recursively to R and S, generating
NFA’s NR and NS, and then these NFA’s are combined sequentially as shown in Figure 5.7
by merging the “old” final state, t1, of NR, with the “old” start state, s2, of NS:

s1 t1 t2NR NS

Figure 5.7: NFA for (R · S).

Note that since there are no incoming transitions into s2 in NS, once we enter NS, there
is no way of reentering NR, and so the construction is correct (it yields the concatenation
LRLS).
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(iii) If our expression is R∗, the algorithm is applied recursively to R, generating the NFA
NR. Then we construct the NFA shown in Figure 5.8 by adding an ǫ-transition from the
“old” final state, t1, of NR to the “old” start state, s1, of NR and, as ǫ is not necessarily
accepted by NR, we add an ǫ-transition from s to t:

s s1 t1 t
ǫ ǫ

ǫ

ǫ

NR

Figure 5.8: NFA for R∗.

Since there are no outgoing transitions from t1 in NR, we can only loop back to s1 from
t1 using the new ǫ-transition from t1 to s1 and so the NFA of Figure 5.8 does accept N∗

R.

The algorithm that we just described is sometimes called the “sombrero construction.”
As a corollary of this proposition, we get

Reg. languages version 2 ⊆ Reg. languages, version 1.

Example 5.11. The reader should check that if one constructs the NFA corresponding to
the regular expression (a + b)∗abb, we obtain the NFA shown in Figure 5.9. If we apply the
subset construction, one gets the DFA shown in Figure 5.10.

0 1
2 3

4 5
6 7 8 9

ǫ

10
ǫ

ǫ
a

ǫ
b

ǫ

ǫ

ǫ a b b

ǫ

Figure 5.9: An NFA for R = (a+ b)∗abb.

We now consider the construction of a regular expression from an NFA.
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A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 5.10: A non-minimal DFA for {a, b}∗{abb}.

Proposition 5.6. There is an algorithm which given any NFA N , constructs a regular
expression R ∈ R(Σ), denoting L(N), i.e., such that LR = L(N).

As a corollary of Proposition 5.6,

Reg. languages version 1 ⊆ Reg. languages, version 2.

Proof. This is the node elimination algorithm.

The general idea is to allow more general labels on the edges of an NFA, namely, regular
expressions. Then, such generalized NFA’s are simplified by eliminating nodes one at a time,
and readjusting labels.

Preprocessing, phase 1:

If there are incoming edges into the old start state, we need to add a new start state with
an ǫ-transition to the old start state.

If there is more than one final state or some outgoing edge from any of the old final
states, we need to add a new (unique) final state with ǫ-transitions from each of the old final
states to the new final state.

At the end of this phase, the start state, say s, is a source (no incoming edges), and the
final state, say t, is a sink (no outgoing edges).

Preprocessing, phase 2:

We need to “flatten” parallel edges. For any pair of states (p, q) (p = q is possible), if
there are k edges from p to q labeled u1, . . ., uk, then create a single edge labeled with the
regular expression

u1 + · · ·+ uk.

For any pair of states (p, q) (p = q is possible) such that there is no edge from p to q, we
put an edge labeled ∅.
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At the end of this phase, the resulting “generalized NFA” is such that for any pair of
states (p, q) (where p = q is possible), there is a unique edge labeled with some regular
expression denoted as Rp,q. When Rp,q = ∅, this really means that there is no edge from p
to q in the original NFA N .

By interpreting each Rp,q as a function call (really, a macro) to the NFA Np,q accepting
L[Rp,q] (constructed using the previous algorithm from Proposition 5.5), we can verify that
the original language L(N) is accepted by this new generalized NFA.

Node elimination only applies if the generalized NFA has at least one node distinct
from s and t.

Pick any node r distinct from s and t. For every pair (p, q) where p 6= r and q 6= r,
replace the label of the edge from p to q as described in Figures 5.11 and 5.12.

Rr,r

Rp,q

Rp,r Rr,q

p q

r

Figure 5.11: Before eliminating node r.

bc bc
Rp,q +Rp,rR

∗
r,rRr,q

p q

Figure 5.12: After eliminating node r.
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At the end of this step, delete the node r and all edges adjacent to r.

Note that p = q is possible, in which case the triangle is “flat”. It is also possible that
p = s or q = t. Also, this step is performed for all pairs (p, q), which means that both (p, q)
and (q, p) are considered (when p 6= q)).

Note that this step only has an effect if there are edges from p to r and from r to q in
the original NFA N . Otherwise, r can simply be deleted, as well as the edges adjacent to r.

Other simplifications can be made. For example, when Rr,r = ∅, we can simplify
Rp,rR

∗
r,rRr,q to Rp,rRr,q. When Rp,q = ∅, we have Rp,rR

∗
r,rRr,q.

The order in which the nodes are eliminated is irrelevant, although it affects the size of
the final expression.

The algorithm stops when the only remaining nodes are s and t. Then the label R of the
edge from s to t is a regular expression denoting L(N).

Example 5.12. Let

L = {w ∈ Σ∗ | w contains an odd number of a’s

or an odd number of b’s}.

An NFA for L after the preprocessing phase is

0

1 2

3 4

5

ǫ

a

a

bb

a

a

bb ǫ

ǫ

ǫ

Figure 5.13: NFA for L (after preprocessing phase).
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To eliminate node 2, we need only look at pairs (p, q) where an edge from p enters 2 and
an edge from 2 enters q. Such pairs are

(1, 1), (1, 4), (1, 5), (4, 4), (4, 5).

After eliminating node 2 we get the graph of Figure 5.14.

0 1

3 4

5

ǫ

ab

ba
bb

a

a

a

ǫ+ b

ǫ

aa

bb

Figure 5.14: NFA for L (after eliminating node 2).

To eliminate node 3, we need only look at pairs (p, q) where an edge from p enters 3 and
an edge from 3 enters q. Such pairs are

(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5).

After eliminating node 3 we get the graph of Figure 5.15.

To eliminate node 4, we need only look at pairs (p, q) where an edge from p enters 4 and
an edge from 4 enters q in the graph of Figure 5.15. Such pairs are

(1, 1), (1, 5).

After eliminating node 4 we get the graph of Figure 5.16 where

T = a + b+ (ab+ ba)(aa + bb)∗(ǫ+ a+ b)

and
S = aa + bb+ (ab+ ba)(aa + bb)∗(ab+ ba).

Finally, after eliminating node 1 in the graph of Figure 5.16, we get the regular epression

R = (aa+ bb+ (ab+ ba)(aa + bb)∗(ab+ ba))∗(a + b+ (ab+ ba)(aa + bb)∗(ǫ+ a+ b)).
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0 1

4

5

ǫ

ab+ ba

ab+ ba

a + b

ǫ+ a + b

aa + bb

aa + bb

Figure 5.15: NFA for L (after eliminating node 3).

0 1 5
ǫ T

S

Figure 5.16: NFA for L (after eliminating node 4).

5.7 Applications of Regular Expressions:

Lexical analysis, Finding patterns in text

Regular expressions have several practical applications. The first important application is
to lexical analysis .

A lexical analyzer is the first component of a compiler . The purpose of a lexical analyzer
is to scan the source program and break it into atomic components, known as tokens , i.e.,
substrings of consecutive characters that belong together logically.

Examples of tokens are identifiers, keywords, numbers (in fixed point notation or floating
point notation, etc.), arithmetic operators (+, ·,−, ^), comparison operators (<,>,=, <>),
assignment operator (:=), etc.

Tokens can be described by regular expressions. For this purpose, it is useful to enrich
the syntax of regular expressions, as in UNIX.

For example, the 26 upper case letters of the (roman) alphabet, A, . . . , Z, can be specified
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by the expression
[A-Z]

Similarly, the ten digits, 0, 1, . . . , 9, can be specified by the expression

[0-9]

The regular expression
R1 +R2 + · · ·+Rk

is denoted
[R1R2 · · ·Rk]

So, the expression
[A-Za-z0-9]

denotes any letter (upper case or lower case) or digit. This is called an alphanumeric.

If we define an identifier as a string beginning with a letter (upper case or lower case)
followed by any number of alphanumerics (including none), then we can use the following
expression to specify identifiers:

[A-Za-z][A-Za-z0-9]∗

There are systems, such as lex or flex that accept as input a list of regular expressions
describing the tokens of a programming language and construct a lexical analyzer for these
tokens. Such systems are called lexical analyzer generators . Basically, they build a DFA
from the set of regular expressions using the algorithms that have been described earlier.

Usually, it is possible to associate with every expression some action to be taken when
the corresponding token is recognized

Another application of regular expressions is finding patterns in text. Using a regular
expression, we can specify a “vaguely defined” class of patterns.

Take the example of a street address. Most street addresses end with “Street”, or “Av-
enue”, or “Road” or “St.”, or “Ave.”, or “Rd.”.

We can design a regular expression that captures the shape of most street addresses and
then convert it to a DFA that can be used to search for street addresses in text.

For more on this, see Hopcroft-Motwani and Ullman.

5.8 Summary of Closure Properties of the Regular

Languages

The family of regular languages is closed under many operations. In particular, it is closed
under the following operations listed below. Some of the closure properties are left as a
homework problem.
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(1) Union, intersection, relative complement.

(2) Concatenation, Kleene ∗, Kleene +.

(3) Homomorphisms and inverse homomorphisms.

(4) gsm and inverse gsm mappings, a-transductions and inverse a-transductions.

Another useful operation is substitution.

Definition 5.17. Given any two alphabets Σ,∆, a substitution is a function, τ : Σ → 2∆
∗

,
assigning some language, τ(a) ⊆ ∆∗, to every symbol a ∈ Σ.

A substitution τ : Σ → 2∆
∗

is extended to a map τ : 2Σ
∗

→ 2∆
∗

by first extending τ to
strings using the following definition

τ(ǫ) = {ǫ},

τ(ua) = τ(u)τ(a),

where u ∈ Σ∗ and a ∈ Σ, and then to languages by letting

τ(L) =
⋃

w∈L

τ(w),

for every language L ⊆ Σ∗.

Observe that a homomorphism is a special kind of substitution.

Definition 5.18. A substitution is a regular substitution iff τ(a) is a regular language for
every a ∈ Σ.

The proof of the next proposition is left as a homework problem.

Proposition 5.7. If L is a regular language and τ is a regular substitution, then τ(L) is
also regular. Thus, the family of regular languages is closed under regular substitutions.
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Chapter 6

Regular Languages and
Right-Invariant Equivalence Relations

6.1 Right-Invariant Equivalence Relations on Σ∗

The purpose of this chapter is to give one more characterization of the regular languages in
terms of certain kinds of equivalence relations on strings. Pushing this characterization a bit
further, we will be able to show how minimal DFA’s can be found.

Let D = (Q,Σ, δ, q0, F ) be a DFA. The DFA D may be redundant, for example, if there
are states that are not accessible from the start state. Recall (see Section 3.1, especially
Definition 3.4) that the set Qr of accessible or reachable states is the subset of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

If Q 6= Qr, we can “clean up” D by deleting the states in Q−Qr and restricting the transition
function δ to Qr. This way, we get an equivalent DFA Dr such that L(D) = L(Dr), where
all the states of Dr are reachable. From now on, we assume that we are dealing with DFA’s
such that D = Dr, called trim, or reachable.

Recall that an equivalence relation ≃ on a set A is a relation which is reflexive, symmetric,
and transitive. Given any a ∈ A, the set

{b ∈ A | a ≃ b}

is called the equivalence class of a, and it is denoted as [a]≃, or even as [a]. Recall that for
any two elements a, b ∈ A, [a] ∩ [b] = ∅ iff a 6≃ b, and [a] = [b] iff a ≃ b. As a consequence, if
[a] ∩ [b] 6= ∅, then [a] = [b].

The set of equivalence classes associated with the equivalence relation ≃ is a partition
Π of A also denoted as A/ ≃. This means that it is a family of nonempty pairwise disjoint
sets whose union is equal to A itself. The equivalence classes are also called the blocks of
the partition Π. The number of blocks in the partition Π is called the index of ≃ (and Π).

111
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Given any two equivalence relations ≃1 and ≃2 on the same set A with associated parti-
tions Π1 and Π2, since ≃1 and ≃2 are subsets of A× A, the inclusion

≃1 ⊆≃2

makes sense and is equivalent to saying that for all p, q ∈ A,

if p ≃1 q, then p ≃2 q.

Then by the definition of an equivalence class,

≃1 ⊆≃2

iff every block of the partition Π1 is contained in some block of the partition Π2. In fact,
every block of the partition Π2 is the union of blocks of the partition Π1.

Definition 6.1. Given any two equivalence relations ≃1 and ≃2 on the same set A with
associated partitions Π1 and Π2, we say that ≃1 is a refinement of ≃2 (and similarly, Π1 is
a refinement of Π2) if ≃1 ⊆≃2. Note that Π2 has at most as many blocks as Π1 does.

We now define an equivalence relation on strings induced by a DFA. This equivalence is
a kind of “observational” equivalence, in the sense that we decide that two strings u, v are
equivalent iff, when feeding first u and then v to the DFA, u and v drive the DFA to the
same state. From the point of view of the observer, u and v have the same effect (reaching
the same state).

Definition 6.2. Given a DFA D = (Q,Σ, δ, q0, F ), we define the relation ≃D on Σ∗ as
follows: for any two strings u, v ∈ Σ∗,

u ≃D v iff δ∗(q0, u) = δ∗(q0, v).

Example 6.1. We can figure out what the equivalence classes of ≃D are for the following
DFA:

a b

0 1 0
1 2 1
2 0 2

with 0 both start state and (unique) final state. This is the DFA fom Example 3.4 that
accepts the language

L2 = {w ∈ {a, b}
∗ | w contains a number of a’s divisible by 3},



6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 113

except that the states A,B,C have been renamed 0, 1, 2. For example,

abbabbb ≃D aa

ababab ≃D ǫ

bba ≃D a.

There are three equivalences classes:

[ǫ]≃, [a]≃, [aa]≃.

Observe that L(D) = [ǫ]≃. Also, the equivalence classes are in one–to–one correspondence
with the states of D.

The relation ≃D turns out to have some interesting properties. In particular, it is right-
invariant.

Definition 6.3. An equivalence relation ≃ on Σ∗ is right-invariant if for all u, v, w ∈ Σ∗, if
u ≃ v, then uw ≃ vw.

Proposition 6.1. Given any (trim) DFA D = (Q,Σ, δ, q0, F ), the relation ≃D is an equiv-
alence relation which is right-invariant and has finite index. Furthermore, if Q has n states,
then the index of ≃D is n, and every equivalence class of ≃D is a regular language. Finally,
L(D) is the union of some of the equivalence classes of ≃D.

Proof. The fact that ≃D is an equivalence relation is a trivial verification. Recall from
Proposition 3.1 that for all u, v ∈ Σ∗, for all p ∈ Q,

δ∗(p, uv) = δ∗(δ∗(p, u), v).

Then, if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), we have

δ∗(q0, uw) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, vw),

which means that uw ≃D vw. Thus, ≃D is right-invariant. We still have to prove that ≃D

has index n. Define the function f : Σ∗ → Q such that

f(u) = δ∗(q0, u).

Note that if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), then f(u) = f(v). Thus, the
function f : Σ∗ → Q has the same value on all the strings in some equivalence class [u], so

it induces a function f̂ : Π→ Q defined such that

f̂([u]) = f(u)

for every equivalence class [u] ∈ Π, where Π = Σ∗/ ≃ is the partition associated with
≃D. This function is well defined since f(v) has the same value for all elements v in the
equivalence class [u].
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However, the function f̂ : Π→ Q is injective (one-to-one), since f̂([u]) = f̂([v]) is equiva-

lent to f(u) = f(v) (since by definition of f̂ we have f̂([u]) = f(u) and f̂([v]) = f(v)), which
by definition of f means that δ∗(q0, u) = δ∗(q0, v), which means precisely that u ≃D v, that
is, [u] = [v].

Since Q has n states, Π has at most n blocks. Moreover, since every state is accessible, for
every q ∈ Q, there is some w ∈ Σ∗ so that δ∗(q0, w) = q, which shows that f̂([w]) = f(w) = q.

Consequently, f̂ is also surjective. But then, being injective and surjective, f̂ is bijective and
Π has exactly n blocks.

Every equivalence class of Π is a set of strings of the form

{w ∈ Σ∗ | δ∗(q0, w) = p},

for some p ∈ Q, which is accepted by the DFA

Dp = (Q,Σ, δ, q0, {p})

obtained from D by changing F to {p}. Thus, every equivalence class is a regular language.
Finally, since

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}

=
⋃

f∈F

{w ∈ Σ∗ | δ∗(q0, w) = f}

=
⋃

f∈F

L(Df),

we see that L(D) is the union of the equivalence classes corresponding to the final states in
F .

One should not be too optimistic and hope that every equivalence relation on strings is
right-invariant.

Example 6.2. For example, if Σ = {a}, the equivalence relation ≃ given by the partition

{
ǫ, a, a4, a9, a16, . . . , an

2

, . . . | n ≥ 0
}
∪
{
a2, a3, a5, a6, a7, a8, . . . , am, . . . | m is not a square

}

we have a ≃ a4, yet by concatenating on the right with a5, since aa5 = a6 and a4a5 = a9 we
get

a6 6≃ a9,

that is, a6 and a9 are not equivalent. It turns out that the problem is that neither equivalence
class is a regular language.

It is worth noting that a right-invariant equivalence relation is not necessarily left-
invariant.
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Definition 6.4. An equivalence relation ≃ on Σ∗ is left-invariant if for all u, v, w ∈ Σ∗, if
u ≃ v, then wu ≃ wv.

Example 6.3. For example, if ≃ is given by the four equivalence classes

C1 = {bb}
∗, C2 = {bb}

∗a, C3 = b{bb}∗, C4 = {bb}
∗a{a, b}+ ∪ b{bb}∗a{a, b}∗,

then we can check that ≃ is right-invariant by figuring out the inclusions Cia ⊆ Cj and
Cib ⊆ Cj , which are recorded in the following table:

a b

C1 C2 C3

C2 C4 C4

C3 C4 C1

C4 C4 C4

However, both ab, ba ∈ C4, yet bab ∈ C4 and bba ∈ C2, so ≃ is not left-invariant.

Given two DFA’sD1 andD2, whether or not there is a morphism h : D1 → D2 depends on
the relationship between ≃D1

and ≃D2
. More specifically, we have the following proposition:

Proposition 6.2. Given two DFA’s D1 and D2, with D1 trim, the following properties hold:

(1) There is a DFA morphism h : D1 → D2 iff

≃D1
⊆≃D2

.

(2) There is a DFA F -map h : D1 → D2 iff

≃D1
⊆≃D2

and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h : D1 → D2 iff

≃D1
⊆≃D2

and L(D2) ⊆ L(D1).

Furthermore, h is surjective iff D2 is trim.

The remarkable fact due to Myhill and Nerode is that Proposition 6.1 has a converse.
Indeed, given a right-invariant equivalence relation of finite index it is possible to reconstruct
a DFA, and by a suitable choice of final state, every equivalence class is accepted by such a
DFA. Let us show how this DFA is constructed using a simple example.
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Example 6.4. Consider the equivalence relation ≃ on {a, b}∗ given by the three equivalence
classes

C1 = {ǫ}, C2 = a{a, b}∗, C3 = b{a, b}∗.

We leave it as an easy exercise to check that ≃ is right-invariant. For example, if u ≃ v and
u, v ∈ C2, then u = ax and v = ay for some x, y ∈ {a, b}∗, so for any w ∈ {a, b}∗ we have
uw = axw and vw = ayw, which means that we also have uw, vw ∈ C2, thus uw ≃ vw.

For any subset C ⊆ {a, b}∗ and any string w ∈ {a, b}∗ define Cw as the set of strings

Cw = {uw | u ∈ C}.

There are two reasons why a DFA can be recovered from the right-invariant equivalence
relation ≃:

(1) For every equivalence class Ci and every string w, there is a unique equivalence class
Cj such that

Ciw ⊆ Cj.

Actually, it is enough to check the above property for strings w of length 1 (i.e. symbols
in the alphabet) because the property for arbitrary strings follows by induction.

(2) For every w ∈ Σ∗ and every class Ci,

C1w ⊆ Ci iff w ∈ Ci,

where C1 is the equivalence class of the empty string.

We can make a table recording these inclusions.

Example 6.5. Continuing Example 6.4, we get:

a b

C1 C2 C3

C2 C2 C2

C3 C3 C3

For example, from C1 = {ǫ} we have C1a = {a} ⊆ C2 and C1b = {b} ⊆ C3, for C2 =
a{a, b}∗, we have C2a = a{a, b}∗a ⊆ C2 and C2b = a{a, b}∗b ⊆ C2, and for C3 = b{a, b}∗, we
have C3a = b{a, b}∗a ⊆ C3 and C3b = b{a, b}∗b ⊆ C3.

The key point is that the above table is the transition table of a DFA with start state
C1 = [ǫ]. Furthermore, if Ci (i = 1, 2, 3) is chosen as a single final state, the corresponding
DFA Di accepts Ci. This is the converse of Myhill-Nerode!
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Observe that the inclusions Ciw ⊆ Cj may be strict inclusions. For example, C1a = {a}
is a proper subset of C2 = a{a, b}∗

Let us do another example.

Example 6.6. Consider the equivalence relation ≃ on {a, b}∗ given by the four equivalence
classes

C1 = {ǫ}, C2 = {a}, C3 = {b}
+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗.

We leave it as an easy exercise to check that ≃ is right-invariant.

We obtain the following table of inclusions Cia ⊆ Cj and Cib ⊆ Cj:

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

For example, from C3 = {b}+ we get C3a = {b}+a ⊆ C4, and C3b = {b}+b ⊆ C3.

The above table is the transition function of a DFA with four states and start state C1.
If Ci (i = 1, 2, 3, 4) is chosen as a single final state, the corresponding DFA Di accepts Ci.

Here is the general result.

Proposition 6.3. Given any equivalence relation ≃ on Σ∗, if ≃ is right-invariant and has
finite index n, then every equivalence class (block) in the partition Π associated with ≃ is a
regular language.

Proof. Let C1, . . . , Cn be the blocks of Π, and assume that C1 = [ǫ] is the equivalence class
of the empty string.

First, we claim that for every block Ci and every w ∈ Σ∗, there is a unique block Cj such
that Ciw ⊆ Cj, where Ciw = {uw | u ∈ Ci}.

For every u ∈ Ci, the string uw belongs to one and only one of the blocks of Π, say Cj.
For any other string v ∈ Ci, since (by definition) u ≃ v, by right invariance, we get uw ≃ vw,
but since uw ∈ Cj and Cj is an equivalence class, we also have vw ∈ Cj. This proves the
first claim.

We also claim that for every w ∈ Σ∗, for every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

If C1w ⊆ Ci, since C1 = [ǫ], we have ǫw = w ∈ Ci. Conversely, if w ∈ Ci, for any
v ∈ C1 = [ǫ], since ǫ ≃ v, by right invariance we have w ≃ vw, and thus vw ∈ Ci, which
shows that C1w ⊆ Ci.
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For every class Ck, let
Dk = ({1, . . . , n},Σ, δ, 1, {k}),

where δ(i, a) = j iff Cia ⊆ Cj. We will prove the following equivalence:

δ∗(i, w) = j iff Ciw ⊆ Cj.

For this, we prove the following two implications by induction on |w|:

(a) If δ∗(i, w) = j, then Ciw ⊆ Cj , and

(b) If Ciw ⊆ Cj, then δ
∗(i, w) = j.

The base case (w = ǫ) is trivial for both (a) and (b). We leave the proof of the induction
step for (a) as an exercise and give the proof of the induction step for (b) because it is more
subtle. Let w = ua, with a ∈ Σ and u ∈ Σ∗. If Ciua ⊆ Cj, then by the first claim, we know
that there is a unique block, Ck, such that Ciu ⊆ Ck. Furthermore, there is a unique block,
Ch, such that Cka ⊆ Ch, but Ciu ⊆ Ck implies Ciua ⊆ Cka so we get Ciua ⊆ Ch. However,
by the uniqueness of the block, Cj, such that Ciua ⊆ Cj, we must have Ch = Cj . By the
induction hypothesis, as Ciu ⊆ Ck, we have

δ∗(i, u) = k

and, by definition of δ, as Cka ⊆ Cj (= Ch), we have δ(k, a) = j, so we deduce that

δ∗(i, ua) = δ(δ∗(i, u), a) = δ(k, a) = j,

as desired. Then, using the equivalence just proved and the second claim, we have

L(Dk) = {w ∈ Σ∗ | δ∗(1, w) ∈ {k}}

= {w ∈ Σ∗ | δ∗(1, w) = k}

= {w ∈ Σ∗ | C1w ⊆ Ck}

= {w ∈ Σ∗ | w ∈ Ck} = Ck,

proving that every block, Ck, is a regular language.

� In general it is false that Cia = Cj for some block Cj, and we can only claim that
Cia ⊆ Cj.

We can combine Proposition 6.1 and Proposition 6.3 to get the following characterization
of a regular language due to Myhill and Nerode:

Theorem 6.4. (Myhill-Nerode) A language L (over an alphabet Σ) is a regular language iff
it is the union of some of the equivalence classes of an equivalence relation ≃ on Σ∗ which
is right-invariant and has finite index.
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Theorem 6.4 can also be used to prove that certain languages are not regular. A general
scheme (not the only one) goes as follows: If L is not regular, then it must be infinite.
Now, we argue by contradiction. If L was regular, then by Myhill-Nerode, there would be
some equivalence relation ≃, which is right-invariant and of finite index, and such that L is
the union of some of the classes of ≃. Because Σ∗ is infinite and ≃ has only finitely many
equivalence classes, there are strings x, y ∈ Σ∗ with x 6= y so that

x ≃ y.

If we can find a third string, z ∈ Σ∗, such that

xz ∈ L and yz /∈ L,

then we reach a contradiction. Indeed, by right invariance, from x ≃ y, we get xz ≃ yz. But,
L is the union of equivalence classes of ≃, so if xz ∈ L, then we should also have yz ∈ L,
contradicting yz /∈ L. Therefore, L is not regular.

Then the scenario is this: to prove that L is not regular, first we check that L is infinite.
If so, we try finding three strings x, y, z, where and x and y 6= x are prefixes of strings in L
such that

x ≃ y,

where ≃ is a right-invariant relation of finite index such that L is the union of equivalence
of L (which must exist by Myhill–Nerode since we are assuming by contradiction that L is
regular), and where z is chosen so that

xz ∈ L and yz 6∈ L.

Example 6.7. For example, we prove that L = {anbn | n ≥ 1} is not regular (with Σ =
{a, b}).

Assuming for the sake of contradiction that L is regular, there is some equivalence relation
≃ which is right-invariant and of finite index and such that L is the union of some of the
classes of ≃. Since the sequence

a, aa, aaa, . . . , ai, . . .

is infinite and ≃ has a finite number of classes, two of these strings must belong to the
same class, which means that ai ≃ aj for some i 6= j. But since ≃ is right invariant, by
concatenating with bi on the right, we see that aibi ≃ ajbi for some i 6= j. However aibi ∈ L,
and since L is the union of classes of ≃, we also have ajbi ∈ L for i 6= j, which is absurd,
given the definition of L. Thus, in fact, L is not regular.

Here is another illustration of the use of the Myhill-Nerode Theorem to prove that a
language is not regular.
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Example 6.8. We claim that the language,

L′ = {an! | n ≥ 1},

is not regular, where n! (n factorial) is given by 0! = 1 and (n+ 1)! = (n + 1)n!.

Assume L′ is regular. Then there is some equivalence relation ≃ which is right-invariant
and of finite index and such that L′ is the union of some of the classes of ≃. Since the
sequence

a, a2, . . . , an, . . .

is infinite, two of these strings must belong to the same class, which means that ap ≃ aq for
some p, q with 1 ≤ p < q. As q! ≥ q for all q ≥ 0 and q > p, we can concatenate on the right
with aq!−p and we get

apaq!−p ≃ aqaq!−p,

that is,
aq! ≃ aq!+q−p.

Since p < q we have q! < q! + q − p. If we can show that

q! + q − p < (q + 1)!

we will obtain a contradiction because then aq!+q−p /∈ L′, yet aq!+q−p ≃ aq! and aq! ∈ L′,
contradicting Myhill-Nerode. Now, as 1 ≤ p < q, we have q − p ≤ q − 1, so if we can prove
that

q! + q − p ≤ q! + q − 1 < (q + 1)!

we will be done. However, q! + q − 1 < (q + 1)! is equivalent to

q − 1 < (q + 1)!− q!,

and since (q + 1)!− q! = (q + 1)q!− q! = qq!, we simply need to prove that

q − 1 < q ≤ qq!,

which holds for q ≥ 1.

There is another version of the Myhill-Nerode Theorem involving congruences which is
also quite useful.

Definition 6.5. An equivalence relation ≃ on Σ∗ is left and right-invariant iff for all
x, y, u, v ∈ Σ∗,

if x ≃ y, then uxv ≃ uyv.

An equivalence relation ≃ on Σ∗ is a congruence iff for all u1, u2, v1, v2 ∈ Σ∗,

if u1 ≃ v1 and u2 ≃ v2, then u1u2 ≃ v1v2.
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It is easy to prove that an equivalence relation is a congruence iff it is left and right-
invariant.

For example, assume that ≃ is a left and right-invariant equivalence relation, and assume
that

u1 ≃ v1 and u2 ≃ v2.

By right-invariance applied to u1 ≃ v1 , we get

u1u2 ≃ v1u2

and by left-invariance applied to u2 ≃ v2 we get

v1u2 ≃ v1v2.

By transitivity, we conclude that
u1u2 ≃ v1v2.

which shows that ≃ is a congruence.

Proving that a congruence is left and right-invariant is even easier.

There is a version of Proposition 6.1 that applies to congruences and for this we define
the relation ∼D as follows: For any (trim) DFA, D = (Q,Σ, δ, q0, F ), for all x, y ∈ Σ∗,

x ∼D y iff (∀q ∈ Q)(δ∗(q, x) = δ∗(q, y)).

Proposition 6.5. Given any (trim) DFA, D = (Q,Σ, δ, q0, F ), the relation ∼D is an equiv-
alence relation which is left and right-invariant and has finite index. Furthermore, if Q has
n states, then the index of ∼D is at most nn and every equivalence class of ∼D is a regular
language. Finally, L(D) is the union of some of the equivalence classes of ∼D.

Proof. We leave most of the proof of Proposition 6.5 as an exercise. The last two parts of
the proposition are proved using the following facts:

(1) Since ∼D is left and right-invariant and has finite index, in particular, ∼D is right-
invariant and has finite index, so by Proposition 6.3 every equivalence class of ∼D is
regular.

(2) Observe that
∼D ⊆≃D,

since the condition δ∗(q, x) = δ∗(q, y) holds for every q ∈ Q, so in particular for q = q0.
But then, every equivalence class of ≃D is the union of equivalence classes of ∼D and
since, by Proposition 6.1, L is the union of equivalence classes of ≃D, we conclude that
L is also the union of equivalence classes of ∼D.

This completes the proof.
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Using Proposition 6.5 and Proposition 6.3, we obtain another version of the Myhill-
Nerode Theorem.

Theorem 6.6. (Myhill-Nerode, Congruence Version) A language L (over an alphabet Σ)
is a regular language iff it is the union of some of the equivalence classes of an equivalence
relation ≃ on Σ∗ which is a congruence and has finite index.

We now consider an equivalence relation associated with a language L.

6.2 Finding minimal DFA’s

Given any language L (not necessarily regular), we can define an equivalence relation ρL on
Σ∗ which is right-invariant, but not necessarily of finite index. The equivalence relation ρL
is such that L is the union of equivalence classes of ρL. Furthermore, when L is regular, the
relation ρL has finite index. In fact, this index is the size of a smallest DFA accepting L. As
a consequence, if L is regular, a simple modification of the proof of Proposition 6.3 applied
to ≃ = ρL yields a minimal DFA DρL accepting L.

Then, given any trim DFA D accepting L, the equivalence relation ρL can be translated
to an equivalence relation ≡ on states, in such a way that for all u, v ∈ Σ∗,

uρLv iff ϕ(u) ≡ ϕ(v),

where ϕ : Σ∗ → Q is the function (run the DFA D on u from q0) given by

ϕ(u) = δ∗(q0, u).

One can then construct a quotient DFA D/ ≡ whose states are obtained by merging all
states in a given equivalence class of states into a single state, and the resulting DFA D/ ≡
is a mininal DFA. Even though D/ ≡ appears to depend on D, it is in fact unique, and
isomorphic to the abstract DFA DρL induced by ρL.

The last step in obtaining the minimal DFA D/ ≡ is to give a constructive method to
compute the state equivalence relation ≡. This can be done by constructing a sequence of
approximations ≡i, where each ≡i+1 refines ≡i. It turns out that if D has n states, then
there is some index i0 ≤ n− 2 such that

≡j =≡i0 for all j ≥ i0 + 1,

and that

≡=≡i0 .

Furthermore, ≡i+1 can be computed inductively from ≡i. In summary, we obtain a iterative
algorithm for computing ≡ that terminates in at most n− 2 steps.
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Definition 6.6. Given any language L (over Σ), we define the right-invariant equivalence
ρL associated with L as the relation on Σ∗ defined as follows: for any two strings u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

Proposition 6.7. For any language L, the relation ρL is a right-invariant equivalence rela-
tion. Furthermore, L is the union of equivalence classes of ρL.

Proof. To show right-invariance, argue as follows: if uρLv, then for any w ∈ Σ∗, since uρLv
means that

uz ∈ L iff vz ∈ L

for all z ∈ Σ∗, in particular the above equivalence holds for all z of the form z = wy for any
arbitary y ∈ Σ∗, so we have

uwy ∈ L iff vwy ∈ L

for all y ∈ Σ∗, which means that uwρLvw.

That the language L is the union of the equivalence classes of strings in L is shown as
follows. If u ∈ L and uρLv, by letting w = ǫ in the definition of ρL, we get

u ∈ L iff v ∈ L,

and since u ∈ L, we also have v ∈ L. This implies that if u ∈ L, then [u]ρL ⊆ L and so,

L =
⋃

u∈L

[u]ρL,

as claimed.

Example 6.9. For example, consider the regular language

L = {a} ∪ {bm | m ≥ 1},

with Σ = {a, b}. Let us show that the equivalence relation ρL consists of the four equivalence
classes

C1 = {ǫ}, C2 = {a}, C3 = {b}
+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗

encountered earlier in Example 6.6. Observe that

L = C2 ∪ C3.

Let us begin by proving that the equivalence class of a is C2 = {a}. Assume that aρLu.
Since a ∈ L and L is the union of equivalence classes, u ∈ L. So either u = a or u = bn

(n ≥ 1). The case u = a is trivial, but if u = bn, we should have aw ∈ L iff bnw ∈ L for all
w ∈ Σ∗, so in particular for w = b we should have ab ∈ L iff bn+1 ∈ L. Since bn+1 ∈ L and
ab /∈ L, this last equivalence is false, so a is not ρL-equivalent to b

n, and thus the equivalence
class of a is reduced to {a}.
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Next we prove that the equivalence class of bm (m ≥ 1) is C3 = {b}+. Assume that
bmρLu (m ≥ 1). Since bm ∈ L, we also have u ∈ L. If u = bn with n ≥ 1, then for all w ∈ Σ∗

we have bmw ∈ L iff bnw ∈ L. This is because if w = bk, k ≥ 0, then bmbk = bm+k ∈ L and
bnbk = bn+k ∈ L, and if w /∈ {b}∗, then bmw /∈ L and bnw /∈ L. Thus bmρLb

n, m,n ≥ 1. If
u = a, then we should have bmw ∈ L iff aw ∈ L for all w ∈ Σ∗, but for w = b, we have
bmb = bm+1 ∈ L and ab /∈ L, so a is not ρL-equivalent to b

m. In summary, C3 = {b}+ is an
equivalence class.

Next it is easy to check that the complement of C2 ∪C3 is C1 ∪C4. Let us prove that C4

is an equivalence class. Since all strings in C4 = a{a, b}+ ∪ {b}+a{a, b}∗ are not in L, for all
w ∈ Σ∗, since L = C2 ∪ C3, we see immediately that for any string u ∈ a{a, b}+, uw /∈ L,
and for any string v ∈ {b}+a{a, b}∗, vw /∈ L, so any two strings in C4 are equivalent to each
other and C4 is an equivalence class. The only remaining string not in C2 ∪ C3 ∪ C4 is ǫ, so
the last class is indeed C1 = {ǫ}.

When L is regular, we have the following remarkable result:

Proposition 6.8. Given any regular language L, for any (trim) DFA D = (Q,Σ, δ, q0, F )
such that L = L(D), ρL is a right-invariant equivalence relation, and we have ≃D ⊆ ρL.
Furthermore, if ρL has m classes and Q has n states, then m ≤ n.

Proof. By definition, u ≃D v iff δ∗(q0, u) = δ∗(q0, v). Since z ∈ L(D) iff δ∗(q0, z) ∈ F , the
fact that uρLv can be expressed as

∀w ∈ Σ∗(uw ∈ L iff vw ∈ L)

iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F )

iff

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F ),

and if δ∗(q0, u) = δ∗(q0, v), this shows that uρLv. Since the number of classes of ≃D is n and
≃D ⊆ ρL, the equivalence relation ρL has fewer classes than ≃D, and m ≤ n.

Proposition 6.8 shows that when L is regular, the index m of ρL is finite, and it is a lower
bound on the size of all DFA’s accepting L. It remains to show that a DFA with m states
accepting L exists.

However, going back to the proof of Proposition 6.3 starting with the right-invariant
equivalence relation ρL of finite index m, if L is the union of the classes Ci1 , . . . , Cik , the
DFA

DρL = ({1, . . . , m},Σ, δ, 1, {i1, . . . , ik}),

where δ(i, a) = j iff Cia ⊆ Cj, is such that L = L(DρL).

In summary, we have the following result.
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Proposition 6.9. If L ⊆ Σ∗ is regular, then the index of ρL is equal to the number of states
of a minimal DFA for L, and the DFA DρL defined above is a minimal DFA accepting L.

Example 6.10. For example, if

L = {a} ∪ {bm | m ≥ 1}.

then we saw in Example 6.9 that ρL consists of the four equivalence classes

C1 = {ǫ}, C2 = {a}, C3 = {b}
+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗,

and we showed in Example 6.6 that the transition table of DρL is given by

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

By picking the final states to be C2 and C3, we obtain the minimal DFA DρL accepting
L = {a} ∪ {bm | m ≥ 1}.

In the next section, we give an algorithm which allows us to find DρL, given any DFA D
accepting L. This algorithms finds which states of D are equivalent.

6.3 State Equivalence and Minimal DFA’s

The proof of Proposition 6.8 suggests the following definition of an equivalence between
states:

Definition 6.7. Given any DFA D = (Q,Σ, δ, q0, F ), the relation ≡ on Q, called state
equivalence, is defined as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ). (∗)

When p ≡ q, we say that p and q are indistinguishable.

Observe that Definition 6.7 says that two states p, q are inequivalent iff there is some
string w ∈ Σ∗ such that either δ∗(p, w) ∈ F and δ∗(q, w) /∈ F , or δ∗(p, w) /∈ F and δ∗(q, w) ∈
F . We say that w distinguishes between p and q (obviously, p 6= q). We will see shortly that
if p and q are inequivalent, then there is a string w of length at most n−1 that distinguishes
between p and q (where n = |Q|).

It is trivial to verify that ≡ is an equivalence relation. It also satisfies the properties
stated in the next two propositions.
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Proposition 6.10. For any DFA D = (Q,Σ, δ, q0, F ), for all p, q ∈ Q,

if p ≡ q, then δ(p, a) ≡ δ(q, a), for all a ∈ Σ.

Proof. To prove the above, since the condition defining ≡ must hold for all strings w ∈ Σ∗,
in particular it must hold for all strings of the form w = au with a ∈ Σ and u ∈ Σ∗, so if
p ≡ q then we have

(∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(p, au) ∈ F iff δ∗(q, au) ∈ F )

iff (∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(δ∗(p, a), u) ∈ F iff δ∗(δ∗(q, a), u) ∈ F )

iff (∀a ∈ Σ)(∀u ∈ Σ∗)(δ∗(δ(p, a), u) ∈ F iff δ∗(δ(q, a), u) ∈ F )

iff (∀a ∈ Σ)(δ(p, a) ≡ δ(q, a)),

as claimed.

Proposition 6.11. For any DFA D = (Q,Σ, δ, q0, F ), for all p, q ∈ Q, if p ≡ q, then p ∈ F
iff q ∈ F , or equivalently either both p, q ∈ F or both p, q ∈ F .

Proof. For w = ǫ, Condition (∗) says that

δ∗(p, ǫ) ∈ F iff δ∗(q, ǫ) ∈ F,

which is equivalent to
p ∈ F iff q ∈ F

since δ∗(p, ǫ) = p and δ∗(q, ǫ) = q.

Proposition 6.11 implies that a final state and a rejecting states are never equivalent.

Example 6.11. The reader should check that states A and C in the DFA below are equiv-
alent and that no other distinct states are equivalent.

It is illuminating to express state equivalence as the equality of two languages. Given the
DFA D = (Q,Σ, δ, q0, F ), let Dp = (Q,Σ, δ, p, F ) be the DFA obtained from D by redefining
the start state to be p. Then, it is clear that

p ≡ q iff L(Dp) = L(Dq).

This simple observation implies that there is an algorithm to test state equivalence, which
is not obvious at first glance since testing whether two states p and q are equivalent involves
checking the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

for infinitely many strings w ∈ Σ∗. Indeed, we simply have to test whether the DFA’s Dp

and Dq accept the same language and this can be done using the cross-product construction.
Indeed, L(Dp) = L(Dq) iff L(Dp)−L(Dq) = ∅ and L(Dq)−L(Dp) = ∅. Now, if (Dp×Dq)1−2



6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 127
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b

a b

b

a

b

a

Figure 6.1: A non-minimal DFA for {a, b}∗{abb}.

denotes the cross-product DFA with starting state (p, q) and with final states F × (Q− F )
and (Dp × Dq)2−1 denotes the cross-product DFA also with starting state (p, q) and with
final states (Q− F )× F , we know that

L((Dp ×Dq)1−2) = L(Dp)− L(Dq) and L((Dp ×Dq)2−1) = L(Dq)− L(Dp),

so all we need to do if to test whether (Dp × Dq)1−2 and (Dp × Dq)2−1 accept the empty
language. However, we know that this is the case iff the set of states reachable from (p, q)
in (Dp ×Dq)1−2 contains no state in F × (Q− F ) and the set of states reachable from (p, q)
in (Dp ×Dq)2−1 contains no state in (Q− F )× F .

Actually, the graphs of (Dp ×Dq)1−2 and (Dp ×Dq)2−1 are identical, so we only need to
check that no state in (F × (Q−F ))∪ ((Q−F )×F ) is reachable from (p, q) in that graph.
This algorithm to test state equivalence is not the most efficient but it is quite reasonable
(it runs in polynomial time). A more efficient method will be discussed in Section 6.4.

If L = L(D), Theorem 6.12 below shows the relationship between ρL and ≡ and, more
generally, between the DFA, DρL , and the DFA, D/ ≡, obtained as the quotient of the DFA
D modulo the equivalence relation ≡ on Q.

The minimal DFAD/≡ is obtained by merging the states in each block Si of the partition
Π associated with ≡, forming states corresponding to the blocks Si, and drawing a transition
on input a from a block Si to a block Sj of Π iff there is a transition q = δ(p, a) from any
state p ∈ Si to any state q ∈ Sj on input a.

The start state is the block containing q0, and the final states are the blocks consisting
of final states.

Example 6.12. For example, consider the DFA D1 accepting L = {ab, ba}∗ shown in Figure
6.2.
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Figure 6.2: A nonminimal DFA D1 for L = {ab, ba}∗.

This is not a minimal DFA. In fact,

0 ≡ 2 and 3 ≡ 5.

The above equivalences are obtained by observing the behavior of the DFA from the states
0 and 2 (and from the states 3 and 5) on strings of length ≤ 2.

The minimal DFA D2 is obtained by merging the states in the equivalence class {0, 2}
into a single state, similarly merging the states in the equivalence class {3, 5} into a single
state, and drawing the transitions between equivalence classes. We obtain the DFA shown
in Figure 6.3.

0, 2 1

3, 5 4

a

b

b aa

b

a, b

Figure 6.3: A minimal DFA D2 for L = {ab, ba}∗.

Formally we have the following definition.

Definition 6.8. Given a trim DFA D = (Q,Σ, δ, q0, F ), the quotient DFA D/ ≡ is defined
such that

D/ ≡ ::= (Q/ ≡,Σ, δ/ ≡, [q0]≡, F/ ≡),
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where
δ/ ≡

(
[p]≡, a

)
= [δ(p, a)]≡.

In the above definition, recall that Q/ ≡ denotes the set of equivalence classes of states
in Q modulo ≡ and F/ ≡ denotes the set of equivalence classes of states in F modulo ≡.
Proposition 6.10 implies that the transition function δ/ ≡ is well defined (does not depend
on the choice of p in the equivalence class [p]≡) and Proposition 6.11 implies that F/ ≡ is
well defined (since equivalence classes of final states contain only final states).

Theorem 6.12. For any (trim) DFA D = (Q,Σ, δ, q0, F ) accepting the regular language
L = L(D), the function ϕ : Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

satisfies the property

uρLv iff ϕ(u) ≡ ϕ(v) for all u, v ∈ Σ∗,

and induces a bijection ϕ̂ : Σ∗/ρL → Q/ ≡, defined such that

ϕ̂([u]ρL) = [δ∗(q0, u)]≡.

Furthermore, we have
[u]ρLa ⊆ [v]ρL iff δ(ϕ(u), a) ≡ ϕ(v).

Consequently, ϕ̂ induces an isomorphism of DFA’s, ϕ̂ : DρL → D/ ≡.

Proof. Since ϕ(u) = δ∗(q0, u) and ϕ(v) = δ∗(q0, v), the fact that ϕ(u) ≡ ϕ(v) can be ex-
pressed as

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F )

iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F ),

which is exactly u ρL v. Therefore,

u ρL v iff ϕ(u) ≡ ϕ(v).

From the above, we see that the equivalence class [ϕ(u)]≡ of ϕ(u) does not depend on the
choice of the representative in the equivalence class [u]ρL of u ∈ Σ∗, since for any v ∈ Σ∗, if
u ρL v, then ϕ(u) ≡ ϕ(v), so [ϕ(u)]≡ = [ϕ(v)]≡. Therefore, the function ϕ : Σ∗ → Q maps
each equivalence class [u]ρL modulo ρL to the equivalence class [ϕ(u)]≡ modulo ≡, and so
the function ϕ̂ : Σ∗/ρL → Q/ ≡ given by

ϕ̂([u]ρL) = [ϕ(u)]≡ = [δ∗(q0, u)]≡
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is well-defined. Moreover, ϕ̂ is injective, since ϕ̂([u]) = ϕ̂([v]) iff ϕ(u) ≡ ϕ(v) iff (from above)
uρvv iff [u] = [v]. Since every state in Q is accessible, for every q ∈ Q, there is some u ∈ Σ∗

so that ϕ(u) = δ∗(q0, u) = q, so ϕ̂([u]) = [q]≡ and ϕ̂ is surjective. Therefore, we have a
bijection ϕ̂ : Σ∗/ρL → Q/ ≡.

Since ϕ(u) = δ∗(q0, u), we have

δ(ϕ(u), a) = δ(δ∗(q0, u), a) = δ∗(q0, ua) = ϕ(ua),

and thus, δ(ϕ(u), a) ≡ ϕ(v) can be expressed as ϕ(ua) ≡ ϕ(v). By the previous part, this is
equivalent to uaρLv, and we claim that this is equivalent to

[u]ρLa ⊆ [v]ρL.

First, if [u]ρLa ⊆ [v]ρL , then ua ∈ [v]ρL, that is, uaρLv. Conversely, if uaρLv, then for every
u′ ∈ [u]ρL, we have u′ρLu, so by right-invariance we get u′aρLua, and since uaρLv, we get
u′aρLv, that is, u′a ∈ [v]ρL . Since u′ ∈ [u]ρL is arbitrary, we conclude that [u]ρLa ⊆ [v]ρL .
Therefore, we proved that

δ(ϕ(u), a) ≡ ϕ(v) iff [u]ρLa ⊆ [v]ρL.

The above shows that the transitions of DρL correspond to the transitions of D/ ≡.

Theorem 6.12 shows that the DFA DρL is isomorphic to the DFA D/ ≡ obtained as the
quotient of the DFA D modulo the equivalence relation ≡ on Q. Since DρL is a minimal
DFA accepting L, so is D/ ≡.

Example 6.13. Consider the following DFA D,

a b

1 2 3
2 4 4
3 4 3
4 5 5
5 5 5

with start state 1 and final states 2 and 3. It is easy to see that

L(D) = {a} ∪ {bm | m ≥ 1}.

It is not hard to check that states 4 and 5 are equivalent, and no other pairs of distinct
states are equivalent. The quotient DFA D/ ≡ is obtained my merging states 4 and 5, and
we obtain the following minimal DFA:
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a b

1 2 3
2 4 4
3 4 3
4 4 4

with start state 1 and final states 2 and 3. This DFA is isomorphic to the DFA DρL of
Example 6.10.

There are other characterizations of the regular languages. Among those, the character-
ization in terms of right derivatives is of particular interest because it yields an alternative
construction of minimal DFA’s.

Definition 6.9. Given any language, L ⊆ Σ∗, for any string, u ∈ Σ∗, the right derivative of
L by u, denoted L/u, is the language

L/u = {w ∈ Σ∗ | uw ∈ L}.

Theorem 6.13. If L ⊆ Σ∗ is any language, then L is regular iff it has finitely many right
derivatives. Furthermore, if L is regular, then all its right derivatives are regular and their
number is equal to the number of states of the minimal DFA’s for L.

Proof. It is easy to check that

L/u = L/v iff uρLv.

The above shows that ρL has a finite number of classes, say m, iff there is a finite number of
right derivatives, say n, and if so, m = n. If L is regular, then we know that the number of
equivalence classes of ρL is the number of states of the minimal DFA’s for L, so the number
of right derivatives of L is equal to the size of the minimal DFA’s for L.

Conversely, if the number of derivatives is finite, say m, then ρL has m classes and by
Myhill-Nerode, L is regular. It remains to show that if L is regular then every right derivative
is regular.

Let D = (Q,Σ, δ, q0, F ) be a DFA accepting L. If p = δ∗(q0, u), then let

Dp = (Q,Σ, δ, p, F ),

that is, D with with p as start state. It is clear that

L/u = L(Dp),

so L/u is regular for every u ∈ Σ∗. Also observe that if |Q| = n, then there are at most n
DFA’s Dp, so there is at most n right derivatives, which is another proof of the fact that a
regular language has a finite number of right derivatives.
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If L is regular then the construction of a minimal DFA for L can be recast in terms of
right derivatives. Let L/u1, L/u2, . . . , L/um be the set of all the right derivatives of L. Of
course, we may assume that u1 = ǫ. We form a DFA whose states are the right derivatives,
L/ui. For every state, L/ui, for every a ∈ Σ, there is a transition on input a from L/ui to
L/uj = L/(uia). The start state is L = L/u1 and the final states are the right derivatives,
L/ui, for which ǫ ∈ L/ui.

We leave it as an exercise to check that the above DFA accepts L. One way to do this
is to recall that L/u = L/v iff uρLv and to observe that the above construction mimics
the construction of DρL as in the Myhill-Nerode proposition (Proposition 6.3). This DFA is
minimal since the number of right derivatives is equal to the size of the minimal DFA’s for
L.

We now return to state equivalence.

6.4 An Inductive Method For Computing State

Equivalence

In this section we discuss an inductive method for computing the state equivalence relation ≡
which is more efficent than the method based on testing whether L(Dp) = L(Dq) presented
in Section 6.3.

Note that if F = ∅, then ≡ has a single block (Q), and if F = Q, then ≡ has a single
block (F ). In the first case, the minimal DFA is the one state DFA rejecting all strings. In
the second case, the minimal DFA is the one state DFA accepting all strings. When F 6= ∅
and F 6= Q, there are at least two states in Q, and ≡ also has at least two blocks, as we
shall see shortly.

It remains to compute ≡ explicitly. This is done using a sequence of approximations. In
view of the previous discussion, we are assuming that F 6= ∅ and F 6= Q, which means that
n ≥ 2, where n is the number of states in Q.

Definition 6.10. Given any DFA D = (Q,Σ, δ, q0, F ), for every i ≥ 0, the relation ≡i on
Q, called i-state equivalence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

When p ≡i q, we say that p and q are i-indistinguishable.

Since state equivalence ≡ is defined such that

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ),

we note that testing the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F
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for all strings in Σ∗ is equivalent to testing the above condition for all strings of length at
most i for all i ≥ 0, i.e.

p ≡ q iff ∀i ≥ 0 ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

Since ≡i is defined such that

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ),

we conclude that
p ≡ q iff ∀i ≥ 0 (p ≡i q).

Thus the state equivalence relation ≡ can also be expressed as

≡ =
⋂

i≥0

≡i .

If we assume that F 6= ∅ and F 6= Q, observe that ≡0 has exactly two equivalence classes
F and Q− F , since ǫ is the only string of length 0, and since the condition

δ∗(p, ǫ) ∈ F iff δ∗(q, ǫ) ∈ F

is equivalent to the condition
p ∈ F iff q ∈ F.

It is also obvious from the definition of ≡i that

≡⊆ · · · ⊆ ≡i+1 ⊆≡i ⊆ · · · ⊆ ≡1 ⊆≡0 .

If this sequence was strictly decreasing for all i ≥ 0, the partition associated with ≡i+1 would
contain at least one more block than the partition associated with ≡i and since we start with
a partition with two blocks, the partition associated with ≡i would have at least i+2 blocks.
But then, for i = n− 1, the partition associated with ≡n−1 would have at least n+1 blocks,
which is absurd since Q has only n states. Therefore, there is a smallest integer, i0 ≤ n− 2,
such that

≡i0+1 = ≡i0 .

Thus, it remains to compute ≡i+1 from ≡i, which can be done using the proposition
below. This proposition also shows that

≡=≡i0 .

Proposition 6.14. For any (trim) DFA D = (Q,Σ, δ, q0, F ) with n states, for all p, q ∈ Q,
p ≡i+1 q iff p ≡i q and δ(p, a) ≡i δ(q, a), for every a ∈ Σ. Furthermore, if F 6= ∅ and F 6= Q,
there is a smallest integer i0 ≤ n− 2, such that

≡i0+1 =≡i0 =≡ .
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Proof. By the definition of the relation ≡i,

p ≡i+1 q iff ∀w ∈ Σ∗, |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

The trick is to observe that the condition

δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F

holds for all strings of length at most i+ 1 iff it holds for all strings of length at most i and
for all strings of length between 1 and i+ 1. This is expressed as

p ≡i+1 q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F )

and

∀w ∈ Σ∗, 1 ≤ |w| ≤ i+ 1 (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

Obviously, the first condition in the conjunction is p ≡i q, and since every string w such
that 1 ≤ |w| ≤ i+1 can be written as au where a ∈ Σ and 0 ≤ |u| ≤ i, the second condition
in the conjunction can be written as

∀a ∈ Σ∀u ∈ Σ∗, |u| ≤ i (δ∗(p, au) ∈ F iff δ∗(q, au) ∈ F ).

However, δ∗(p, au) = δ∗(δ(p, a), u) and δ∗(q, au) = δ∗(δ(q, a), u), so that the above condition
is really

∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

Thus, we showed that

p ≡i+1 q iff p ≡i q and ∀a ∈ Σ (δ(p, a) ≡i δ(q, a)).

We claim that if ≡i+1 = ≡i for some i ≥ 0, then ≡i+j = ≡i for all j ≥ 1. This claim
is proved by induction on j. For the base case j, the claim is that ≡i+1 = ≡i, which is the
hypothesis.

Assume inductively that ≡i+j = ≡i for any j ≥ 1. Since p ≡i+j+1 q iff p ≡i+j q and
δ(p, a) ≡i+j δ(q, a), for every a ∈ Σ, and since by the induction hypothesis ≡i+j = ≡i, we
obtain p ≡i+j+1 q iff p ≡i q and δ(p, a) ≡i δ(q, a), for every a ∈ Σ, which is equivalent to
p ≡i+1 q, and thus ≡i+j+1 =≡i+1. But ≡i+1 =≡i, so ≡i+j+1 =≡i, establishing the induction
step.

Since
≡ =

⋂

i≥0

≡i, ≡i+1 ⊆≡i,

and since we know that there is a smallest index say i0, such that ≡j =≡i0 , for all j ≥ i0+1,
we have ≡ =

⋂i0
i=0 ≡i =≡i0 .
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Using Proposition 6.14, we can compute ≡ inductively, starting from ≡0= (F,Q−F ), and
computing ≡i+1 from ≡i, until the sequence of partitions associated with the ≡i stabilizes.

Note that if F = Q or F = ∅, then ≡ = ≡0, and the inductive characterization of
Proposition 6.14 holds trivially.

There are a number of algorithms for computing ≡, or to determine whether p ≡ q for
some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft and Ullman. The basic idea is
to propagate inequivalence, rather than equivalence.

The method consists in forming a triangular array corresponding to all unordered pairs
(p, q), with p 6= q (the rows and the columns of this triangular array are indexed by the
states in Q, where the entries are below the descending diagonal). Initially, the entry (p, q)
is marked iff p and q are not 0-equivalent, which means that p and q are not both in F or
not both in Q− F .

Then we proceed with rounds during which we process the rows from top down, updating
every unmarked entry on every row as follows: for any unmarked pair (p, q), we consider
pairs (δ(p, a), δ(q, a)), for all a ∈ Σ. If any pair (δ(p, a), δ(q, a)) is already marked, this means
that δ(p, a) and δ(q, a) are inequivalent, and thus p and q are inequivalent, and we mark the
pair (p, q). Otherwise we consider the next unmarked pair. We continue in this fashion, until
at the end of a round during which all the rows are processed, nothing has changed. When
the algorithm stops, all marked pairs are inequivalent, and all unmarked pairs correspond to
equivalent states.

Let us illustrates the above method.

Example 6.14. Consider the following DFA accepting {a, b}∗{abb}:

a b

A B C
B B D
C B C
D B E
E B C

The start state is A, and the set of final states is F = {E}. (This is the DFA displayed
in Figure 5.10.)

The initial (half) array is as follows, using × to indicate that the corresponding pair (say,
(E,A)) consists of inequivalent states, and to indicate that nothing is known yet.

B
C
D
E × × × ×

A B C D
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After the first round, we have

B
C
D × × ×
E × × × ×

A B C D

After the second round, we have

B ×
C ×
D × × ×
E × × × ×

A B C D

Finally, nothing changes during the third round, and thus, only A and C are equivalent,
and we get the four equivalence classes

({A,C}, {B}, {D}, {E}).

We obtain the minimal DFA showed in Figure 6.4.

0 1 2 3
a b

a

b

b a

b

a

Figure 6.4: A minimal DFA accepting {a, b}∗{abb}.

There are ways of improving the efficiency of this algorithm, see Hopcroft and Ullman for
such improvements. Fast algorithms for testing whether p ≡ q for some given p, q ∈ Q also
exist. One of these algorithms is based on “forward closures,” following an idea of Knuth.
Such an algorithm is related to a fast unification algorithm; see Section 6.6.
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6.5 The Pumping Lemma

Another useful tool for proving that languages are not regular is the so-called pumping
lemma.

Proposition 6.15. (Pumping lemma) Given any DFA D = (Q,Σ, δ, q0, F ), there is some
m ≥ 1 such that for every w ∈ Σ∗, if w ∈ L(D) and |w| ≥ m, then there exists a decompo-
sition of w as w = uxv, where

(1) x 6= ǫ,

(2) uxiv ∈ L(D), for all i ≥ 0, and

(3) |ux| ≤ m.

Moreover, m can be chosen to be the number of states of the DFA D.

Proof. Let m be the number of states in Q, and let w = w1 . . . wn, with wi ∈ Σ. Since Q
contains the start state q0, m ≥ 1. Since |w| ≥ m, we have n ≥ m. Since w ∈ L(D), let
(q0, q1, . . . , qn), be the sequence of states in the accepting computation of w (where qn ∈ F ).
Consider the subsequence

(q0, q1, . . . , qm).

This sequence contains m + 1 states, but there are only m states in Q, and thus, we have
qi = qj, for some i, j such that 0 ≤ i < j ≤ m. Then, letting u = w1 . . . wi, x = wi+1 . . . wj,
and v = wj+1 . . . wn, it is clear that the conditions of the proposition hold.

An important consequence of the pumping lemma is that if a DFA D has m states and
if there is some string w ∈ L(D) such that |w| ≥ m, then L(D) is infinite.

Indeed, by the pumping lemma, w ∈ L(D) can be written as w = uxv with x 6= ǫ, and

uxiv ∈ L(D) for all i ≥ 0.

Since x 6= ǫ, we have |x| > 0, so for all i, j ≥ 0 with i < j we have

|uxiv| < |uxiv|+ (j − i)|x| = |uxjv|,

which implies that uxiv 6= uxjv for all i < j, and the set of strings

{uxiv | i ≥ 0} ⊆ L(D)

is an infinite subset of L(D), which is itself infinite.

As a consequence, if L(D) is finite, there are no strings w in L(D) such that |w| ≥ m.
In this case, since the premise of the pumping lemma is false, the pumping lemma holds
vacuously; that is, if L(D) is finite, the pumping lemma yields no information.

Another corollary of the pumping lemma is that there is a test to decide whether a DFA
D accepts an infinite language L(D).
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Proposition 6.16. Let D be a DFA with m states. The language L(D) accepted by D is
infinite iff there is some string w ∈ L(D) such that m ≤ |w| < 2m.

Proof. If there is a string w ∈ L(D) such thatm ≤ |w| < 2m, then by Proposition 6.15, L(D)
is infinite. Conversely, assume that L(D) is infinite. In this case there are strings w ∈ L(D)
such that |w| ≥ m. Let w ∈ L(D) be a minimal string such that |w| ≥ m. Assume by
contradiction that |w| ≥ 2m. By the pumping lemma we can write w = uxv, with x 6= ǫ and
|ux| ≤ m. Then the pumping condition with i = 0 yields uv ∈ L(D). Since x 6= ǫ, we have
|uv| < |uxv| = |w|, and since |ux| ≤ m, we also have |x| ≤ m. Since |uxv| = |w| ≥ 2m, we
have

|uv| = |uxv| − |x| ≥ 2m−m = m,

so uv ∈ L(D) is a string such that |uv| ≥ m and |uv| < |w|, contradicting the minimality of
w. Thus m ≤ |w| < 2m, as claimed.

If L(D) is infinite, there are strings of length ≥ m in L(D), but a prirori there is no
guarantee that there are “short” strings w in L(D), that is, strings whose length is uniformly
bounded by some function of m independent of D. The pumping lemma ensures that there
are such strings, and the function is m 7→ 2m.

Typically, the pumping lemma is used to prove that a language is not regular. The
method is to proceed by contradiction, i.e., to assume (contrary to what we wish to prove)
that a language L is indeed regular, and derive a contradiction of the pumping lemma. Thus,
it would be helpful to see what the negation of the pumping lemma is, and for this, we first
state the pumping lemma as a logical formula. We will use the following abbreviations:

nat = {0, 1, 2, . . .},

pos = {1, 2, . . .},

A ≡ w = uxv,

B ≡ x 6= ǫ,

C ≡ |ux| ≤ m,

P ≡ ∀i : nat (uxiv ∈ L(D)).

The pumping lemma can be stated as

∀D : DFA ∃m : pos ∀w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) =⇒ (∃u, x, v : Σ∗ A ∧B ∧ C ∧ P )

)
.

Recalling that

¬(A ∧ B ∧ C ∧ P ) ≡ ¬(A ∧ B ∧ C) ∨ ¬P ≡ (A ∧B ∧ C) =⇒ ¬P

and
¬(R =⇒ S) ≡ R ∧ ¬S,
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the negation of the pumping lemma can be stated as

∃D : DFA ∀m : pos ∃w : Σ∗

(
(w ∈ L(D) ∧ |w| ≥ m) ∧ (∀u, x, v : Σ∗ (A ∧B ∧ C) =⇒ ¬P )

)
.

Since
¬P ≡ ∃i : nat (uxiv /∈ L(D)),

in order to show that the pumping lemma is contradicted, one needs to show that for some
DFA D, for every m ≥ 1, there is some string w ∈ L(D) of length at least m, such that for
every possible decomposition w = uxv satisfying the constraints x 6= ǫ and |ux| ≤ m, there
is some i ≥ 0 such that uxiv /∈ L(D).

When proceeding by contradiction, we have a language L that we are (wrongly) assuming
to be regular, and we can use any DFA D accepting L. The creative part of the argument
is to pick the right w ∈ L (not making any assumption on m ≤ |w|).

Example 6.15. As an illustration, let us use the pumping lemma to prove that L1 = {anbn |
n ≥ 1} is not regular. The usefulness of the condition |ux| ≤ m lies in the fact that it reduces
the number of legal decompositions uxv of w. We proceed by contradiction. Thus, let us
assume that L1 = {anbn | n ≥ 1} is regular. If so, it is accepted by some DFA D. Now,
we wish to contradict the pumping lemma. For every m ≥ 1, let w = ambm. Clearly,
w = ambm ∈ L1 and |w| ≥ m. Then every legal decomposition u, x, v of w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x 6= ǫ and x ends within the a’s, since |ux| ≤ m. Since x 6= ǫ, the string uxxv is of
the form anbm where n > m, and thus uxxv /∈ L1, contradicting the pumping lemma.

Let us consider two more examples.

Example 6.16. let L2 = {ambn | 1 ≤ m < n}. We claim that L2 is not regular. Our first
proof uses the pumping lemma. For any m ≥ 1, pick w = ambm+1. We have w ∈ L2 and
|w| ≥ m so we need to contradict the pumping lemma. Every legal decomposition u, x, v of
w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x 6= ǫ and x ends within the a’s, since |ux| ≤ m. Since x 6= ǫ and x consists of a’s the
string ux2v = uxxv contains at least m+1 a’s and still m+1 b’s, so ux2v 6∈ L2, contradicting
the pumping lemma.

Our second proof uses Myhill-Nerode. Let ≃ be a right-invariant equivalence relation of
finite index such that L2 is the union of classes of ≃. If we consider the infinite sequence

a, a2, . . . , an, . . .
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since ≃ has a finite number of classes there are two strings am and an with m < n such that

am ≃ an.

By right-invariance by concatenating on the right with bn we obtain

ambn ≃ anbn,

and since m < n we have ambn ∈ L2 but anbn /∈ L2, a contradiction.

Example 6.17. Let us now consider the language L3 = {ambn | m 6= n}. This time let
us begin by using Myhill-Nerode to prove that L3 is not regular. The proof is the same as
before, we obtain

ambn ≃ anbn,

and the contradiction is that ambn ∈ L3 and anbn /∈ L3.

Let use now try to use the pumping lemma to prove that L3 is not regular. For any
m ≥ 1 pick w = ambm+1 ∈ L3. As in the previous case, every legal decomposition u, x, v of
w is such that

w = a . . . a︸ ︷︷ ︸
u

a . . . a︸ ︷︷ ︸
x

a . . . ab . . . b︸ ︷︷ ︸
v

where x 6= ǫ and x ends within the a’s, since |ux| ≤ m. However this time we have a problem,
namely that we know that x is a nonempty string of a’s but we don’t know how many, so
we can’t guarantee that pumping up x will yield exactly the string am+1bm+1. We made the
wrong choice for w. There is a choice that will work but it is a bit tricky.

Fortunately, there is another simpler approach. Recall that the regular languages are
closed under the boolean operations (union, intersection and complementation). Thus, L3

is not regular iff its complement L3 is not regular. Observe that L3 contains {anbn | n ≥ 1},
which we showed to be nonregular. But there is another problem, which is that L3 contains
other strings besides strings of the form anbn, for example strings of the form bman with
m,n > 0.

Again, we can take care of this difficulty using the closure operations of the regular
languages. If we can find a regular language R such that L3∩R is not regular, then L3 itself
is not regular, since otherwise as L3 and R are regular then L3 ∩ R is also regular. In our
case, we can use R = {a}+{b}+ to obtain

L3 ∩ {a}
+{b}+ = {anbn | n ≥ 1}.

Since {anbn | n ≥ 1} is not regular, we reached our final contradiction. Observe how we use
the language R to “clean up” L3 by intersecting it with R.

To complete a direct proof using the pumping lemma, the reader should try w =
am!b(m+1)!.

The use of the closure operations of the regular languages is often a quick way of showing
that a language L is not regular by reducing the problem of proving that L is not regular to
the problem of proving that some well-known language is not regular.
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6.6 A Fast Algorithm for Checking State Equivalence

Using a “Forward-Closure”

Given two states p, q ∈ Q, if p ≡ q, then we know that δ(p, a) ≡ δ(q, a), for all a ∈ Σ.
This suggests a method for testing whether two distinct states p, q are equivalent. Starting
with the relation R = {(p, q)}, construct the smallest equivalence relation R† containing R
with the property that whenever (r, s) ∈ R†, then (δ(r, a), δ(s, a)) ∈ R†, for all a ∈ Σ. If we
ever encounter a pair (r, s) such that r ∈ F and s ∈ F , or r ∈ F and s ∈ F , then r and
s are inequivalent, and so are p and q. Otherwise, it can be shown that p and q are indeed
equivalent. Thus, testing for the equivalence of two states reduces to finding an efficient
method for computing the “forward closure” of a relation defined on the set of states of a
DFA.

Such a method was worked out by John Hopcroft and Richard Karp and published in
a 1971 Cornell technical report. This method is based on an idea of Donald Knuth for
solving Exercise 11, in Section 2.3.5 of The Art of Computer Programming, Vol. 1, second
edition, 1973. A sketch of the solution for this exercise is given on Page 594. As far as I
know, Hopcroft and Karp’s method was never published in a journal, but a simple recursive
algorithm does appear on Page 144 of Aho, Hopcroft and Ullman’s The Design and Analysis
of Computer Algorithms, first edition, 1974. Essentially the same idea was used by Paterson
and Wegman to design a fast unification algorithm (in 1978). We make a few definitions.

A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and whenever
(r, s) ∈ S, then (δ(r, a), δ(s, a)) ∈ S, for all a ∈ Σ. The forward closure of a relation
R ⊆ Q×Q is the smallest equivalence relation R† containing R which is forward closed.

We say that a forward closure S is good iff whenever (r, s) ∈ S, then good(r, s), where
good(r, s) holds iff either both r, s ∈ F , or both r, s /∈ F . Obviously, bad(r, s) iff ¬good(r, s).

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing
R is the relation (R∪R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R∪R−1)∗ is the reflexive
and transitive closure of (R∪R−1)). The forward closure of R can be computed inductively
by defining the sequence of relations Ri ⊆ Q×Q as follows:

R0 = R≈

Ri+1 = (Ri ∪ {(δ(r, a), δ(s, a)) | (r, s) ∈ Ri, a ∈ Σ})≈.

It is not hard to prove that Ri0+1 = Ri0 for some least i0, and that R† = Ri0 is the
smallest forward closure containing R. The following two facts can also been established.

(a) if R† is good, then

R† ⊆≡ . (6.1)
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(b) if p ≡ q, then
R† ⊆≡,

that is, Equation (6.1) holds. This implies that R† is good.

As a consequence, we obtain the correctness of our procedure: p ≡ q iff the forward
closure R† of the relation R = {(p, q)} is good.

In practice, we maintain a partition Π representing the equivalence relation that we are
closing under forward closure. We add each new pair (δ(r, a), δ(s, a)) one at a time, and
immediately form the smallest equivalence relation containing the new relation. If δ(r, a)
and δ(s, a) already belong to the same block of Π, we consider another pair, else we merge
the blocks corresponding to δ(r, a) and δ(s, a), and then consider another pair.

The algorithm is recursive, but it can easily be implemented using a stack. To manipulate
partitions efficiently, we represent them as lists of trees (forests). Each equivalence class C
in the partition Π is represented by a tree structure consisting of nodes and parent pointers,
with the pointers from the sons of a node to the node itself. The root has a null pointer.
Each node also maintains a counter keeping track of the number of nodes in the subtree
rooted at that node.

Note that pointers can be avoided. We can represent a forest of n nodes as a list of n
pairs of the form (father , count). If (father , count) is the ith pair in the list, then father = 0
iff node i is a root node, otherwise, father is the index of the node in the list which is the
parent of node i. The number count is the total number of nodes in the tree rooted at the
ith node.

For example, the following list of nine nodes

((0, 3), (0, 2), (1, 1), (0, 2), (0, 2), (1, 1), (2, 1), (4, 1), (5, 1))

represents a forest consisting of the following four trees:

1

3 6

2

7

4

8

5

9

Figure 6.5: A forest of four trees.

Two functions union and find are defined as follows. Given a state p, find(p,Π) finds the
root of the tree containing p as a node (not necessarily a leaf). Given two root nodes p, q,
union(p, q,Π) forms a new partition by merging the two trees with roots p and q as follows:
if the counter of p is smaller than that of q, then let the root of p point to q, else let the root
of q point to p.
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For example, given the two trees shown on the left in Figure 6.6, find(6,Π) returns 3 and
find(8,Π) returns 4. Then union(3, 4,Π) yields the tree shown on the right in Figure 6.6.

3

2 6 7

4

8

3

2 4 6 7

8

Figure 6.6: Applying the function union to the trees rooted at 3 and 4.

In order to speed up the algorithm, using an idea due to Tarjan, we can modify find
as follows: during a call find(p,Π), as we follow the path from p to the root r of the tree
containing p, we redirect the parent pointer of every node q on the path from p (including
p itself) to r (we perform path compression). For example, applying find(8,Π) to the tree
shown on the right in Figure 6.6 yields the tree shown in Figure 6.7

3

2 4 6 7 8

Figure 6.7: The result of applying find with path compression.

The initial partition Π is the identity relation on Q, i.e., it consists of blocks {q} for all
states q ∈ Q. The algorithm uses a stack st. We are assuming that the DFA dd is specified
by a list of two sublists, the first list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second one, denoted right(dd), the set
of final states. The transition function itself is a list of lists, where the i-th list represents
the i-th row of the transition table for dd. The function delta is such that delta(trans, i, j)
returns the j-th state in the i-th row of the transition table of dd. For example, we have the
DFA

dd = (((2, 3), (2, 4), (2, 3), (2, 5), (2, 3), (7, 6), (7, 8), (7, 9), (7, 6)), (5, 9))

consisting of 9 states labeled 1, . . . , 9, and two final states 5 and 9 shown in Figure 6.8. Also,
the alphabet has two letters, since every row in the transition table consists of two entries.
For example, the two transitions from state 3 are given by the pair (2, 3), which indicates
that δ(3, a) = 2 and δ(3, b) = 3.

Then the algorithm is as follows:
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function unif [p, q,Π, dd]: flag ;

begin

trans := left(dd); ff := right(dd); pq := (p, q); st := (pq); flag := 1;

k := Length(first(trans));

while st 6= () ∧ flag 6= 0 do

uv := top(st); uu := left(uv); vv := right(uv);

pop(st);

if bad(ff , uv) = 1 then flag := 0

else

u := find(uu,Π); v := find(vv,Π);

if u 6= v then

union(u, v,Π);

for i = 1 to k do

u1 := delta(trans, uu, k − i+ 1); v1 := delta(trans, vv, k − i+ 1);

uv := (u1, v1); push(st, uv)

endfor

endif

endif

endwhile

end

Example 6.18. The sequence of steps performed by the algorithm starting with p = 1 and
q = 6 is shown below. At every step, we show the current pair of states (p, q), the partition
Π, and the stack st represented as a list of pairs, with the topmost element of the stack as
the rightmost entry in the list.
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Figure 6.8: Testing state equivalence in a DFA.

p = 1, q = 6, Π = {{1, 6}, {2}, {3}, {4}, {5}, {7}, {8}, {9}}, st = ((1, 6))
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Figure 6.9: Testing state equivalence in a DFA.

p = 2, q = 7, Π = {{1, 6}, {2, 7}, {3}, {4}, {5}, {8}, {9}}, st = ((3, 6), (2, 7))
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Figure 6.10: Testing state equivalence in a DFA.

p = 4, q = 8, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5}, {9}}, st = ((3, 6), (4, 8))
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Figure 6.11: Testing state equivalence in a DFA.

p = 5, q = 9, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 9}}, st = ((3, 6), (5, 9))
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Figure 6.12: Testing state equivalence in a DFA.

p = 3, q = 6, Π = {{1, 3, 6}, {2, 7}, {4, 8}, {5, 9}}, st = ((3, 6), (3, 6))

Since states 3 and 6 belong to the first block of the partition, the algorithm terminates.
Since no block of the partition contains a bad pair, the states p = 1 and q = 6 are equivalent.

Example 6.19. Let us now test whether the states p = 3 and q = 7 are equivalent.

1

2

3

4 5

a

b

a

b

a b

a

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.13: Testing state equivalence in a DFA.
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p = 3, q = 7, Π = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}, st = ((3, 7))
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Figure 6.14: Testing state equivalence in a DFA.

p = 2, q = 7, Π = {{1}, {2, 3, 7}, {4}, {5}, {6}, {8}, {9}}, st = ((3, 8), (2, 7))
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Figure 6.15: Testing state equivalence in a DFA.
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p = 4, q = 8, Π = {{1}, {2, 3, 7}, {4, 8}, {5}, {6}, {9}}, st = ((3, 8), (4, 8))
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Figure 6.16: Testing state equivalence in a DFA.

p = 5, q = 9, Π = {{1}, {2, 3, 7}, {4, 8}, {5, 9}, {6}}, st = ((3, 8), (5, 9))
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Figure 6.17: Testing state equivalence in a DFA.
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p = 3, q = 6, Π = {{1}, {2, 3, 6, 7}, {4, 8}, {5, 9}}, st = ((3, 8), (3, 6))
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Figure 6.18: Testing state equivalence in a DFA.

p = 3, q = 8, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = ((3, 8))
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Figure 6.19: Testing state equivalence in a DFA.
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p = 3, q = 9, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = ((3, 9))

Since the pair (3, 9) is a bad pair, the algorithm stops, and the states p = 3 and q = 7
are inequivalent.

With the implementation of find using Tarjan’s path compression method this algorithm
is the fastest one known for testing the equivalence of two states.
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Chapter 7

Context-Free Grammars,
Context-Free Languages, Parse Trees
and Ogden’s Lemma

7.1 Context-Free Grammars

A context-free grammar basically consists of a finite set of grammar rules. In order to define
grammar rules, we assume that we have two kinds of symbols: the terminals, which are the
symbols of the alphabet underlying the languages under consideration, and the nonterminals,
which behave like variables ranging over strings of terminals. A rule is of the form A→ α,
where A is a single nonterminal, and the right-hand side α is a string of terminal and/or
nonterminal symbols. As usual, first we need to define what the object is (a context-free
grammar), and then we need to explain how it is used. Unlike automata, grammars are used
to generate strings, rather than recognize strings.

Definition 7.1. A context-free grammar (for short, CFG) is a quadruple G = (V,Σ, P, S),
where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

• P ⊆ (V − Σ)× V ∗ is a finite set of productions (or rewrite rules, or rules).

The set N = V −Σ is called the set of nonterminal symbols (for short, nonterminals). Thus,
P ⊆ N × V ∗, and every production 〈A, α〉 is also denoted as A → α. A production of the
form A→ ǫ is called an epsilon rule, or null rule.

153
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Remark: Context-free grammars are sometimes defined as G = (VN , VT , P, S). The corre-
spondence with our definition is that Σ = VT and N = VN , so that V = VN ∪ VT . Thus, in
this other definition, it is necessary to assume that VT ∩ VN = ∅.

Example 7.1. G1 = ({E, a, b}, {a, b}, P, E), where P is the set of rules

E −→ aEb,

E −→ ab.

As we will see shortly, this grammar generates the language L1 = {anbn | n ≥ 1}, which
is not regular.

Example 7.2. G2 = ({E,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E), where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a.

This grammar generates a set of arithmetic expressions.

7.2 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings. In this process, the productions
are used as rewrite rules. Formally, we define the derivation relation associated with a
context-free grammar. First, let us review the concepts of transitive closure and reflexive
and transitive closure of a binary relation.

Given a set A, a binary relation R on A is any set of ordered pairs, i.e. R ⊆ A×A. For
short, instead of binary relation, we often simply say relation. Given any two relations R, S
on A, their composition R ◦ S is defined as

R ◦ S = {(x, y) ∈ A× A | ∃z ∈ A, (x, z) ∈ R and (z, y) ∈ S}.

The identity relation IA on A is the relation IA defined such that

IA = {(x, x) | x ∈ A}.

For short, we often denote IA as I. Note that

R ◦ I = I ◦R = R

for every relation R on A. Given a relation R on A, for any n ≥ 0 we define Rn as follows:

R0 = I,

Rn+1 = Rn ◦R.
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It is obvious that R1 = R. It is also easily verified by induction that Rn ◦ R = R ◦ Rn.
The transitive closure R+ of the relation R is defined as

R+ =
⋃

n≥1

Rn.

It is easily verified that R+ is the smallest transitive relation containing R, and that
(x, y) ∈ R+ iff there is some n ≥ 1 and some x0, x1, . . . , xn ∈ A such that x0 = x, xn = y,
and (xi, xi+1) ∈ R for all i, 0 ≤ i ≤ n − 1. The transitive and reflexive closure R∗ of the
relation R is defined as

R∗ =
⋃

n≥0

Rn.

Clearly, R∗ = R+ ∪ I. It is easily verified that R∗ is the smallest transitive and reflexive
relation containing R.

Definition 7.2. Given a context-free grammar G = (V,Σ, P, S), the (one-step) derivation
relation =⇒G associated with G is the binary relation =⇒G ⊆ V ∗ × V ∗ defined as follows:
for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = λAρ and β = λγρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of
=⇒G is denoted as

∗
=⇒G.

When the grammar G is clear from the context, we usually omit the subscript G in =⇒G,
+

=⇒G, and
∗

=⇒G.

A string α ∈ V ∗ such that S
∗

=⇒ α is called a sentential form, and a string w ∈ Σ∗ such
that S

∗
=⇒ w is called a sentence. A derivation α

∗
=⇒ β involving n steps is denoted as

α
n

=⇒ β.

Note that a derivation step
α =⇒G β

is rather nondeterministic. Indeed, one can choose among various occurrences of nontermi-
nals A in α, and also among various productions A→ γ with left-hand side A.

Example 7.3. Using the grammar G1 = ({E, a, b}, {a, b}, P, E) of Example 7.1, where P is
the set of rules

E −→ aEb,

E −→ ab,
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every derivation from E is of the form

E
∗

=⇒ anEbn =⇒ anabbn = an+1bn+1,

or
E

∗
=⇒ anEbn =⇒ anaEbbn = an+1Ebn+1,

where n ≥ 0.

Grammar G1 is very simple: every string anbn has a unique derivation. This is usually
not the case.

Example 7.4. Using the grammar G2 = ({E,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E) of Example
7.2, where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a+ a ∗ a has the following distinct derivations, where the boldface indicates which
occurrence of E is rewritten:

E =⇒ E ∗ E =⇒ E+ E ∗ E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a,

and

E =⇒ E+ E =⇒ a + E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.

In the above derivations, the leftmost occurrence of a nonterminal is chosen at each step.
Such derivations are called leftmost derivations . We could systematically rewrite the right-
most occurrence of a nonterminal, getting rightmost derivations . The string a + a ∗ a also
has the following two rightmost derivations, where the boldface indicates which occurrence
of E is rewritten:

E =⇒ E + E =⇒ E + E ∗ E

=⇒ E + E ∗ a =⇒ E+ a ∗ a =⇒ a+ a ∗ a,

and

E =⇒ E ∗E =⇒ E ∗ a

=⇒ E + E ∗ a =⇒ E+ a ∗ a =⇒ a+ a ∗ a.
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The language generated by a context-free grammar is defined as follows.

Definition 7.3. Given a context-free grammar G = (V,Σ, P, S), the language generated by
G is the set

L(G) = {w ∈ Σ∗ | S
+

=⇒ w}.

A language L ⊆ Σ∗ is a context-free language (for short, CFL) iff L = L(G) for some
context-free grammar G.

It is technically very useful to consider derivations in which the leftmost nonterminal is
always selected for rewriting, and dually, derivations in which the rightmost nonterminal is
always selected for rewriting.

Definition 7.4. Given a context-free grammar G = (V,Σ, P, S), the (one-step) leftmost
derivation relation =⇒

lm
associated with G is the binary relation =⇒

lm
⊆ V ∗ × V ∗ defined as

follows: for all α, β ∈ V ∗, we have
α =⇒

lm
β

iff there exist u ∈ Σ∗, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = uAρ and β = uγρ.

The transitive closure of =⇒
lm

is denoted as
+
=⇒
lm

and the reflexive and transitive closure of

=⇒
lm

is denoted as
∗
=⇒
lm

. The (one-step) rightmost derivation relation =⇒
rm

associated with

G is the binary relation =⇒
rm
⊆ V ∗ × V ∗ defined as follows: for all α, β ∈ V ∗, we have

α =⇒
rm

β

iff there exist λ ∈ V ∗, v ∈ Σ∗, and some production (A→ γ) ∈ P , such that

α = λAv and β = λγv.

The transitive closure of =⇒
rm

is denoted as
+
=⇒
rm

and the reflexive and transitive closure of

=⇒
rm

is denoted as
∗
=⇒
rm

.

Remark: It is customary to use the symbols a, b, c, d, e for terminal symbols, and the sym-
bols A,B,C,D,E for nonterminal symbols. The symbols u, v, w, x, y, z denote terminal
strings, and the symbols α, β, γ, λ, ρ, µ denote strings in V ∗. The symbols X, Y, Z usually
denote symbols in V .

Given a context-free grammar G = (V,Σ, P, S), parsing a string w consists in finding out
whether w ∈ L(G), and if so, in producing a derivation for w. The following proposition is
technically very important. It shows that leftmost and rightmost derivations are “universal”.
This has some important practical implications for the complexity of parsing algorithms.
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Proposition 7.1. Let G = (V,Σ, P, S) be a context-free grammar. For every w ∈ Σ∗, for

every derivation S
+

=⇒ w, there is a leftmost derivation S
+
=⇒
lm

w, and there is a rightmost

derivation S
+
=⇒
rm

w.

Proof. Of course, we have to somehow use induction on derivations, but this is a little
tricky, and it is necessary to prove a stronger fact. We treat leftmost derivations, rightmost
derivations being handled in a similar way.

Claim: For every w ∈ Σ∗, for every α ∈ V +, for every n ≥ 1, if α
n

=⇒ w, then there is a
leftmost derivation α

n
=⇒
lm

w.

The claim is proved by induction on n.

For n = 1, there exist some λ, ρ ∈ V ∗ and some production A → γ, such that α = λAρ
and w = λγρ. Since w is a terminal string, λ, ρ, and γ, are terminal strings. Thus, A is the

only nonterminal in α, and the derivation step α
1

=⇒ w is a leftmost step (and a rightmost
step!).

If n > 1, then the derivation α
n

=⇒ w is of the form

α =⇒ α1
n−1
=⇒ w.

There are two subcases.

Case 1. If the derivation step α =⇒ α1 is a leftmost step α =⇒
lm

α1, by the induction

hypothesis, there is a leftmost derivation α1
n−1
=⇒
lm

w, and we get the leftmost derivation

α =⇒
lm

α1
n−1
=⇒
lm

w.

Case 2. The derivation step α =⇒ α1 is a not a leftmost step. In this case, there must
be some u ∈ Σ∗, µ, ρ ∈ V ∗, some nonterminals A and B, and some production B → δ, such
that

α = uAµBρ and α1 = uAµδρ,

where A is the leftmost nonterminal in α. Since we have a derivation α1
n−1
=⇒ w of length

n− 1, by the induction hypothesis, there is a leftmost derivation

α1
n−1
=⇒
lm

w.

Since α1 = uAµδρ where A is the leftmost terminal in α1, the first step in the leftmost

derivation α1
n−1
=⇒
lm

w is of the form

uAµδρ =⇒
lm

uγµδρ,
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for some production A→ γ. Thus, we have a derivation of the form

α = uAµBρ =⇒ uAµδρ =⇒
lm

uγµδρ
n−2
=⇒
lm

w.

We can commute the first two steps involving the productions B → δ and A → γ, and we
get the derivation

α = uAµBρ =⇒
lm

uγµBρ =⇒ uγµδρ
n−2
=⇒
lm

w.

This may no longer be a leftmost derivation, but the first step is leftmost, and we are
back in case 1. Thus, we conclude by applying the induction hypothesis to the derivation

uγµBρ
n−1
=⇒ w, as in case 1.

Proposition 7.1 implies that

L(G) = {w ∈ Σ∗ | S
+
=⇒
lm

w} = {w ∈ Σ∗ | S
+
=⇒
rm

w}.

We observed that if we consider the grammar G2 = ({E,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E),
where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a + a ∗ a has the following two distinct leftmost derivations, where the boldface
indicates which occurrence of E is rewritten:

E =⇒ E ∗ E =⇒ E+ E ∗ E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a,

and

E =⇒ E+ E =⇒ a + E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.

When this happens, we say that we have an ambiguous grammars. In some cases, it is
possible to modify a grammar to make it unambiguous, but in general this is difficult, and
not always possible. For example, the grammar G2 can be modified as follows.
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Example 7.5. Let G3 = ({E, T, F,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E), where P is the set of
rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.

The strategy is to give the operator ∗ a higher precedence than + in the order of evalu-
ation. We leave as an exercise to show that L(G3) = L(G2), and that every string in L(G3)
has a unique leftmost derivation.

Unfortunately, it is not always possible to modify a context-free grammar to make it
unambiguous. There exist context-free languages that have no unambiguous context-free
grammars.

Example 7.6. The language

L3 = {a
mbmcn | m,n ≥ 1} ∪ {ambncn | m,n ≥ 1}

is context-free, since it is generated by a context-free grammar with start symbol S con-
structed as follows. The language {ambmcn | m,n ≥ 1} is generated by the grammar with
start symbol S1 shown below:

S1 → XC,

X → aXb,

X → ab,

C → cC,

C → c.

The productions with left-hand side X generate strings of the form ambm (m ≥ 1) and the
productions with left-hand side C generate strings of the form cn (n ≥ 1). The production
S1 → XC generates all strings in {ambmcn | m,n ≥ 1}. Similarly, the language {ambncn |
m,n ≥ 1} is generated by the grammar with start symbol S2 shown below:

S2 → AY,

Y → bY c,

Y → bc,

A→ aA,

A→ a.
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The productions with left-hand side Y generate strings of the form bncn (n ≥ 1) and the
productions with left-hand side A generate strings of the form am (m ≥ 1). The production
S2 → AY generates all strings in {ambncn | m,n ≥ 1}. Then L3 is generated by the grammar
with start symbol S:

S → S1,

S → S2,

S1 → XC,

S2 → AY,

X → aXb,

X → ab,

Y → bY c,

Y → bc,

A→ aA,

A→ a,

C → cC,

C → c.

However, it can be shown that L3 has no unambiguous grammars.

All this motivates the following definition.

Definition 7.5. A context-free grammarG = (V,Σ, P, S) is ambiguous if there is some string
w ∈ L(G) that has two distinct leftmost derivations (or two distinct rightmost derivations).
Thus, a grammar G is unambiguous if every string w ∈ L(G) has a unique leftmost derivation
(or a unique rightmost derivation). A context-free language L is inherently ambiguous if every
CFG G for L is ambiguous.

Whether or not a grammar is ambiguous affects the complexity of parsing. Parsing algo-
rithms for unambiguous grammars are more efficient than parsing algorithms for ambiguous
grammars.

We now consider various normal forms for context-free grammars.

7.3 Normal Forms for Context-Free Grammars, Chom-

sky Normal Form

One of the main goals of this section is to show that every CFG G can be converted to an
equivalent grammar in Chomsky Normal Form (for short, CNF). The Chomsky normal form
is not a practical notion but it is theoretically useful because the derivations associated with
a grammar G in Chomsky normal form are particularly simple. In particular, we obtain
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a method for testing whether an arbitrary string w ∈ Σ∗ belong to the language L(G)
generated by the grammar G. On the cosmetic level, the Chomsly normal form shows that
rules of a very simple form (A→ BC, A→ a, or S → ǫ) suffice.

A context-free grammar G = (V,Σ, P, S) is in Chomsky Normal Form iff its productions
are of the form

A→ BC,

A→ a, or

S → ǫ,

where A,B,C ∈ N , a ∈ Σ, S → ǫ is in P iff ǫ ∈ L(G), and S does not occur on the
right-hand side of any production.

Note that a grammar in Chomsky Normal Form does not have ǫ-rules, i.e., rules of the
form A→ ǫ, except when ǫ ∈ L(G), in which case S → ǫ is the only ǫ-rule. It also does not
have chain rules , i.e., rules of the form A→ B, where A,B ∈ N . Thus, in order to convert
a grammar to Chomsky Normal Form, we need to show how to eliminate ǫ-rules and chain
rules. This is not the end of the story, since we may still have rules of the form A→ α where
either |α| ≥ 3 or |α| ≥ 2 and α contains terminals. However, dealing with such rules is a
simple recoding matter, and we first focus on the elimination of ǫ-rules and chain rules. It
turns out that ǫ-rules must be eliminated first.

The first step to eliminate ǫ-rules is to compute the set E(G) of erasable (or nullable)
nonterminals

E(G) = {A ∈ N | A
+

=⇒ ǫ}.

The set E(G) is computed using a sequence of approximations Ei defined as follows:

E0 = {A ∈ N | (A→ ǫ) ∈ P},

Ei+1 = Ei ∪ {A ∈ N | ∃(A→ B1 . . . Bj . . . Bk) ∈ P, Bj ∈ Ei, 1 ≤ j ≤ k}.

Clearly, the Ei form an ascending chain

E0 ⊆ E1 ⊆ · · · ⊆ Ei ⊆ Ei+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that Ei0 = Ei0+1. We claim that
E(G) = Ei0 . Actually, we prove the following proposition.

Proposition 7.2. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) P ′ contains no ǫ-rules other than S ′ → ǫ, and S ′ → ǫ ∈ P ′ iff ǫ ∈ L(G);

(3) S ′ does not occur on the right-hand side of any production in P ′.
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Proof. We begin by proving that E(G) = Ei0 . For this we prove that E(G) ⊆ Ei0 and
Ei0 ⊆ E(G).

To prove that Ei0 ⊆ E(G), we proceed by induction on i. Since E0 = {A ∈ N |

(A → ǫ) ∈ P}, we have A
1

=⇒ ǫ, and thus A ∈ E(G). By the induction hypothesis,
Ei ⊆ E(G). If A ∈ Ei+1, either A ∈ Ei and then A ∈ E(G), or there is some production
(A → B1 . . . Bj . . . Bk) ∈ P , such that Bj ∈ Ei for all j, 1 ≤ j ≤ k. By the induction

hypothesis, Bj
+

=⇒ ǫ for each j, 1 ≤ j ≤ k, and thus

A =⇒ B1 . . . Bj . . . Bk
+

=⇒ B2 . . . Bj . . . Bk
+

=⇒ Bj . . . Bk
+

=⇒ ǫ,

which shows that A ∈ E(G).

To prove that E(G) ⊆ Ei0 , we also proceed by induction, but on the length of a derivation

A
+

=⇒ ǫ. If A
1

=⇒ ǫ, then A→ ǫ ∈ P , and thus A ∈ E0 since E0 = {A ∈ N | (A→ ǫ) ∈ P}.

If A
n+1
=⇒ ǫ, then

A =⇒ α
n

=⇒ ǫ,

for some production A→ α ∈ P . If α contains terminals of nonterminals not in E(G), it is
impossible to derive ǫ from α, and thus, we must have α = B1 . . . Bj . . . Bk, with Bj ∈ E(G),

for all j, 1 ≤ j ≤ k. However, Bj

nj

=⇒ ǫ where nj ≤ n, and by the induction hypothesis,
Bj ∈ Ei0 . But then, we get A ∈ Ei0+1 = Ei0 , as desired.

Having shown that E(G) = Ei0 , we construct the grammar G′. Its set of production P ′

is defined as follows. First, we create the production S ′ → S where S ′ /∈ V , to make sure
that S ′ does not occur on the right-hand side of any rule in P ′. Let

P1 = {A→ α ∈ P | α ∈ V +} ∪ {S ′ → S},

and let P2 be the set of productions

P2 = {A→ α1α2 . . . αkαk+1 | ∃α1 ∈ V
∗, . . . , ∃αk+1 ∈ V

∗, ∃B1 ∈ E(G), . . . , ∃Bk ∈ E(G)

A→ α1B1α2 . . . αkBkαk+1 ∈ P, k ≥ 1, α1 . . . αk+1 6= ǫ}.

The idea behind this construction is that for every production A → β that contains occur-
rences of nonterminals B1, . . . , Bk all in E(G), if we write the the right-hand side β as

β = α1B1α2 . . . αkBkαk+1

for some α1, . . . , αk ∈ V ∗, not all equal to ǫ, then we need to mimick the derivation from
A that erases B1, . . . , Bk, and for this we create the production A → α1α2 . . . αkαk+1. We
need to do this for all nonempty sequences of nonterminals B1, . . . , Bk in E(G) occurring in
β (but leaving a nonempty string after erasing). We may call this the erasing game.

Note that ǫ ∈ L(G) iff S ∈ E(G). If S /∈ E(G), then let P ′ = P1 ∪ P2, and if S ∈ E(G),
then let P ′ = P1 ∪P2 ∪ {S

′ → ǫ}. We claim that L(G′) = L(G), which is proved by showing
that every derivation using G can be simulated by a derivation using G′, and vice-versa. All
the conditions of the proposition are now met.
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From a practical point of view, the construction or Proposition 7.2 is very costly.

Example 7.7. For example, given a grammar containing the productions

S → ABCDEF,

A→ ǫ,

B → ǫ,

C → ǫ,

D → ǫ,

E → ǫ,

F → ǫ,

. . .→ . . . ,

eliminating ǫ-rules will create 26 − 1 = 63 new rules corresponding to the 63 nonempty
subsets of the set {A,B,C,D,E, F}. For the simpler grammar

S → ABC,

A→ ǫ,

B → ǫ,

C → ǫ,

. . .→ . . . ,

we obtain the seven productions

S → ABC,

S → BC,

S → AC,

S → AB,

S → A,

S → B,

S → C.

We now turn to the elimination of chain rules.

It turns out that matters are greatly simplified if we first apply Proposition 7.2 to the
input grammar G, and we explain the construction assuming that G = (V,Σ, P, S) satisfies
the conditions of Proposition 7.2. For every nonterminal A ∈ N , we define the set

IA = {B ∈ N | A
+

=⇒ B}.

The sets IA are computed using approximations IA,i defined as follows:

IA,0 = {B ∈ N | (A→ B) ∈ P},

IA,i+1 = IA,i ∪ {C ∈ N | ∃(B → C) ∈ P, andB ∈ IA,i}.
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Clearly, for every A ∈ N , the IA,i form an ascending chain

IA,0 ⊆ IA,1 ⊆ · · · ⊆ IA,i ⊆ IA,i+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that IA,i0 = IA,i0+1. We claim that
IA = IA,i0 . Actually, we prove the following proposition.

Proposition 7.3. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) Every rule in P ′ is of the form A → α where |α| ≥ 2, or A → a where a ∈ Σ, or
S ′ → ǫ iff ǫ ∈ L(G);

(3) S ′ does not occur on the right-hand side of any production in P ′.

Proof. First, we apply Proposition 7.2 to the grammar G, obtaining a grammar G1 =
(V1,Σ, S1, P1). The proof that IA = IA,i0 is similar to the proof that E(G) = Ei0 . First,
we prove that IA,i ⊆ IA by induction on i. This is staightforward. Next, we prove that

IA ⊆ IA,i0 by induction on derivations of the form A
+

=⇒ B. In this part of the proof, we
use the fact that G1 has no ǫ-rules except perhaps S1 → ǫ, and that S1 does not occur on

the right-hand side of any rule. This implies that a derivation A
n+1
=⇒ C is necessarily of the

form A
n

=⇒ B =⇒ C for some B ∈ N . Then, in the induction step, we have B ∈ IA,i0, and
thus C ∈ IA,i0+1 = IA,i0.

We now define the following sets of rules. Let

P2 = P1 − {A→ B | A→ B ∈ P1},

and let
P3 = {A→ α | B → α ∈ P1, α /∈ N1, B ∈ IA}.

We claim that G′ = (V1,Σ, P2 ∪ P3, S1) satisfies the conditions of the proposition. For
example, S1 does not appear on the right-hand side of any production, since the productions
in P3 have right-hand sides from P1, and S1 does not appear on the right-hand side in P1.
It is also easily shown that L(G′) = L(G1) = L(G).

Let us apply the method of Proposition 7.3 to the grammar

G3 = ({E, T, F,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.
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We get IE = {T, F}, IT = {F}, and IF = ∅. The new grammar G′
3 has the set of rules

E −→ E + T,

E −→ T ∗ F,

E −→ (E),

E −→ a,

T −→ T ∗ F,

T −→ (E),

T −→ a,

F −→ (E),

F −→ a.

At this stage, the grammar obtained in Proposition 7.3 no longer has ǫ-rules (except
perhaps S ′ → ǫ iff ǫ ∈ L(G)) or chain rules. However, it may contain rules A → α with
|α| ≥ 3, or with |α| ≥ 2 and where α contains terminals(s). To obtain the Chomsky Normal
Form we need to eliminate such rules. This is not difficult, but notationally a bit messy.

Proposition 7.4. Given a context-free grammar G = (V,Σ, P, S), one can construct a
context-free grammar G′ = (V ′,Σ, P ′, S ′) such that L(G′) = L(G) and G′ is in Chomsky
Normal Form, that is, a grammar whose productions are of the form

A→ BC,

A→ a, or

S ′ → ǫ,

where A,B,C ∈ N ′, a ∈ Σ, S ′ → ǫ is in P ′ iff ǫ ∈ L(G), and S ′ does not occur on the
right-hand side of any production in P ′.

Proof. First, we apply Proposition 7.3, obtaining G1. Let Σr be the set of terminals occurring
on the right-hand side of rules A→ α ∈ P1, with |α| ≥ 2. For every a ∈ Σr, let Xa be a new
nonterminal not in V1. Let

P2 = {Xa → a | a ∈ Σr}.

The purpose of the nonterminal Xa is to “promote” the terminal a as a nonterminal, but
the only rule with left-hand side Xa is Xa → a, so such a nonterminal reverts back to the
terminal that it promoted. Let P1,r be the set of productions

A→ α1a1α2 · · ·αkakαk+1,

where a1, . . . , ak ∈ Σr and αi ∈ N
∗
1 . For every production

A→ α1a1α2 · · ·αkakαk+1
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in P1,r, let
A→ α1Xa1α2 · · ·αkXakαk+1

be a new production, and let P3 be the set of all such productions. Let P4 = (P1 − P1,r) ∪
P2 ∪P3. Now, productions A→ α in P4 with |α| ≥ 2 do not contain terminals. However, we
may still have productions A→ α ∈ P4 with |α| ≥ 3. We can perform some recoding using
some new nonterminals. For every production of the form

A→ B1 · · ·Bk,

where k ≥ 3, create the new nonterminals

[B1 · · ·Bk−1], [B1 · · ·Bk−2], · · · , [B1B2B3], [B1B2],

and the new productions

A→ [B1 · · ·Bk−1]Bk,

[B1 · · ·Bk−1]→ [B1 · · ·Bk−2]Bk−1,

· · · → · · · ,

[B1B2B3]→ [B1B2]B3,

[B1B2]→ B1B2.

All the productions are now in Chomsky Normal Form, and it is clear that the same language
is generated.

Applying the first phase of the method of Proposition 7.4 to the grammar G′
3, we get the

rules

E −→ EX+T,

E −→ TX∗F,

E −→ X(EX),

E −→ a,

T −→ TX∗F,

T −→ X(EX),

T −→ a,

F −→ X(EX),

F −→ a,

X+ −→ +,

X∗ −→ ∗,

X( −→ (,

X) −→).
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After applying the second phase of the method, we get the following grammar in Chomsky
Normal Form:

E −→ [EX+]T,

[EX+] −→ EX+,

E −→ [TX∗]F,

[TX∗] −→ TX∗,

E −→ [X(E]X),

[X(E] −→ X(E,

E −→ a,

T −→ [TX∗]F,

T −→ [X(E]X),

T −→ a,

F −→ [X(E]X),

F −→ a,

X+ −→ +,

X∗ −→ ∗,

X( −→ (,

X) −→).

For large grammars, it is often convenient to use the abbreviation which consists in group-
ing productions having a common left-hand side, and listing the right-hand sides separated
by the symbol |. Thus, a group of productions

A→ α1,

A→ α2,

· · · → · · · ,

A→ αk,

may be abbreviated as
A→ α1 | α2 | · · · | αk.

An interesting corollary of the CNF is the following decidability result.

Proposition 7.5. There is an algorithm which, given a context-free grammar G, given any
string w ∈ Σ∗, decides whether w ∈ L(G).

Proof. Indeed, we first convert G to a grammar G′ in Chomsky Normal Form. If w = ǫ, we
can test whether ǫ ∈ L(G), since this is the case iff S ′ → ǫ ∈ P ′. If w 6= ǫ, letting n = |w|,
note that since the rules are of the form A → BC or A → a, where a ∈ Σ, any derivation
for w has n− 1 + n = 2n− 1 steps. Thus, we enumerate all (leftmost) derivations of length
2n− 1.
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There are much better parsing algorithms than this naive algorithm. We now show that
every regular language is context-free.

7.4 Regular Languages are Context-Free

The regular languages can be characterized in terms of very special kinds of context-free
grammars, right-linear (and left-linear) context-free grammars.

Definition 7.6. A context-free grammar G = (V,Σ, P, S) is left-linear iff its productions
are of the form

A→ Ba,

A→ a,

A→ ǫ.

where A,B ∈ N , and a ∈ Σ. A context-free grammar G = (V,Σ, P, S) is right-linear iff its
productions are of the form

A→ aB,

A→ a,

A→ ǫ.

where A,B ∈ N , and a ∈ Σ.

Observe that left-linear and right-linear grammars can be viewed as very special cases of
grammars in Chomsky normal forms

A production A→ Ba is equivalent to the two productions A→ BXa and Xa → a, and
a production A → aB is equivalent to the two productions A → XaB and Xa → a, so it
appears that left-linear and right-linear grammars are special kinds of grammars in CNF.
But unrestricted ǫ-rules are allowed , so such grammars are technically not in CNF.

Proposition 7.6. A language L is regular if and only if it is generated by some right-linear
grammar.

Proof. Let L = L(D) for some DFA D = (Q,Σ, δ, q0, F ). We construct a right-linear gram-
mar G as follows. Let V = Q ∪ Σ, S = q0, and let P be defined as follows:

P = {p→ aq | q = δ(p, a), p, q ∈ Q, a ∈ Σ} ∪ {p→ ǫ | p ∈ F}.

It is easily shown by induction on the length of w that

p
∗

=⇒ wq iff q = δ∗(p, w),

and thus, L(D) = L(G).
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Conversely, let G = (V,Σ, P, S) be a right-linear grammar. First, let G = (V ′,Σ, P ′, S) be
the right-linear grammar obtained from G by adding the new nonterminal E to N , replacing
every rule in P of the form A → a where a ∈ Σ by the rule A → aE, and adding the
rule E → ǫ. It is immediately verified that L(G′) = L(G). Next, we construct the NFA
M = (Q,Σ, δ, q0, F ) as follows: Q = N ′ = N ∪ {E}, q0 = S, F = {A ∈ N ′ | A→ ǫ}, and

δ(A, a) = {B ∈ N ′ | A→ aB ∈ P ′},

for all A ∈ N and all a ∈ Σ. It is easily shown by induction on the length of w that

A
∗

=⇒ wB iff B ∈ δ∗(A,w),

and thus, L(M) = L(G′) = L(G).

Example 7.8. We illustrate the construction of a right-linear grammar from the DFA for
L = {ab}∗ shown in Figure 7.1.

0 1

2

b

a

b

a

a, b

Figure 7.1: DFA for {ab}∗.

We obtain the grammar

0→ a1

0→ b2

1→ a2

1→ b0

2→ a2

2→ b2

0→ ǫ

with start symbol 0.

A similar proposition holds for left-linear grammars. It is also easily shown that the
regular languages are exactly the languages generated by context-free grammars whose rules
are of the form

A→ Bu,

A→ u,

where A,B ∈ N , and u ∈ Σ∗.
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7.5 Useless Productions in Context-Free Grammars

Given a context-free grammar G = (V,Σ, P, S), it may contain rules that are useless for a
number of reasons.

Example 7.9. Consider the grammar G3 = ({E,A, a, b}, {a, b}, P, E), where P is the set of
rules

E −→ aEb,

E −→ ab,

E −→ A,

A −→ bAa.

The problem is that the nonterminal A does not derive any terminal strings, and thus, it is
useless, as well as the last two productions.

Example 7.10. Let us now consider the grammar G4 = ({E,A, a, b, c, d}, {a, b, c, d}, P, E),
where P is the set of rules

E −→ aEb,

E −→ ab,

A −→ cAd,

A −→ cd.

This time, the nonterminal A generates strings of the form cndn, but there is no derivation

E
+

=⇒ α from E where A occurs in α. The nonterminal A is not connected to E, and the
last two rules are useless.

Fortunately, it is possible to find such useless rules and to eliminate them.

Definition 7.7. Let T (G) be the set of nonterminals that actually derive some terminal
string, i.e.

T (G) = {A ∈ (V − Σ) | ∃w ∈ Σ∗, A
+

=⇒ w}.

The set T (G) can be defined by stages. We define the sets Tn (n ≥ 1) as follows:

T1 = {A ∈ (V − Σ) | ∃(A −→ w) ∈ P, with w ∈ Σ∗},

and
Tn+1 = Tn ∪ {A ∈ (V − Σ) | ∃(A −→ β) ∈ P, with β ∈ (Tn ∪ Σ)∗}.

It is easy to prove that there is some least n such that Tn+1 = Tn, and that for this n,
T (G) = Tn.

If S /∈ T (G), then L(G) = ∅, and G is equivalent to the trivial grammar

G′ = ({S},Σ, ∅, S).
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Definition 7.8. If S ∈ T (G), then let U(G) be the set of nonterminals that are actually
useful, i.e.,

U(G) = {A ∈ T (G) | ∃α, β ∈ (T (G) ∪ Σ)∗, S
∗

=⇒ αAβ}.

The set U(G) can also be computed by stages. We define the sets Un (n ≥ 1) as follows:

U1 = {A ∈ T (G) | ∃(S −→ αAβ) ∈ P, with α, β ∈ (T (G) ∪ Σ)∗},

and

Un+1 = Un ∪ {B ∈ T (G) | ∃(A −→ αBβ) ∈ P, with A ∈ Un, α, β ∈ (T (G) ∪ Σ)∗}.

It is easy to prove that there is some least n such that Un+1 = Un, and that for this n,
U(G) = Un ∪ {S}. Then we can use U(G) to transform G into an equivalent CFG in which
every nonterminal is useful (i.e., for which V − Σ = U(G)). Indeed, simply delete all rules
containing symbols not in U(G). The details are left as an exercise.

Definition 7.9. We say that a context-free grammar G is reduced if all its nonterminals are
useful, i.e., N = U(G).

It should be noted than although dull, the above considerations are important in practice.
Certain algorithms for constructing parsers, for example, LR-parsers, may loop if useless
rules are not eliminated!

We now consider another normal form for context-free grammars, the Greibach Normal
Form.

7.6 The Greibach Normal Form

Every CFG G can also be converted to an equivalent grammar in Greibach Normal Form.

Definition 7.10. A context-free grammar G = (V,Σ, P, S) is in Greibach Normal Form (for
short, GNF) iff its productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S → ǫ,

where A,B,C ∈ N , a ∈ Σ, S → ǫ is in P iff ǫ ∈ L(G), and S does not occur on the
right-hand side of any production.
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Note that a grammar in Greibach Normal Form does not have ǫ-rules other than possibly
S → ǫ. More importantly, except for the special rule S → ǫ, every rule produces some
terminal symbol. Historically, this fact is significant because when the property that every
context-free language is accepted by some pushdown automaton was established, it wasn’t
known that such a pushdown automaton could be made to read a terminal at every step
(it operates in real time). The Geibach normal form implies that a puhsdown automaton
operating in real time always exists.

An important consequence of the Greibach Normal Form is that every nonterminal is

not left recursive. A nonterminal A is left recursive iff A
+

=⇒ Aα for some α ∈ V ∗. Left
recursive nonterminals cause top-down determinitic parsers to loop. The Greibach Normal
Form provides a way of avoiding this problem.

There are no easy proofs that every CFG can be converted to a Greibach Normal Form.
A particularly elegant method due to Rosenkrantz using least fixed-points and matrices will
be given in section 7.9.

Theorem 7.7. Given a context-free grammar G = (V,Σ, P, S), one can construct a context-
free grammar G′ = (V ′,Σ, P ′, S ′) such that L(G′) = L(G) and G′ is in Greibach Normal
Form, that is, a grammar whose productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S ′ → ǫ,

where A,B,C ∈ N ′, a ∈ Σ, S ′ → ǫ is in P ′ iff ǫ ∈ L(G), and S ′ does not occur on the
right-hand side of any production in P ′.

7.7 Least Fixed-Points

Context-free languages can also be characterized as least fixed-points of certain functions
induced by grammars. This characterization yields a rather quick proof that every context-
free grammar can be converted to Greibach Normal Form. This characterization also reveals
very clearly the recursive nature of the context-free languages.

We begin by reviewing what we need from the theory of partially ordered sets.

Definition 7.11. Given a partially ordered set 〈A,≤〉, an ω-chain (an)n≥0 is a sequence
such that an ≤ an+1 for all n ≥ 0. The least-upper bound of an ω-chain (an) is an element
a ∈ A such that:

(1) an ≤ a, for all n ≥ 0;

(2) For any b ∈ A, if an ≤ b, for all n ≥ 0, then a ≤ b.
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A partially ordered set 〈A,≤〉 is an ω-chain complete poset iff it has a least element ⊥, and
iff every ω-chain has a least upper bound denoted as

⊔
an.

Remark: The ω in ω-chain means that we are considering countable chains (ω is the ordinal
associated with the order-type of the set of natural numbers). This notation may seem
arcane, but is standard in denotational semantics.

Example 7.11. Given any set X , the power set 2X ordered by inclusion is an ω-chain
complete poset with least element ∅. The Cartesian product 2X × · · · × 2X︸ ︷︷ ︸

n

ordered such

that

(A1, . . . , An) ≤ (B1, . . . , Bn)

iff Ai ⊆ Bi (where Ai, Bi ∈ 2X) is an ω-chain complete poset with least element (∅, . . . , ∅).

We are interested in functions between partially ordered sets.

Definition 7.12. Given any two partially ordered sets 〈A1,≤1〉 and 〈A2,≤2〉, a function
f : A1 → A2 is monotonic iff for all x, y ∈ A1,

x ≤1 y implies that f(x) ≤2 f(y).

If 〈A1,≤1〉 and 〈A2,≤2〉 are ω-chain complete posets, a function f : A1 → A2 is ω-continuous
iff it is monotonic, and for every ω-chain (an),

f(
⊔

an) =
⊔

f(an).

Remark: Note that we are not requiring that an ω-continuous function f : A1 → A2 preserve
least elements, i.e., it is possible that f(⊥1) 6=⊥2.

We now define the crucial concept of a least fixed-point.

Definition 7.13. Let 〈A,≤〉 be a partially ordered set, and let f : A → A be a function.
A fixed-point of f is an element a ∈ A such that f(a) = a. The least fixed-point of f is an
element a ∈ A such that f(a) = a, and for every b ∈ A such that f(b) = b, then a ≤ b.

The following proposition gives sufficient conditions for the existence of least fixed-points.
It is one of the key propositions in denotational semantics. Given a function f : A→ A, we
define fn(⊥) inductively as follows:

f 0(⊥) =⊥

fn+1(⊥) = f(fn(⊥)).
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Proposition 7.8. Let 〈A,≤〉 be an ω-chain complete poset with least element ⊥. Every
ω-continuous function f : A→ A has a unique least fixed-point x0 given by

x0 =
⊔

fn(⊥).

Furthermore, for any b ∈ A such that f(b) ≤ b, then x0 ≤ b.

Proof. First, we prove that the sequence

⊥ , f(⊥) , f 2(⊥), . . . , fn(⊥), . . .

is an ω-chain. This is shown by induction on n. Since ⊥ is the least element of A, we have
⊥≤ f(⊥). Assuming by induction that fn(⊥) ≤ fn+1(⊥), since f is ω-continuous, it is
monotonic, and thus we get fn+1(⊥) ≤ fn+2(⊥), as desired.

Since A is an ω-chain complete poset, the ω-chain (fn(⊥)) has a least upper bound

x0 =
⊔

fn(⊥).

Since f is ω-continuous, we have

f(x0) = f(
⊔

fn(⊥)) =
⊔

f(fn(⊥)) =
⊔

fn+1(⊥) = x0,

and x0 is indeed a fixed-point of f .

Clearly, if f(b) ≤ b implies that x0 ≤ b, then f(b) = b implies that x0 ≤ b. Thus, assume
that f(b) ≤ b for some b ∈ A. We prove by induction of n that fn(⊥) ≤ b. Indeed, ⊥≤ b,
since ⊥ is the least element of A. Assuming by induction that fn(⊥) ≤ b, by monotonicity
of f , we get

f(fn(⊥)) ≤ f(b),

and since f(b) ≤ b, this yields
fn+1(⊥) ≤ b.

Since fn(⊥) ≤ b for all n ≥ 0, we have

x0 =
⊔

fn(⊥) ≤ b,

as claimed. If b is another fixed-point, we have f(b) = b, which implies that f(b) ≤ b, so by
the previous property x0 ≤ b, which means that x0 is the least fixed-point of f .

The second part of Proposition 7.8 is very useful to prove that functions have the same
least fixed-point.

Proposition 7.9. Under the conditions of Proposition 7.8, if f : A → A and g : A → A
are ω-chain continuous functions, letting x0 be the least fixed-point of f and y0 be the least
fixed-point of g, if f(y0) ≤ y0 and g(x0) ≤ x0, then x0 = y0.
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Proof. Indeed, since f(y0) ≤ y0 and x0 is the least fixed-point of f , we get x0 ≤ y0, and since
g(x0) ≤ x0 and y0 is the least fixed-point of g, we get y0 ≤ x0, and therefore x0 = y0.

Proposition 7.8 also shows that the least fixed-point x0 of f can be approximated as
much as desired, using the sequence (fn(⊥)). We will now apply this fact to context-free
grammars. For this, we need to show how a context-free grammar G = (V,Σ, P, S) with m
nonterminals induces an ω-continuous map

ΦG : 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

→ 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

.

7.8 Context-Free Languages as Least Fixed-Points

Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1, . . .Am, if the ni

productions with left-hand side Ai are

Ai → αi,j , 1 ≤ j ≤ ni,

then by grouping all the productions having the same left-hand side, the grammar G can be
concisely written as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·

Ai → αi,1 + · · ·+ αi,ni
,

· · · → · · ·

Am → αm,1 + · · ·+ αm,nn
,

where + is a new symbol not in V used as a separator.

Example 7.12. Consider the grammar G = ({A,B, a, b}, {a, b}, P, A) defined by the rules

A→ BB,

A→ ab,

B → aBb,

B → ab.

In equational notation it is written as

A→ BB + ab,

B → aBb+ ab.
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Given any set A, let Pfin(A) be the set of finite subsets of A. What we would like to do
is to define how to substitute an m-tuple of languages Λ = (L1, . . . , Lm) for the nonterminals
A1, . . . , Am occurring in the right-hand sides of the set of equations shown above, with
αi,1+ · · ·+αi,ni

interpreted as the finite set {αi,1, . . . , αi,ni
}. This is specified by an operator

Φ[Λ] defined on finite subsets of V ∗. Then we obtain an operator ΦG(L1, . . . Lm) which yields
another m-tuple of languages.

Definition 7.14. Let G = (V,Σ, P, S) be a context-free grammar with m nonterminals A1,
. . ., Am. For any m-tuple Λ = (L1, . . . , Lm) of languages Li ⊆ Σ∗, we define the function

Φ[Λ] : Pfin(V
∗)→ 2Σ

∗

inductively as follows:

Φ[Λ](∅) = ∅,

Φ[Λ]({ǫ}) = {ǫ},

Φ[Λ]({a}) = {a}, if a ∈ Σ,

Φ[Λ]({Ai}) = Li, if Ai ∈ N ,

Φ[Λ]({αX}) = Φ[Λ]({α})Φ[Λ]({X}), if α ∈ V +, X ∈ V,

Φ[Λ](Q ∪ {α}) = Φ[Λ](Q) ∪ Φ[Λ]({α}), if Q ∈ Pfin(V
∗), Q 6= ∅, α ∈ V ∗, α /∈ Q.

Then writing the grammar G as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·

Ai → αi,1 + · · ·+ αi,ni
,

· · · → · · ·

Am → αm,1 + · · ·+ αm,nn
,

we define the map

ΦG : 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

→ 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

such that

ΦG(L1, . . . Lm) = (Φ[Λ]({α1,1, . . . , α1,n1
}), . . . ,Φ[Λ]({αm,1, . . . , αm,nm

}))

for all Λ = (L1, . . . , Lm) ∈ 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

.

One should verify that the map Φ[Λ] is well defined, but this is easy.



178 CHAPTER 7. CONTEXT-FREE GRAMMARS AND LANGUAGES

Example 7.13. Consider the grammar G = ({A,B, a, b}, {a, b}, P, A) given in equational
notation by

A→ BB + ab,

B → aBb+ ab.

Let LA = {ambmanbn | m,n ≥ 1} ∪ {ab} and LB = {anbn | n ≥ 1}. We leave it as an easy
exercise to check that

Φ[LA, LB]({BB} ∪ {ab}) = LBLB ∪ {ab}

= {ambm | m ≥ 1}{anbn | n ≥ 1} ∪ {ab}

= {ambmanbn | m,n ≥ 1} ∪ {ab} = LA

Φ[LA, LB]({aBb} ∪ {ab}) = aLBb ∪ {ab}

= a{anbn | n ≥ 1}b ∪ {ab}

= {an+1bn+1 | n ≥ 1} ∪ {ab} = LB.

It follows that

ΦG(LA, LB) = (Φ[LA, LB]({BB} ∪ {ab}),Φ[LA, LB]({aBb} ∪ {ab})) = (LA, LB),

and so (LA, LB) is a fixed-point of ΦG. In fact, it is the least-fixed point of ΦG.

The following proposition is easily shown:

Proposition 7.10. Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1,
. . ., Am, the map

ΦG : 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

→ 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

is ω-continuous.

Now 2Σ
∗

× · · · × 2Σ
∗

︸ ︷︷ ︸
m

is an ω-chain complete poset, and the map ΦG is ω-continous. Thus,

by Proposition 7.8, the map ΦG has a least-fixed point. It turns out that the components
of this least fixed-point are precisely the languages generated by the grammars (V,Σ, P, Ai).
Before proving this fact, let us give an example illustrating it.

Example 7.14. Consider the grammar G = ({A,B, a, b}, {a, b}, P, A) defined by the rules

A→ BB + ab,

B → aBb+ ab.

The least fixed-point of ΦG is the least upper bound of the chain

(Φn
G(∅, ∅)) = ((Φn

G,A(∅, ∅),Φ
n
G,B(∅, ∅)),
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where
Φ0

G,A(∅, ∅) = Φ0
G,B(∅, ∅) = ∅,

and

Φn+1
G,A(∅, ∅) = Φn

G,B(∅, ∅)Φ
n
G,B(∅, ∅) ∪ {ab},

Φn+1
G,B(∅, ∅) = aΦn

G,B(∅, ∅)b ∪ {ab}.

Using the method of Example 7.13, it is easy to verify that

Φ1
G,A(∅, ∅) = {ab},

Φ1
G,B(∅, ∅) = {ab},

Φ2
G,A(∅, ∅) = {ab, abab},

Φ2
G,B(∅, ∅) = {ab, aabb},

Φ3
G,A(∅, ∅) = {ab, abab, abaabb, aabbab, aabbaabb},

Φ3
G,B(∅, ∅) = {ab, aabb, aaabbb}.

By induction, we can easily prove that the two components of the least fixed-point are
the languages

LA = {ambmanbn | m,n ≥ 1} ∪ {ab} and LB = {anbn | n ≥ 1}.

Letting GA = ({A,B, a, b}, {a, b}, P, A) and GB = ({A,B, a, b}, {a, b}, P, B), it is indeed
true that LA = L(GA) and LB = L(GB) .

We have the following theorem due to Ginsburg and Rice:

Theorem 7.11. Given a context-free grammar G = (V,Σ, P, S) with m nonterminals A1,
. . ., Am, the least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1
), . . . , L(GAm

)),

where GAi
= (V,Σ, P, Ai).

Proof. Writing G as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·

Ai → αi,1 + · · ·+ αi,ni
,

· · · → · · ·

Am → αm,1 + · · ·+ αm,nn
,
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let M = max{|αi,j|} be the maximum length of right-hand sides of rules in P . Let

Φn
G(∅, . . . , ∅) = (Φn

G,1(∅, . . . , ∅), . . . ,Φ
n
G,m(∅, . . . , ∅)).

Then for any w ∈ Σ∗, observe that

w ∈ Φ1
G,i(∅, . . . , ∅)

iff there is some rule Ai → αi,j with w = αi,j, and that

w ∈ Φn
G,i(∅, . . . , ∅)

for some n ≥ 2 iff there is some rule Ai → αi,j with αi,j of the form

αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),

and
w = u1w1u2 · · ·ukwkuk+1.

We prove the following two claims.

Claim 1: For every w ∈ Σ∗, if Ai
n

=⇒ w, then w ∈ Φp
G,i(∅, . . . , ∅), for some p ≥ 1.

Claim 2: For every w ∈ Σ∗, if w ∈ Φn
G,i(∅, . . . , ∅), with n ≥ 1, then Ai

p
=⇒ w for some

p ≤ (M + 1)n−1.

Proof of Claim 1. We proceed by induction on n. If Ai
1

=⇒ w, then w = αi,j for some rule
A→ αi,j, and by the remark just before the claim, w ∈ Φ1

G,i(∅, . . . , ∅).

If Ai
n+1
=⇒ w with n ≥ 1, then

Ai
n

=⇒ αi,j =⇒ w

for some rule Ai → αi,j. If
αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, then Ajh

nh=⇒ wh, where nh ≤ n, and

w = u1w1u2 · · ·ukwkuk+1

for some w1, . . . , wk ∈ Σ∗. By the induction hypothesis,

wh ∈ Φph
G,jh

(∅, . . . , ∅),

for some ph ≥ 1, for every h, 1 ≤ h ≤ k. Letting p = max{p1, . . . , pk}, since each sequence
(Φq

G,i(∅, . . . , ∅)) is an ω-chain, we have wh ∈ Φp
G,jh

(∅, . . . , ∅) for every h, 1 ≤ h ≤ k, and by

the remark just before the claim, w ∈ Φp+1
G,i (∅, . . . , ∅).
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Proof of Claim 2. We proceed by induction on n. If w ∈ Φ1
G,i(∅, . . . , ∅), by the remark just

before the claim, then w = αi,j for some rule A→ αi,j, and Ai
1

=⇒ w.

If w ∈ Φn
G,i(∅, . . . , ∅) for some n ≥ 2, then there is some rule Ai → αi,j with αi,j of the

form
αi,j = u1Aj1u2 · · ·ukAjkuk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),

and
w = u1w1u2 · · ·ukwkuk+1.

By the induction hypothesis, Ajh

ph=⇒ wh with ph ≤ (M + 1)n−2, and thus

Ai =⇒ u1Aj1u2 · · ·ukAjkuk+1
p1
=⇒ · · ·

pk=⇒ w,

so that Ai
p

=⇒ w with

p ≤ p1 + · · ·+ pk + 1 ≤ M(M + 1)n−2 + 1 ≤ (M + 1)n−1,

since k ≤M .

Combining Claim 1 and Claim 2, we have

L(GAi
) =

⋃

n

Φn
G,i(∅, . . . , ∅),

which proves that the least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1
), . . . , L(GAm

)),

as claimed.

We now show how Theorem 7.11 can be used to give a short proof that every context-free
grammar can be converted to Greibach Normal Form.

7.9 Least Fixed-Points and the Greibach Normal Form

The hard part in converting a grammar G = (V,Σ, P, S) to Greibach Normal Form is to
convert it to a grammar in so-called weak Greibach Normal Form, where the productions
are of the form

A→ aα, or

S → ǫ,
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where a ∈ Σ, α ∈ V ∗, and if S → ǫ is a rule, then S does not occur on the right-hand side of
any rule. Indeed, if we first convert G to Chomsky Normal Form, it turns out that we will
get rules of the form A→ aBC, A→ aB or A→ a.

Using the algorithm for eliminating ǫ-rules and chain rules, we can first convert the
original grammar to a grammar with no chain rules and no ǫ-rules except possibly S → ǫ,
in which case, S does not appear on the right-hand side of rules. Thus, for the purpose
of converting to weak Greibach Normal Form, we can assume that we are dealing with
grammars without chain rules and without ǫ-rules. Let us also assume that we computed
the set T (G) of nonterminals that actually derive some terminal string, and that useless
productions involving symbols not in T (G) have been deleted.

Example 7.15. Let us explain the idea of the conversion using the grammar ({A,B, a, b, c},
{a, b, c}, P, A), whose set P of productions is given by

A→ AaB +BB + b.

B → Bd+BAa + aA + c.

The first step is to group the right-hand sides α into two categories: those whose leftmost
symbol is a terminal (α ∈ ΣV ∗) and those whose leftmost symbol is a nonterminal (α ∈
NV ∗). It is also convenient to adopt a matrix notation, and we can write the above grammar
as

(A,B) = (A,B)

(
aB ∅
B {d, Aa}

)
+ (b, {aA, c}).

Thus, we are dealing with matrices (and row vectors) whose entries are finite subsets of
V ∗. For notational simplicity, braces around singleton sets are omitted. The finite subsets
of V ∗ form a semiring, where addition is union, and multiplication is concatenation. Recall
that a semiring is a nonempty set S with two binary operations + and ∗ for which S
is a commutative monoid with identity element 0 under + and a monoid with identity
element 1 under ∗. Furthermore, ∗ distributes over + on the left and on the right, and
0 ∗ a = a ∗ 0 = 0 for all a ∈ S. Addition and multiplication of matrices are as usual,
except that the semiring operations are used. We will also consider matrices whose entries
are languages over Σ. Again, the languages over Σ form a semiring, where addition is union,
and multiplication is concatenation. The identity element for addition is ∅, and the identity
element for multiplication is {ǫ}. As above, addition and multiplication of matrices are as
usual, except that the semiring operations are used. For example, given any languages Ai,j

and Bi,j over Σ, where i, j ∈ {1, 2}, we have

(
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1B1,1 ∪A1,2B2,1 A1,1B1,2 ∪ A1,2B2,2

A2,1B1,1 ∪A2,2B2,1 A2,1B1,2 ∪ A2,2B2,2

)
.

Letting X = (A,B), K = (b, {aA, c}), and
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H =

(
aB ∅
B {d, Aa}

)

the above grammar can be concisely written as

X = XH +K.

More generally, given any context-free grammar G = (V,Σ, P, S) with m nonterminals
A1, . . ., Am, assuming that there are no chain rules, no ǫ-rules, and that every nonterminal
belongs to T (G), letting

X = (A1, . . . , Am),

we can write G as

X = XH +K,

for some appropriate m×m matrix H in which every entry contains a set (possibly empty)
of strings in V +, and some row vector K in which every entry contains a set (possibly empty)
of strings α each beginning with a terminal (α ∈ ΣV ∗).

Given an m×m square matrix A = (Ai,j) of languages over Σ, we can define the matrix
A∗ whose entry A∗

i,j is given by

A∗
i,j =

⋃

n≥0

An
i,j,

where A0 = Im, the identity matrix, and An is the n-th power of A. Similarly, we define A+

where

A+
i,j =

⋃

n≥1

An
i,j.

Given a matrix A where the entries are finite subset of V ∗, where N = {A1, . . . , Am}, for
any m-tuple Λ = (L1, . . . , Lm) of languages over Σ, we let

Φ[Λ](A) = (Φ[Λ](Ai,j)).

For the proof of Proposition 7.13 we will also need to consider systems X = XH + K
where H is an m × m matrix and X,K are row matrices, and where H and K consist of
languages . Given such a system X = XH + K, say S, with X = (A1, . . . , Am), we define
the map ΦS : (2

Σ∗

)m → (2Σ
∗

)m such that for any Λ = (L1, . . . , Lm) with Li ⊆ 2Σ
∗

,

ΦS(Λ) = ΛH +K.

It is easy to check that ΦS is ω-continuous and we claim that the least fixed-point of ΦS is
KH∗.
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Example 7.16. An example of such matrices is given by

H =

(
{a} ∅
{ab}+ {anbn | n ≥ 1}

)
, K = ({ba}∗, {a, c}).

The above fact is easily seen by computing the approximations Xn = Φn
S(∅, . . . , ∅). In-

deed, X0 = (∅, . . . , ∅), X1 = K, and if we assume inductively that

Xn = K(Hn−1 +Hn−2 + · · ·+H + Im), n ≥ 1,

then

Xn+1 = XnH+K = K(Hn−1+Hn−2+ · · ·+H+Im)H+K = K(Hn+Hn−1+ · · ·+H+Im).

Similarly, if Y is an m × m matrix of nonterminals, the least fixed-point of the map ΦS

associated with the system S given by Y = HY +H is H+. Here ΦS is the map defined on
m×m matrices of languages Λ = (Lij) with Lij ⊆ 2Σ

∗

, given by

ΦS(Λ) = HΛ+H.

We summarize the above facts in the following proposition.

Proposition 7.12. If H is an m × m matrix of languages over Σ∗, K is a row vector
consisting of m languages over Σ∗, X is a row vector consisting of m variables and Y is an
m×m-matrix consisting of variables, then the least fixed-point of the system X = HX +K
is KH∗ and the least fixed-point of the system Y = HY +H is H+.

Given any context-free grammar G = (V,Σ, P, S) with m nonterminals A1, . . ., Am,
writing G as X = XH + K as explained earlier, we can form another grammar GH by
creating m2 new nonterminals Yi,j, where the rules of this new grammar are defined by the
system of two matrix equations

X = KY +K,

Y = HY +H,

where Y = (Yi,j).

The following proposition is the key to the Greibach Normal Form.

Proposition 7.13. Given any context-free grammar G = (V,Σ, P, S) with m nonterminals
A1, . . ., Am, writing G as

X = XH +K

as explained earlier, if GH is the grammar defined by the system of two matrix equations

X = KY +K,

Y = HY +H,

as explained above, then the components in X of the least-fixed points of the maps ΦG and
ΦGH are equal.
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Proof. Let U be the least-fixed point of ΦG, and let (V,W ) be the least fixed-point of ΦGH .
We shall prove that U = V . For notational simplicity, let us denote Φ[U ](H) as H [U ] and
Φ[U ](K) as K[U ].

Since U is the least fixed-point of X = XH +K, we have

U = UH [U ] +K[U ].

Since H [U ] and K[U ] consist of languages, by Proposition 7.12, K[U ]H [U ]∗ is the least-fixed
point of X = XH [U ] +K[U ], and thus,

K[U ]H [U ]∗ ≤ U.

On the other hand, by monotonicity,

K[U ]H [U ]∗H
[
K[U ]H [U ]∗

]
+K

[
K[U ]H [U ]∗

]
≤ K[U ]H [U ]∗H [U ] +K[U ] = K[U ]H [U ]∗,

where K[U ]H [U ]∗H
[
K[U ]H [U ]∗

]
+K

[
K[U ]H [U ]∗

]
is the result of substituting K[U ]H [U ]∗

for X in XH +K, and since U is the least fixed-point of X = XH +K, by the second part
of Proposition 7.8,

U ≤ K[U ]H [U ]∗.

Therefore, U = K[U ]H [U ]∗.

Since (V,W ) is the least fixed-point of X = KY +K and Y = HY +H and H and K
only contain X , we have

V = K[V ]W +K[V ], W = H [V ]W +H [V ].

Since H [V ] consists of languages, by Proposition 7.12, H [V ]+ is the least-fixed point of
Y = H [V ]Y +H [V ], and thus,

H [V ]+ ≤W.

We also have

K[V ]H [V ]+ +K[V ] ≤ K[V ]W +K[V ] = V

H [V ]H [V ]+ +H [V ] = H+(V ),

so by the second part of Proposition 7.8, W ≤ H [V ]+. Therefore, W = H [V ]+.

Let Z = H [U ]+. Since U = K[U ]H [U ]∗, we have

K[U ]Z +K[U ] = K[U ]H [U ]+ +K[U ] = K[U ]H [U ]∗ = U

and
H [U ]Z +H [U ] = H [U ]H [U ]+ +H [U ] = H [U ]+ = Z,
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where K[U ]H [U ]+ +K[U ] is the result of substituting U for X in KY +K and H [U ]+ for
Y in KY +K (recall that K only contains variables in X), and H [U ]H [U ]+ +H [U ] is the
result of substituting U for X and H [U ]+ for Y in HY + H (recall that H only contains
variables in X), and since (V,W ) is the least fixed-point of X = KY +K and Y = HY +H ,
by the second part of Proposition 7.8, we get V ≤ U and W ≤ H [U ]+.

Since (V,W ) is the least fixed-point of X = KY +K and Y = HY +H , we have

V = K[V ]W +K[V ],

and since W = H [V ]+, we also have

V = K[V ]W +K[V ] = K[V ]H [V ]+ +K[V ] = K[V ]H [V ]∗

and
V H [V ] +K[V ] = K[V ]H [V ]∗H [V ] +K[V ] = K[V ]H [V ]∗ = V,

and since U is the least fixed-point of X = XH + K, as V H [V ] + K[V ] is the result of
substituting V for X in XH + K, by the second part of Proposition 7.8, we get U ≤ V .
Therefore, U = V , as claimed.

Note that the above proposition actually applies to any grammar.

Example 7.17. Applying Proposition 7.13 to the grammar of Example 7.15, we get the
following new grammar:

(A,B) = (b, {aA, c})

(
Y1 Y2
Y3 Y4

)
+ (b, {aA, c}),

(
Y1 Y2
Y3 Y4

)
=

(
aB ∅
B {d, Aa}

)(
Y1 Y2
Y3 Y4

)
+

(
aB ∅
B {d, Aa}

)
.

There are still some nonterminals appearing as leftmost symbols, but using the equations
defining A and B, we can replace A with

{bY1, aAY3, cY3, b}

and B with
{bY2, aAY4, cY4, aA, c},

obtaining a system in weak Greibach Normal Form. This amounts to converting the matrix

H =

(
aB ∅
B {d, Aa}

)

to the matrix

L =

(
aB ∅

{bY2, aAY4, cY4, aA, c} {d, bY1a, aAY3a, cY3a, ba}

)
.
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The weak Greibach Normal Form corresponds to the new system

X = KY +K,

Y = LY + L.

This method works in general for any input grammar with no ǫ-rules, no chain rules, and
such that every nonterminal belongs to T (G). Under these conditions, the row vector K
contains some nonempty entry, all strings in K are in ΣV ∗, and all strings in H are in V +.
After obtaining the grammar GH defined by the system

X = KY +K,

Y = HY +H,

we use the system X = KY + K to express every nonterminal Ai in terms of expressions
containing strings αi,j involving a terminal as the leftmost symbol (αi,j ∈ ΣV ∗), and we
replace all leftmost occurrences of nonterminals in H (occurrences Ai in strings of the form
Aiβ, where β ∈ V ∗) using the above expressions. In this fashion, we obtain a matrix L, and
it is immediately shown that the system

X = KY +K,

Y = LY + L,

generates the same tuple of languages. Furthermore, this last system corresponds to a weak
Greibach Normal Form.

It we start with a grammar in Chomsky Normal Form (with no production S → ǫ) such
that every nonterminal belongs to T (G), we actually get a Greibach Normal Form (the entries
in K are terminals, and the entries in H are nonterminals). Thus, we have justified Theorem
7.7. The method is also quite economical, since it introduces only m2 new nonterminals.
However, the resulting grammar may contain some useless nonterminals.

7.10 Tree Domains and Gorn Trees

Derivation trees play a very important role in parsing theory and in the proof of a strong
version of the pumping lemma for the context-free languages known as Ogden’s lemma. Thus,
it is important to define derivation trees rigorously. We do so using Gorn trees. Such trees
have the property that the immediate successors (if any) of a node are ordered consecutively.

Let N+ = {1, 2, 3, . . .}.

Definition 7.15. A tree domain D is a nonempty subset of strings in N∗
+ satisfying the

conditions:

(1) For all u, v ∈ N∗
+, if uv ∈ D, then u ∈ D.
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(2) For all u ∈ N∗
+, for every i ∈ N+, if ui ∈ D, then uj ∈ D for every j, 1 ≤ j ≤ i.

Every string u ∈ D is called a tree address or a node.

With a slight abuse of language, we often refer to a tree domain D as a tree.

The tree address ǫ corresponds to the root of the tree D. If uv 6= ǫ, that is, if uv ∈ D is
not the root of the tree, Condition (1) says that every node u on the path from the root to
the node uv is also in the tree D. In other words, D is prefix-closed. Graphically, Condition
(1) is a connectivity property.

Condition (2) says that if a node ui belongs to the tree D (with i ∈ N+), then the node ui
is the ith immediate successor of u ∈ D, so the immediate successors u1, u2, . . . , u(i− 1) of
u should also belong to the tree D. The immediate descendants of a node u ∈ D are labeled
consecutively u1, u2, . . . , ui, . . ., with no omission. In other words, the immediate successors
of a node (if any) are ordered consecutively.

It follows that every tree address u ∈ D can be viewed as a sequence of instructions to fol-
low the unique path from the root to the node graphically associated with u. If u = i1i2 · · · im
(with ij ∈ N+), this path consists of the m+ 1 nodes ǫ, i1, i1i2, . . . , i1i2 · · · im. Starting from
the root, follow the i1th immediate successor of the root, then the i2th immediate successor
of the second node, and finally the imth immediate successor of the mth node.

Observe that Definition 7.15 allows infinite trees, (tree domains for which D is infinite),
and even infinite branching trees (trees for which, for some node u ∈ D, we haveui ∈ D for
all i ∈ N+). For our purposes, we will only need finite tree domains, that is, tree domains D
such that D is finite.

Example 7.18. The tree domain

D = {ǫ, 1, 2, 11, 21, 22, 221, 222, 2211}

is represented as follows:

ǫ
ւ ց

1 2
ւ ւ ց

11 21 22
ւ ց

221 222
↓

2211

.

Since 221 ∈ D, we should also have 22 ∈ D, 2 ∈ D, and ǫ ∈ D. Since 22 ∈ D, we
should also have 21 ∈ D. Since 222 ∈ D, we should also have 221 ∈ D. To reach node 221,
follow the second successor of the root, then the second sucessor of node 2, and then the
first successor of node 22.
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A tree labeled with symbols from a set ∆ is defined as follows.

Definition 7.16. Given a set ∆ of labels, a ∆-tree or labeled tree (for short, a tree) is a
total function t : D → ∆, where D is a tree domain. The domain D of a tree t is denoted as
dom(t).

Example 7.19. Let ∆ = {f, g, h, a, b}. The tree t : D → ∆, where D is the tree domain of
the previous example and t is the function whose graph is

{(ǫ, f), (1, h), (2, g), (11, a), (21, a), (22, f), (221, h), (222, b), (2211, a)}

is represented as follows:

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a

.

Definition 7.17. The node whose address is ǫ is called the root of the tree. A tree is finite
if its domain dom(t) is finite. Given a node u in dom(t), every node of the form ui in dom(t)
with i ∈ N+ is called a son (or immediate successor) of u.

Definition 7.18. The outdegree (sometimes called ramification) r(u) of a node u is the
cardinality of the set

{i | ui ∈ dom(t)}.

A node of outdegree 0 is called a leaf .

Note that the outdegree of a node can be infinite. Most of the trees that we shall consider
will be finite-branching , that is, for every node u, r(u) will be an integer, and hence finite.
If the outdegree of all nodes in a tree is bounded by n, then we can view the domain of the
tree as being defined over {1, 2, . . . , n}∗.

Example 7.20. In the tree of Example 7.19, node ǫ, 2 and 22 have outdegree 2, nodes 1 and
221 have outdegree 1, and nodes 11, 21, 222 and 2211 have outdegree 0 (they are leaves).

Tree addresses are totally ordered lexicographically : u ≤ v if either u is a prefix of v or,
there exist strings x, y, z ∈ N∗

+ and i, j ∈ N+, with i < j, such that u = xiy and v = xjz.

Definition 7.19. If u ≤ v, we say that u is an ancestor (or predecessor) of v (or u dominates
v), that v is a descendant of u, and if u = xiy and v = xjz with i < j, we say that u is to
the left of v.

If y = ǫ and z = ǫ, we say that xi is a left brother (or left sibling) of xj, (i < j). Two
tree addresses u and v are independent if u is not a prefix of v and v is not a prefix of u.
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Definition 7.20. Given a finite tree t, the yield of t is the string

t(u1)t(u2) · · · t(uk),

where u1, u2, . . . , uk is the sequence of leaves of t in lexicographic order.

Example 7.21. The leaves of the tree shown below correspond to the following tree addresses
in lexicographic order:

11 < 21 < 2211 < 222.

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a

.

Thus the yield of the tree is aaab.

Definition 7.21. Given a finite tree t, the depth of t is the integer

d(t) = max{|u| | u ∈ dom(t)}.

Definition 7.22. Given a tree t and a node u in dom(t), the subtree rooted at u is the tree
t/u, whose domain is the set

{v | uv ∈ dom(t)}

and such that t/u(v) = t(uv) for all v in dom(t/u).

Example 7.22. The tree
g

ւ ց
a b

is a subtree at 22 of the tree

f
ւ ց

h g
ւ ւ ց

a a g
ւ ց

a b

.
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Another important operation is the operation of tree replacement (or tree substitution).

Definition 7.23. Given two trees t1 and t2 and a tree address u in t1, the result of substituting
t2 at u in t1, denoted by t1[u← t2], is the function whose graph is the set of pairs

{(v, t1(v)) | v ∈ dom(t1), u is not a prefix of v} ∪ {(uv, t2(v)) | v ∈ dom(t2)}.

Example 7.23. Let t1 and t2 be the trees defined by the following diagrams:

Tree t1

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a

Tree t2

g
ւ ց

a b
.

The tree t1[22← t2] is defined by the following diagram:

f
ւ ց

h g
ւ ւ ց

a a g
ւ ց

a b

.

We can now define derivation trees and relate derivations to derivation trees.

7.11 Derivations Trees

Definition 7.24. Given a context-free grammar G = (V,Σ, P, S), for any A ∈ N , an A-
derivation tree for G is a (V ∪ {ǫ})-tree t (a tree with set of labels (V ∪ {ǫ})) such that:
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(1) t(ǫ) = A;

(2) For every nonleaf node u ∈ dom(t), if u1, . . . , uk are the successors of u, then either
there is a production B → X1 · · ·Xk in P such that t(u) = B and t(ui) = Xi for all
i, 1 ≤ i ≤ k, or B → ǫ ∈ P , t(u) = B and t(u1) = ǫ. A complete derivation (or parse
tree) is an S-tree whose yield belongs to Σ∗.

Example 7.24. A derivation tree for the grammar

G3 = ({E, T, F,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a,

is shown in Figure 7.2. The yield of the derivation tree is a+ a ∗ a.

a a

F

T

E

E

+

T

T
∗

F

F
a

Figure 7.2: A complete derivation tree.

Definition 7.24 states the constraints that a derivation tree must satisfy, but it does not
specify how a derivation tree is associated with a derivation. Derivations trees are associated
to derivations inductively as follows.

Definition 7.25. Given a context-free grammar G = (V,Σ, P, S), for any A ∈ N , if π :
A

n
=⇒ α is a derivation in G, we construct an A-derivation tree tπ with yield α as follows.

(1) If n = 0, then tπ is the one-node tree such that dom(tπ) = {ǫ} and tπ(ǫ) = A.
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(2) If A
n−1
=⇒ λBρ =⇒ λγρ = α, then if t1 is the A-derivation tree with yield λBρ associated

with the derivation A
n−1
=⇒ λBρ, and if t2 is the tree associated with the production

B → γ (that is, if γ = X1 · · ·Xk, then dom(t2) = {ǫ, 1, . . . , k}, t2(ǫ) = B, and
t2(i) = Xi for all i, 1 ≤ i ≤ k, or if γ = ǫ, then dom(t2) = {ǫ, 1}, t2(ǫ) = B, and
t2(1) = ǫ), then

tπ = t1[u← t2],

where u is the address of the leaf labeled B in t1. In other words, the leaf u labeled B
in t1 “grows” into the tree t2 (with root also labeled B) associated with the production
B → γ.

The tree tπ is the A-derivation tree associated with the derivation A
n

=⇒ α.

Example 7.25. Given the grammar

G2 = ({E,+, ∗, (, ), a}, {+, ∗, (, ), a}, P, E),

where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the parse tree shown on the left in Figure 7.3 is associated with the (leftmost) derivation

E =⇒ E + E =⇒ a+ E =⇒ a + E ∗ E =⇒ a + a ∗ E =⇒ a+ a ∗ a,

and the parse tree shown on the right in Figure 7.3 is associated with the (leftmost) derivation

E =⇒ E ∗ E =⇒ E + E ∗ E =⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.

Both derivation trees have the same yield a+ a ∗ a.

a

a

E

E

+

E

E
∗

E

a a a

E
E

+

E

E
∗

E

a

Figure 7.3: Two derivation trees for a+ a ∗ a.
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The following proposition is easily shown.

Proposition 7.14. Let G = (V,Σ, P, S) be a context-free grammar. For any derivation
A

n
=⇒ α, there is a unique A-derivation tree associated with this derivation, with yield α.

Conversely, for any A-derivation tree t with yield α, there is a unique leftmost derivation
A

∗
=⇒
lm

α in G having t as its associated derivation tree.

We will now prove a strong version of the pumping lemma for context-free languages due
to Bill Ogden (1968).

7.12 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of parse trees that are deep enough.
The yield w of such a parse tree can be split into 5 substrings u, v, x, y, z such that

w = uvxyz,

where u, v, x, y, z satisfy certain conditions. It turns out that we get a more powerful version
of the lemma if we allow ourselves to mark certain occurrences of symbols in w before
invoking the lemma. We can imagine that marked occurrences in a nonempty string w are
occurrences of symbols in w in boldface, or red, or any given color (but one color only). For
example, given w = aaababbbaa, we can mark the symbols of even index as follows:

aaababbbaa.

Definition 7.26. More rigorously, we define amarking of a nonnull string w : {1, . . . , n} → Σ
as any function m : {1, . . . , n} → {0, 1}. Then a letter wi in w is a marked occurrence iff
m(i) = 1, and an unmarked occurrence if m(i) = 0. The number of marked occurrences in
w is equal to

n∑

i=1

m(i).

Ogden’s lemma only yields useful information for grammars G generating an infinite
language. We could make this hypothesis, but it seems more elegant to use the precondition
that the lemma only applies to strings w ∈ L(G) such that w contains at least K marked
occurrences, for a constant K large enough. If K is large enough, L(G) will indeed be
infinite.

Theorem 7.15. (Ogden’s lemma) For every context-free grammar G, there is some integer
K > 1 such that, for every string w ∈ Σ+, for every marking of w, if w ∈ L(G) and
w contains at least K marked occurrences, then there exists some decomposition of w as
w = uvxyz, and some A ∈ N , such that the following properties hold:
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(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x contains some marked occurrence;

(3) Either (both u and v contain some marked occurrence), or (both y and z contain some
marked occurrence);

(4) vxy contains less than K marked occurrences.

Proof. Let t be any parse tree for w. We call a leaf of t a marked leaf if its label is a marked
occurrence in the marked string w. The general idea is to make sure that K is large enough
so that parse trees with yield w contain enough repeated nonterminals along some path from
the root to some marked leaf. Let r = |N |, and let

p = max{2, max{|α| | (A→ α) ∈ P}}.

We claim that K = p2r+3 does the job.

The key concept in the proof is the notion of a B-node. Given a parse tree t, a B-node
is a node with at least two immediate successors u1, u2, such that for i = 1, 2, either ui is a
marked leaf, or ui has some marked leaf as a descendant. The “B” in B-node suggests that
from such a node we see a branching with two paths ending with marked leaves.

We construct a path from the root to some marked leaf, so that for every B-node, we
pick the leftmost successor with the maximum number of marked leaves as descendants.
Formally, define a path (s0, . . . , sn) from the root to some marked leaf, so that:

(i) Every node si has some marked leaf as a descendant, and s0 is the root of t;

(ii) If sj is in the path, sj is not a leaf, and sj has a single immediate descendant which is
either a marked leaf or has marked leaves as its descendants, let sj+1 be that unique
immediate descendant of sj.

(iii) If sj is a B-node in the path, then let sj+1 be the leftmost immediate successors of sj
with the maximum number of marked leaves as descendants (assuming that if sj+1 is
a marked leaf, then it is its own descendant).

(iv) If sj is a leaf, then it is a marked leaf and n = j.

We will show that the path (s0, . . . , sn) contains at least 2r + 3 B-nodes.

Claim: For every i, 0 ≤ i ≤ n, if the path (si, . . . , sn) contains b B-nodes, then si has at
most pb marked leaves as descendants.



196 CHAPTER 7. CONTEXT-FREE GRAMMARS AND LANGUAGES

Proof of Claim. We proceed by “backward induction”, i.e., by induction on n− i. For i = n,
there are no B-nodes, so that b = 0, and there is indeed p0 = 1 marked leaf sn. Assume that
the claim holds for the path (si+1, . . . , sn).

If si is not a B-node, then the number b of B-nodes in the path (si+1, . . . , sn) is the same
as the number of B-nodes in the path (si, . . . , sn), and si+1 is the only immediate successor
of si having a marked leaf as descendant. By the induction hypothesis, si+1 has at most pb

marked leaves as descendants, and this is also an upper bound on the number of marked
leaves which are descendants of si.

If si is a B-node, then if there are b B-nodes in the path (si+1, . . . , sn), there are b + 1
B-nodes in the path (si, . . . , sn). By the induction hypothesis, si+1 has at most pb marked
leaves as descendants. Since si is a B-node, si+1 was chosen to be the leftmost immediate
successor of si having the maximum number of marked leaves as descendants. Thus, since
the outdegree of si is at most p, and each of its immediate successors has at most pb marked
leaves as descendants, the node si has at most ppd = pd+1 marked leaves as descendants, as
desired.

We claim that the path (s0, . . . , sn) contains at least 2r + 3 B-nodes. If not, it contains
b < 2r + 3 nodes, and applying the claim to s0, the string w would have at most pb < p2r+3

marked occurrences since p ≥ 2, contradicting the fact that w has at least K = p2r+3 marked
occurrences (Note that the strict inequality pb < p2r+3 would not hold if we had p = 1).

Let us now select the lowest 2r + 3 B-nodes in the path, (s0, . . . , sn), and denote them
(b1, . . . , b2r+3). Every B-node bi has at least two immediate successors ui < vi such that ui
or vi is on the path (s0, . . . , sn). If the path goes through ui, we say that bi is a right B-node
and if the path goes through vi, we say that bi is a left B-node. Since 2r+3 = r+2+ r+1,
either there are r+2 left B-nodes or there are r+2 right B-nodes in the path (b1, . . . , b2r+3).
Let us assume that there are r + 2 left B-nodes, the other case being similar.

Let (d1, . . . , dr+2) be the lowest r+2 left B-nodes in the path. The purpose of considering
r + 2 B-nodes is that we need the first B-node d1 to obtain some marked occurrence in the
leftmost part u of the decomposition w = uvxyz, and the remaining r + 1 B-nodes give us
a repeating nonterminal. Since there are r + 1 B-nodes in the sequence (d2, . . . , dr+2), and
there are only r distinct nonterminals, there are two nodes di and dj, with 2 ≤ i < j ≤ r+2,
such that t(di) = t(dj) = A, for some A ∈ N . We can assume that di is an ancestor of dj,
and thus, dj = diα, for some α 6= ǫ. See Figure 7.4 for a picture of such tree.

If we prune out the subtree t/di rooted at di from t, we get an S-derivation tree having

a yield of the form uAz, and we have a derivation of the form S
+

=⇒ uAz. Considering the
subtree t/di, pruning out the subtree t/dj rooted at α in t/di, we get an A-derivation tree

having a yield of the form vAy, and we have a derivation of the form A
+

=⇒ vAy. Finally,

the subtree t/dj is an A-derivation tree with yield x, and we have a derivation A
+

=⇒ x. This
proves (1) of the lemma. See Figure 7.4.
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d1

di
A

dj
A

s0

sn
u v x y z

Figure 7.4: The parse tree in the proof of Ogden’s lemma.

Since sn is a marked leaf and a descendant of dj, x contains some marked occurrence,
proving (2). See Figure 7.4.

Since d1 is a left B-node, some left sibling of the immediate successor of d1 on the path
has some distinguished leaf in u as a descendant. Similarly, since di is a left B-node, some
left sibling of the immediate successor of di on the path has some distinguished leaf in v as
a descendant. This proves (3). See Figure 7.4.

(dj, . . . , b2r+3) has at most 2r+1 B-nodes, and by the claim shown earlier, dj has at most
p2r+1 marked leaves as descendants. Since p2r+1 < p2r+3 = K, this proves (4).

Observe that Condition (2) implies that x 6= ǫ, and Condition (3) implies that either
u 6= ǫ and v 6= ǫ, or y 6= ǫ and z 6= ǫ. Thus, the pumping Condition (1) implies that the set
{uvnxynz | n ≥ 0} is an infinite subset of L(G), and L(G) is indeed infinite, as we mentioned
earlier. Note that K ≥ 3, and in fact, K ≥ 32.

The “standard pumping lemma” due to Bar-Hillel, Perles, and Shamir, is obtained by
letting all occurrences be marked in w ∈ L(G).
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Proposition 7.16. For every context-free grammar G (without ǫ-rules), there is some integer
K > 1 such that, for every string w ∈ Σ+, if w ∈ L(G) and |w| ≥ K, then there exists some
decomposition of w as w = uvxyz, and some A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x 6= ǫ;

(3) Either v 6= ǫ or y 6= ǫ;

(4) |vxy| ≤ K.

A stronger version could be stated, and we are just following tradition in stating this
standard version of the pumping lemma.

Ogden’s lemma or the pumping lemma can be used to show that certain languages are
not context-free. The method is to proceed by contradiction, i.e., to assume (contrary to
what we wish to prove) that a language L is indeed context-free, and derive a contradiction
of Ogden’s lemma (or of the pumping lemma). Thus, as in the case of the regular languages,
it would be helpful to see what the negation of Ogden’s lemma is, and for this, we first state
Ogden’s lemma as a logical formula.

For any nonnull string w : {1, . . . , n} → Σ, for any marking m : {1, . . . , n} → {0, 1} of w,
for any substring y of w, where w = xyz, with |x| = h and k = |y|, the number of marked
occurrences in y, denoted as |m(y)|, is defined as

|m(y)| =
i=h+k∑

i=h+1

m(i).

We will also use the following abbreviations:

nat = {0, 1, 2, . . .},

nat32 = {32, 33, . . .},

A ≡ w = uvxyz,

B ≡ |m(x)| ≥ 1,

C ≡ (|m(u)| ≥ 1 ∧ |m(v)| ≥ 1) ∨ (|m(y)| ≥ 1 ∧ |m(z)| ≥ 1),

D ≡ |m(vxy)| < K,

P ≡ ∀n : nat (uvnxynz ∈ L(D)).
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Ogden’s lemma can then be stated as

∀G : CFG ∃K : nat32 ∀w : Σ∗ ∀m : marking(
(w ∈ L(D) ∧ |m(w)| ≥ K) =⇒ (∃u, v, x, y, z : Σ∗ A ∧B ∧ C ∧D ∧ P )

)
.

Recalling that

¬(A ∧B ∧ C ∧D ∧ P ) ≡ ¬(A ∧B ∧ C ∧D) ∨ ¬P ≡ (A ∧ B ∧ C ∧D) =⇒ ¬P

and
¬(P =⇒ Q) ≡ P ∧ ¬Q,

the negation of Ogden’s lemma can be stated as

∃G : CFG ∀K : nat32 ∃w : Σ∗ ∃m : marking(
(w ∈ L(D) ∧ |m(w)| ≥ K) ∧ (∀u, v, x, y, z : Σ∗ (A ∧B ∧ C ∧D) =⇒ ¬P )

)
.

Since
¬P ≡ ∃n : nat (uvnxynz /∈ L(D)),

in order to show that Ogden’s lemma is contradicted, one needs to show that for some
context-free grammar G, for every K ≥ 2, there is some string w ∈ L(D) and some marking
m of w with at least K marked occurrences in w, such that for every possible decomposition
w = uvxyz satisfying the constraints A ∧ B ∧ C ∧ D, there is some n ≥ 0 such that
uvnxynz /∈ L(D). When proceeding by contradiction, we have a language L that we are
(wrongly) assuming to be context-free and we can use any CFG grammar G generating L.
The creative part of the argument is to pick the right w ∈ L and the right marking of w
(not making any assumption on K).

Example 7.26. As an illustration, we show that the language

L = {anbncn | n ≥ 1}

is not context-free. Since L is infinite, we will be able to use the Ogden lemma (actually
Proposition 7.16 suffices here).

The proof proceeds by contradiction. If L was context-free, there would be some context-
free grammar G such that L = L(G), and some constant K > 1 as in Ogden’s lemma. Let
w = aKbKcK , and choose the b′s as marked occurrences. Then by Ogden’s lemma, x contains
some marked occurrence, and either both u, v or both y, z contain some marked occurrence.
Assume that both u and v contain some b. We have the following situation:

a · · · ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · c︸ ︷︷ ︸
xyz

.
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If we consider the string uvvxyyz, the number of a’s is stillK, but the number of b’s is strictly
greater than K since v contains at least one b, and thus uvvxyyz /∈ L, a contradiction.

If both y and z contain some b we will also reach a contradiction because in the string
uvvxyyz, the number of c’s is still K, but the number of b’s is strictly greater than K.
Having reached a contradiction in all cases, we conclude that L is not context-free.

Example 7.27. Let us now show that the language

L = {ambncmdn | m,n ≥ 1}

is not context-free.

Again, we proceed by contradiction. This time, let

w = aKbKcKdK ,

where the b’s and c’s are marked occurrences.

By Ogden’s lemma, either both u, v contain some marked occurrence, or both y, z contain
some marked occurrence, and x contains some marked occurrence. Let us first consider the
case where both u, v contain some marked occurrence.

If v contains some b, since uvvxyyz ∈ L, v must contain only b’s, since otherwise we
would have a bad string in L, and we have the following situation:

a · · · ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · cd · · ·d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L, the only way to preserve an equal number of b’s and d’s is to have
y ∈ d+. But then vxy contains cK , which contradicts (4) of Ogden’s lemma.

If v contains some c, since x also contains some marked occurrence, it must be some c,
and v contains only c’s and we have the following situation:

a · · · ab · · · bc · · · c︸ ︷︷ ︸
u

c · · · c︸ ︷︷ ︸
v

c · · · cd · · ·d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L and the number of a’s is still K whereas the number of c’s is strictly
more than K, this case is impossible.

Let us now consider the case where both y, z contain some marked occurrence. Reasoning
as before, the only possibility is that v ∈ a+ and y ∈ c+:

a · · · a︸ ︷︷ ︸
u

a · · · a︸ ︷︷ ︸
v

a · · · ab · · · bc · · · c︸ ︷︷ ︸
x

c · · · c︸ ︷︷ ︸
y

c · · · cd · · ·d︸ ︷︷ ︸
z

.

But then, vxy contains bK , which contradicts (4) of Ogden’s Lemma. Since a contradiction
was obtained in all cases, L is not context-free.
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Ogden’s lemma can also be used to show that the context-free language

{ambncn | m,n ≥ 1} ∪ {ambmcn | m,n ≥ 1}

is inherently ambiguous. The proof is quite involved.

Another corollary of the Ogden’s lemma is that it is decidable whether a context-free
grammar generates an infinite language.

Proposition 7.17. Given any context-free grammar, G, if K is the constant of Ogden’s
lemma, then the following equivalence holds:

L(G) is infinite iff there is some w ∈ L(G) such that K ≤ |w| < 2K.

Proof. Let K = p2r+3 be the constant from the proof of Theorem 7.15. If there is some
w ∈ L(G) such that |w| ≥ K, we already observed that Ogden’s lemma implies that L(G)
contains an infinite subset of the form {uvnxynz | n ≥ 0}. Conversely, assume that L(G) is
infinite. If |w| < K for all w ∈ L(G), then L(G) is finite. Thus, there is some w ∈ L(G) such
that |w| ≥ K. Let w ∈ L(G) be a minimal string such that |w| ≥ K. By Ogden’s lemma, we
can write w as w = uvxyxz, where x 6= ǫ, vy 6= ǫ, and |vxy| ≤ K. By the pumping property,
uxz ∈ L(G). If |w| ≥ 2K, then

|uxz| = |uvxyz| − |vy| > |uvxyz| − |vxy| ≥ 2K −K = K,

and |uxz| < |uvxyz|, contradicting the minimality of w. Thus, we must have |w| < 2K.

In particular, if G is in Chomsky Normal Form, it can be shown that we just have to
consider derivations of length at most 4K − 3.

7.13 Pushdown Automata

We have seen that the regular languages are exactly the languages accepted by DFA’s or
NFA’s. The context-free languages are exactly the languages accepted by pushdown au-
tomata, for short, PDA’s.

Informally, a PDA is an NFA augmented with an extra storage device consisting of a
stack (also called a pushdown store). The stack consists of a finite number of frames taken
from a finite alphabet Γ of stack symbols. We can visualize a stack as a vertical stack of
trays, with a bottom element and a top element (when the stack is nonempty).

A PDA M has a finite set of states Q, a transition function δ (to be specified a bit
later), and it scans the input string w ∈ Σ∗ from left to right symbol by symbol, as an
NFA does. If the PDA is in state p and if the symbol currently scanned is a ∈ Σ, then
the PDA makes a transition to some state q according to its transition function, advances
the reading head to the next input, but it also updates the stack according to its transition
function. If the topmost element of the stack is Z (with Z ∈ Γ), then Z may be replaced
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by some string γ ∈ Γ∗. Thus the transition function δ of a PDA takes three arguments
(p, a, Z) ∈ Q × Σ × Γ (contrary to an NFA that takes two arguments (p, a) ∈ Q × Σ) and
is of the form (q, γ) ∈ δ(p, a, Z). Actually ǫ-transitions (as in the case of NFA’s) are also
allowed. These are transitions of the form (q, γ) ∈ δ(p, ǫ, Z).

The new ingredient is that in order to make a transition, a PDA needs to know in which
state it is, what is the symbol currently scanned, but it also needs to access the topmost
element of the stack in order to decide which move to perform. Furthermore, the update to
the stack is made at the topmost element. A PDA is not allowed to consult stack frames
strictly below the topmost one or to make changes strictly inside the stack. This is why the
storage device is called a stack!

There are two versions of PDA’s, deterministic and nondeterministic, but contrary to the
fact that every NFA can be converted to a DFA, nondeterministic PDA’s are strictly more
poweful than deterministic PDA’s (DPDA’s). Indeed, there are context-free languages that
cannot be accepted by DPDA’s.

Thus, the natural machine model for the context-free languages is nondeterministic, and
for this reason, we just use the abbreviation PDA, as opposed to NPDA.We adopt a definition
of a PDA in which the pushdown store (or stack) must not be empty for a move to take
place. Other authors allow PDA’s to make move when the stack is empty. Novices seem to
be confused by such moves, and this is why we do not allow moves with an empty stack.

Intuitively, a PDA consists of an input tape, a nondeterministic finite-state control, and
a stack.

Given any set X possibly infinite, let Pfin(X) be the set of all finite subsets of X .

Definition 7.27. A pushdown automaton is a 7-tuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite pushdown store (or stack) alphabet ;

• q0 ∈ Q is the start state (or initial state);

• Z0 ∈ Γ is the initial stack symbol (or bottom marker);

• F ⊆ Q is the set of final (or accepting) states ;

• δ : Q× (Σ ∪ {ǫ})× Γ→ Pfin(Q× Γ∗) is the transition function.

A transition is of the form (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, γ ∈ Γ∗ and
a ∈ Σ∪ {ǫ}. A transition of the form (q, γ) ∈ δ(p, ǫ, Z) is called an ǫ-transition (or ǫ-move).

The way a PDA operates is explained in terms of Instantaneous Descriptions , for short
ID’s. Intuitively, an Instantaneous Description is a snapshot of the PDA.
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Definition 7.28. Given a PDAM = (Q,Σ,Γ, δ, q0, Z0, F ), an instantaneous description (for
short, ID) ID is a triple of the form

(p, u, α) ∈ Q× Σ∗ × Γ∗.

The idea is that p is the current state, u is the remaining input, and α represents the
stack. Here we assume that a stack consisting from bottom up of the sequence of frames
(Z1, . . . , Zm) (with Zi ∈ Γ) is represented by the string α = Zm · · ·Z1, with the topmost
element Zm as the leftmost symbol.

Although not obvious at first, the convention that the leftmost symbol in α represents
the topmost stack symbol makes it more convenient to relate leftmost derivations to compu-
tations in the proof that a context-free grammar can be converted to a PDA. In order to deal
with rightmost derivations, it is more convenient to represent a stack of frames (Z1, . . . , Zm)
as the string Z1 · · ·Zm.

Given a PDA M , we define a relation ⊢M between pairs of ID’s. This is very similar to
the derivation relation =⇒G associated with a context-free grammar.

Intuitively, a PDA scans the input tape symbol by symbol from left to right, making
moves that cause a change of state, an update to the stack (but only at the top), and either
advancing the reading head to the next symbol, or not moving the reading head during an
ǫ-move.

Definition 7.29. Given a PDA

M = (Q,Σ,Γ, δ, q0, Z0, F ),

the relation ⊢M is defined as follows. For all α ∈ Γ∗ and all u, v ∈ Σ∗:

(1) For any move (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, a ∈ Σ, γ ∈ Γ∗, for every ID of
the form (p, av, Zα), we have

(p, av, Zα) ⊢M (q, v, γα).

See Figure 7.5.

(2) For any move (q, γ) ∈ δ(p, ǫ, Z), where p, q ∈ Q, Z ∈ Γ, γ ∈ Γ∗, for every ID of the
form (p, u, Zα), we have

(p, u, Zα) ⊢M (q, u, γα).

See Figure 7.6.
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processed data

processed data

v

va

a

p

q

Z

} α

} α
γ}

( p, av, Zα)       ( q, v, γα)M

Figure 7.5: A DPA move on input a ∈ Σ.

processed data

processed data

u

u

p

q

Z

} α

} α
γ}

( p, u, Zα)       ( q, u, γα)M

No tape data is consumed

Figure 7.6: A PDA move on input ǫ.

As usual, ⊢+M is the transitive closure of ⊢M , and ⊢∗M is the reflexive and transitive closure
of ⊢M . A move of the form

(p, au, Zα) ⊢M (q, u, α)

where a ∈ Σ ∪ {ǫ}, is called a pop move.

Note that a transition (q, Z) ∈ δ(p, a, Z) (or (q, Z) ∈ δ(p, ǫ, Z)) does not alter the stack.
A transition (q, γ) ∈ δ(p, a, Z) (or (q, γ) ∈ δ(p, ǫ, Z)) with γ 6= ǫ can be achieved by first
popping Z off the stack and then pushing one by one the symbols in γ from right to left.
Thus, although the PDA moves are not pure push and pop moves, they can be achieved by
such moves (except that technically, no move is allowed on the empty stack).

A move on a real input symbol a ∈ Σ causes this input symbol to be consumed, and the
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reading head advances to the next input symbol. On the other hand, during an ǫ-move, the
reading head stays put.

When

(p, u, α) ⊢∗M (q, v, β)

we say that we have a computation.

There are several equivalent ways of defining acceptance by a PDA.

Definition 7.30. Given a PDA

M = (Q,Σ,Γ, δ, q0, Z0, F ),

the following languages are defined:

(1) T (M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ǫ, α), where f ∈ F , and α ∈ Γ∗}.

We say that T (M) is the language accepted by M by final state.

(2) N(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (q, ǫ, ǫ), where q ∈ Q}.

We say that N(M) is the language accepted by M by empty stack .

(3) L(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ǫ, ǫ), where f ∈ F}.

We say that L(M) is the language accepted by M by final state and empty stack .

In all cases, note that the input w must be consumed entirely.

The following proposition shows that the acceptance mode does not matter for PDA’s.
As we will see shortly, it does matter for DPDAs.

Proposition 7.18. For any language L, the following facts hold.

(1) If L = T (M) for some PDA M , then L = L(M ′) for some PDA M ′.

(2) If L = N(M) for some PDA M , then L = L(M ′) for some PDA M ′.

(3) If L = L(M) for some PDA M , then L = T (M ′) for some PDA M ′.

(4) If L = L(M) for some PDA M , then L = N(M ′) for some PDA M ′.

Sketch of proof. (1) Suppose that L = T (M). From any final state p ∈ F , the PDA M ′

empties the stack using ǫ-transitions. For all p ∈ F and all Z ∈ Γ, we add transitions

(p, ǫ) ∈ δ(p, ǫ, Z).
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(2) Assume that L = N(M). The PDA M ′ begins by inserting a new bottom symbol Z ′
0

below Z0 on input ǫ, and then proceeds as M does. We create a new start state q′0 and a
transition

(q0, Z0Z
′
0) ∈ δ(q

′
0, ǫ, Z0).

During any computation of M ′, after this initial move, the stack is of the form αZ ′
0 with

α 6= ǫ, except at the end of the computation. When the original PDA M is about to empty
the stack, M ′ stops with Z ′

0 as the only symbol in the stack. Then M ′ moves to a new final
state f and pops Z ′

0 off the stack on input ǫ. This way, M accepts by empty stack iff M ′

accepts by final state and empty stack. This is achieved by transitions

(f, ǫ) ∈ δ(p, ǫ, Z ′
0), p ∈ Q.

(3) Assume that L = L(M). The construction of M ′ is similar to the construction used
in (2), except that when M is about to empty the stack and to enter a final state, M ′ moves
to a new final state f ′. There is no need to empty the stack. This is achieved by transitions

(f ′, Z ′
0) ∈ δ(p, ǫ, Z

′
0), p ∈ F.

(4) Assume that L = L(M). The construction of M ′ is similar to the construction used
in (2), except that whenM is about to empty the stack and to enter a final state,M ′ empties
the stack. There is no need for a new final state. This is achieved by transitions

(p, ǫ) ∈ δ(p, ǫ, Z ′
0), p ∈ F.

This completes the sketch of proof.

In view of Proposition 7.18, the three acceptance modes T,N, L are equivalent.

Example 7.28. The following PDA accepts the language

L = {anbn | n ≥ 1}

by empty stack.

Q = {1, 2}, Γ = {Z0, a}; F = ∅; q0 = 1;

(1, a) ∈ δ(1, a, Z0),

(1, aa) ∈ δ(1, a, a),

(2, ǫ) ∈ δ(1, b, a),

(2, ǫ) ∈ δ(2, b, a).

A graphical representation of the above PDA is shown in Figure 7.7. The usual conven-
tation is to draw a picture of the NFA associate with the PDA, so that if (q, γ) ∈ δ(p, a, Z)
(with a ∈ Σ∪{ǫ}), we draw an oriented edge from p to q labeled with a, and we indicate the
stack update immediately to the right of the symbol a by the notation Z/γ, or sometimes
Z := γ.
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1 2
b, a/ǫ

a, Z0/a b, a/ǫ

a, a/aa

Figure 7.7: A PDA accepting {anbn | n ≥ 1} by empty stack.

This PDA is designed so that on a correct input anbn (n ≥ 1), the prefix an of the input
is copied onto the stack, so that when the remaining input is bn, every b is checked against
every a by popping the topmost a on the stack while reading the next b in the remaining
input. If the input is ǫ or begins with b, the PDA does not even start processing and the
input is immediately rejected. Observe that a move from state 1 on input b is only possible
if some a has been processed, since the only move is (2, ǫ) ∈ δ(1, b, a), which requires the top
of the stack to be an a, and not Z0.

The computation on input aaabbb is shown below:

(1, aaabbb, Z0) ⊢ (1, aabbb, a) ⊢ (1, abbb, aa) ⊢ (1, bbb, aaa) ⊢

(2, bb, aa) ⊢ (2, b, a) ⊢ (2, ǫ, ǫ).

Since after the last move the input has been entirely consumed and the stack is empty, the
DPA accepts the input aaabbb. See Figure 7.8.

In general, if the input is anbn with n ≥ 1, then the computation is of the form

(1, anbn, Z0) ⊢
n (1, bn, an) ⊢n (2, ǫ, ǫ),

the input has been consumed and the stack is empty so the input anbn is accepted.

If the input is anbnz with n ≥ 1 and z 6= ǫ, then the computation is of the form

(1, anbnz, Z0) ⊢
n (1, bnz, an) ⊢n (2, z, ǫ),

the input has not been consumed entirely and the stack is empty so the input anbnz is
rejected.

If the input is ambnz with 1 ≤ m < n and z ∈ {a, b}∗, then the computation is of the
form

(1, ambnz, Z0) ⊢
m (1, bnz, am) ⊢n−m (2, bn−mz, ǫ),

and the PDA is stuck on input b since no moves are allowed on the input stack. Since the
remaining input bn−mz is nonempty, the input ambnz is rejected.

If the input is ambnz with 1 ≤ n < m and z ∈ {ǫ} ∪ {a}{a, b}∗, then the computation is
of the form

(1, ambnz, Z0) ⊢
m (1, bnz, am) ⊢n (2, z, am−n),
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1

a a a b b b Z0

a a a b b b

1

a

a a a b b b

1
a

a

a

a a a b b b

1

aa

a

a

a

a a a b b b

2

aa

a

a

a a a b b b

2

a

a a a b b b

2

empty stack
all data consumed

Figure 7.8: An accepting computation on input aaabbb.

and either the PDA consumes the entire input and ends the computation with a nonempty
stack or there is no move from state 2 on input a, so the input ambnz is rejected.

Similarly, if the input is am with 1 ≤ m, then the computation is of the form

(1, am, Z0) ⊢
m (1, ǫ, am),

and the PDA consumes the entire input and ends the computation with a nonempty stack,
so the input am is rejected.

It is easy to modify this PDA by adding an error state 3 and transitions to this error
state so that the PDA can make a move whenever the stack is nonempty. For example, we
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can add the transitions

(3, Z0) ∈ δ(1, b, Z0)

(3, a) ∈ δ(2, a, a)

(3, Z0) ∈ δ(3, a, Z0)

(3, Z0) ∈ δ(3, b, Z0)

(3, a) ∈ δ(3, a, a)

(3, a) ∈ δ(3, b, a).

Example 7.29. The following PDA accepts the language

L = {anbn | n ≥ 1}

by final state (and also by empty stack).

Q = {1, 2, 3}, Γ = {Z0, A, a}, F = {3}; q0 = 1;

(1, A) ∈ δ(1, a, Z0),

(1, aA) ∈ δ(1, a, A),

(1, aa) ∈ δ(1, a, a),

(2, ǫ) ∈ δ(1, b, a),

(2, ǫ) ∈ δ(2, b, a),

(3, ǫ) ∈ δ(1, b, A),

(3, ǫ) ∈ δ(2, b, A).

A graphical representation of the above PDA is shown in Figure 7.9.

1 2 3
b, a/ǫ b, A/ǫ

a, Z0/A b, a/ǫ

b, A/ǫ

a, A/aA

a, a/aa

Figure 7.9: A PDA accepting {anbn | n ≥ 1} by final state.

This PDA is designed so that on a correct input anbn (n ≥ 1), the prefix an of the
input is copied onto the stack as the string an−1A (with A at the bottom), so that when
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the remaining input is bn, every b is checked against every symbol in the stack by popping
the topmost symbol on the stack while reading the next b in the remaining input. The new
twist is that this PDA “knows” when it has checked n b’s against n a’s because it replaces
Z0 with the special symbol A when it reads the first a. After processing the prefix an, the
stack is an−1A, and after processing bn−1, the stack is A, so when seeing the last b the PDA
knows that it should move to a final state and accept. In this last move, the stack does not
have to be emptied, but it can if we wish to do so.

The computation on input aaabbb is shown below:

(1, aaabbb, Z0) ⊢ (1, aabbb, A) ⊢ (1, abbb, aA) ⊢ (1, bbb, aaA) ⊢

(2, bb, aA) ⊢ (2, b, A) ⊢ (3, ǫ, ǫ).

Since after the last move the input has been entirely consumed and the last state is a final
state, the DPA accepts the input aaabbb. See Figure 7.10.

In general, if the input is anbn with n ≥ 1, then the computation is of the form

(1, anbn, Z0) ⊢ (1, an−1bn, A) ⊢n−1 (1, bn, an−1A) ⊢n−1 (2, b, A) ⊢ (3, ǫ, ǫ),

the input has been consumed, the last state is a final state, so the input anbn is accepted.

The reader should check that the other illegal input strings (as in Example 7.29) are
indeed rejected.

Example 7.30. The following PDA accepts the language

L = {wwR | w ∈ {a, b}∗}

by empty stack.

Q = {1, 2}, Γ = {Z0, a}; F = ∅; q0 = 1;

(2, ǫ) ∈ δ(1, ǫ, Z0)

(1, a) ∈ δ(1, a, Z0)

(1, b) ∈ δ(1, b, Z0)

(1, aa) ∈ δ(1, a, a)

(2, ǫ) ∈ δ(1, a, a)

(1, ba) ∈ δ(1, b, a)

(1, ab) ∈ δ(1, a, b)

(1, bb) ∈ δ(1, b, b)

(2, ǫ) ∈ δ(1, b, b)

(2, ǫ) ∈ δ(2, a, a)

(2, ǫ) ∈ δ(2, b, b).



7.13. PUSHDOWN AUTOMATA 211

1

a a a b b b Z0

a a a b b b

1

a a a b b b

1
aa

a a a b b b

1

aaa
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a a a b b b

2

aaa

a a a b b b

2

a a a b b b

3

empty stack
all data consumed

A

A

A

A

A

Figure 7.10: An accepting computation on input aaabbb.

This time we have two clear instances of nondeterminism, since from state 1 on input a
with a on top of the stack, either we push a on top of the stack if the midpoint of waawR

has not yet been reached, but if wa has been scanned, the midpoint has been reached so on
input a (in awR) with a on top of the stack we pop the top of the stack and move to state
2. The behavior is similar from state 1 on input b with b on top of the stack.

An accepting computation on input abbbba is shown below:

(1, abbbba, Z0) ⊢ (1, bbbba, a) ⊢ (1, bbba, ba) ⊢ (1, bba, bba) ⊢

(2, ba, ba) ⊢ (2, a, a) ⊢ (2, ǫ, ǫ).

Since after the last move the input has been entirely consumed and the stack is empty the
DPA accepts the input abbbba. See Figure 7.11.
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a b b b b a Z0

a b b b b a

1

a

a

a

a

a

2

empty stack
all data consumed

a b b b b a

1

a b b b b a

1

b

b

b

a b b b b a

b

2

a b b b b a

2

a b b b b a

Figure 7.11: An accepting computation on input abbbba.

In general, on input waawR, an accepting computation is of the form

(1, waawR, Z0) ⊢
|w|+1 (1, awR, awR) ⊢ (2, wR, wR) ⊢|w| (2, ǫ, ǫ),

and similarly with wbbwR.

DPDA’s are defined as follows.

Definition 7.31. A PDA
M = (Q,Σ,Γ, δ, q0, Z0, F )

is a deterministic PDA (for short, DPDA), iff the following conditions hold for all (p, Z) ∈
Q× Γ: either

(1) |δ(p, a, Z)|= 1 for all a ∈ Σ, and δ(p, ǫ, Z) = ∅, or
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(2) δ(p, a, Z) = ∅ for all a ∈ Σ, and |δ(p, ǫ, Z)|= 1.

A DPDA operates in realtime iff it has no ǫ-transitions.

Example 7.31. The PDA of Example 7.28 is almost a DPDA, but it is missing some
transitions to satisfy Condition (1). This can be rectified by adding a “dead state” 3 and
the transitions

(3, Z0) ∈ δ(1, b, Z0)

(3, Z0) ∈ δ(2, a, Z0)

(3, Z0) ∈ δ(2, b, Z0)

(3, a) ∈ δ(2, a, a)

(3, Z0) ∈ δ(3, a, Z0)

(3, Z0) ∈ δ(3, b, Z0)

(3, a) ∈ δ(3, a, a)

(3, a) ∈ δ(3, b, a).

Compared to Example 7.28, note the presence of the extra transitions (3, Z0) ∈ δ(2, a, Z0)
and (3, Z0) ∈ δ(2, b, Z0) which need to be included since the set of pairs (p, Z) ∈ Q× Γ is

(1, Z0), (1, a), (2, Z0), (2, a), (3, Z0), (3, a).

No transition will ever occur from state 2 on input a or b with Z0 on top of the stack because
state 2 is only entered on input b with a stack of the form an, but these transitions are
necessary to satisfy Condition (1).

The PDA of Example 7.29 is technically not a DPDA, but it can be made into a DPDA
by adding a dead state and some additional transitions. We leave this as an exercise.

It turns out that for DPDA’s the most general acceptance mode is by final state. Indeed,
there are languages that can only be accepted deterministically as T (M). The language

L = {ambn | m ≥ n ≥ 1}

is such an example. The problem is that amb is a prefix of all strings ambn, with m ≥ n ≥ 2.

Definition 7.32. A language L is a deterministic context-free language iff L = T (M) for
some DPDA M .

It is easily shown that if L = N(M) (or L = L(M)) for some DPDAM , then L = T (M ′)
for some DPDA M ′ easily constructed from M .

Definition 7.33. A PDA is unambiguous iff for every w ∈ Σ∗, there is at most one compu-
tation

(q0, w, Z0) ⊢
∗ IDn,

where IDn is an accepting ID.
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Every DPDA is unambiguous. The PDA’s of Examples 7.28 and 7.29 are unambiguous.

There are context-free languages that are not accepted by any DPDA.

Example 7.32. It can be shown that the languages

L1 = {a
nbn | n ≥ 1} ∪ {anb2n | n ≥ 1}

and
L2 = {ww

R | w ∈ {a, b}∗}

are accepted by nondeterministic PDA’s but are not accepted by any DPDA (here the
alphabet is Σ = {a, b}). The proof is nontrivial and uses a sharpened version of Ogden’s
lemma for context-free languages accepted by DPDA’s. On the other hand, the languages

L′
1 = {a

ncbn | n ≥ 1} ∪ {andb2n | n ≥ 1}

(with Σ = {a, b, c, d}) and
L′
2 = {wcw

R | w ∈ {a, b}∗}

(with Σ = {a, b, c}) are accepted by DPDA’s.

Also note that unambiguous grammars for the languages L1 and L2 can be easily given.

We now show that every context-free language is accepted by a PDA.

7.14 From Context-Free Grammars To PDA’s

We show how a PDA can be easily constructed from a context-free grammar. Although
simple, the construction is not practical for parsing purposes, since the resulting PDA is
horribly nondeterministic.

Given a context-free grammar G = (V,Σ, P, S), we define a one-state PDA M as follows:

Q = {q0}; Γ = V ; Z0 = S; F = ∅;

For every rule (A→ γ) ∈ P , there is a transition

(q0, γ) ∈ δ(q0, ǫ, A).

For every a ∈ Σ, there is a transition

(q0, ǫ) ∈ δ(q0, a, a).

The intuition is that a computation of M mimics a leftmost derivation in G. One might
say that we have a “pop/expand” PDA.
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Proposition 7.19. Given any context-free grammar G = (V,Σ, P, S), the PDA M just
described accepts L(G) by empty stack, i.e., L(G) = N(M).

Proof. The following two claims are proved by induction.

Claim 1: for all u, v ∈ Σ∗ and all α ∈ NV ∗ ∪ {ǫ}, if S
∗
=⇒
lm

uα, then

(q0, uv, S) ⊢
∗ (q0, v, α).

Claim 2: for all u, v ∈ Σ∗ and all α ∈ V ∗, if

(q0, uv, S) ⊢
∗ (q0, v, α)

then S
∗
=⇒
lm

uα.

Proof of Claim 1. We proceed by induction on the number of steps n in the leftmost deriva-
tion S

n
=⇒
lm

uα. The case n = 0 is trivial since we must have u = ǫ and α = S.

If n ≥ 1 there are two cases.

Case A. α = ǫ.

If S
n
=⇒
lm

u with n ≥ 1, then this leftmost derivation is of the form

S
n−1
=⇒
lm

u1Av1
1
=⇒
lm

u1wv1,

for some production A → w with w ∈ Σ∗, u1, v1 ∈ Σ∗, and u = u1wv1. By the induction
hypothesis (Case B) applied to u1 and Av1, we have a computation

(q0, u1wv1v, S) ⊢
∗ (q0, wv1v, Av1).

Using the transition (q0, w) ∈ δ(q0, ǫ, A), we get the computation

(q0, u1wv1v, S) ⊢
∗ (q0, wv1v, Av1) ⊢ (q0, wv1v, wv1).

If wv1 = ǫ we are done, else by using transitions (q0, ǫ) ∈ δ(q0, a, a) for every symbol a in
wv1, we obtain the computation

(q0, u1wv1v, S) ⊢
∗ (q0, wv1v, Av1) ⊢ (q0, wv1v, wv1) ⊢

+ (q0, v, ǫ),

as desired.

Case B . α = Aα1, for some A ∈ N (and α1 ∈ V ∗).

In this case we have a leftmost derivation of the form

S
n−1
=⇒
lm

u1Bβ1
1
=⇒
lm

u1u2Aβ2β1 = u1u2Aα1,



216 CHAPTER 7. CONTEXT-FREE GRAMMARS AND LANGUAGES

for some production B → u2Aβ2 and with u1, u2 ∈ Σ∗, α1, β1, β2 ∈ V ∗, and α1 = β2β1. By
the induction hypothesis (Case B) applied to u1 and Bβ1, we have a computation

(q0, u1u2v, S) ⊢
∗ (q0, u2v, Bβ1).

Using the transition (q0, u2Aβ2) ∈ δ(q0, ǫ, B), we obtain

(q0, u1u2v, S) ⊢
∗ (q0, u2v, Bβ1) ⊢ (q0, u2v, u2Aβ2β1).

Either u2 = ǫ and we are done or using transitions (q0, ǫ) ∈ δ(q0, a, a) for every symbol a in
u2, we obtain the computation

(q0, u1u2v, S) ⊢
∗ (q0, u2v, Bβ1) ⊢ (q0, u2v, u2Aβ2β1) ⊢

+ (q0, v, Aβ2β1),

as desired.

Proof of Claim 2. We proceed by induction on the number of steps n in the computation

(q0, uv, S) ⊢
n (q0, v, α).

The case n = 0 is trivial.

If n ≥ 1, there are two cases.

Case 1 . The computation is of the form

(q0, uv, S) ⊢
n−1 (q0, v, Aβ) ⊢ (q0, v, γβ),

where a transition of the form (q0, γ) ∈ δ(q0, ǫ, A) was used in the last step. By the induction
hypothesis, there is a leftmost derivation

S
∗
=⇒
lm

uAβ,

and since there is a production A → γ corresponding to the transition (q0, γ) ∈ δ(q0, ǫ, A)
and u ∈ Σ∗, we have the leftmost deivation

S
∗
=⇒
lm

uAβ
1
=⇒
lm

uγβ,

as claimed.

Case 2 . The computation is of the form

(q0, uav, S) ⊢
n−1 (q0, av, aβ) ⊢ (q0, v, β),

where a transition of the form (q0, ǫ) ∈ δ(q0, a, a) was used in the last step, for some a ∈ Σ.
By the induction hypothesis, there is a leftmost derivation

S
∗
=⇒
lm

uaβ,

but this derivation also corresponds to the entire computation on input ua.
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Applying Claim 1 to α = ǫ and v = ǫ, we deduce that if S
+
=⇒
lm

u (with u ∈ Σ∗), then

(q0, u, S) ⊢
+ (q0, ǫ, ǫ),

which means that u ∈ N(M). Thus L(G) ⊆ N(M).

Applying Claim 2 to v = ǫ and α = ǫ, we deduce that if u ∈ N(M), that is,

(q0, u, S) ⊢
+ (q0, ǫ, ǫ),

then S
+
=⇒
lm

u, which means that u ∈ L(G), so N(M) ⊆ L(G). Therefore we have N(M) =

L(G).

Example 7.33. Going back to the language

L = {wwR | w ∈ {a, b}∗}

of Example 7.30, it is easy to see that the following grammar using the single nonterminal
S generates L.

S −→ aSa

S −→ bSb

S −→ ǫ.

Applying the construction of Proposition 7.19 we obtain the following one-state PDA
accepting L by empty stack:

(q0, aSa) ∈ δ(q0, ǫ, S)

(q0, bSb) ∈ δ(q0, ǫ, S)

(q0, ǫ) ∈ δ(q0, ǫ, S)

(q0, ǫ) ∈ δ(q0, a, a)

(q0, ǫ) ∈ δ(q0, b, b).

An accepting computation for the string abbbba is shown below.

(q0, abbbba, S) ⊢ (q0, abbbba, aSa) ⊢ (q0, bbbba, Sa) ⊢ (q0, bbbba, bSba) ⊢ (q0, bbba, Sba) ⊢

(q0, bbba, bSbba) ⊢ (q0, bba, Sbba) ⊢ (q0, bba, bba) ⊢ (q0, ba, ba) ⊢ (q0, a, a) ⊢ (q0, ǫ, ǫ).

See Figure 7.12. Observe that since the PDA of Example 7.33 has a single state, it is a lot
more nondeterministic than the PDA of Example 7.30. It guesses a leftmost derivation of
the input and mimics it.

We now show how a PDA can be converted to a context-free grammar
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Figure 7.12: An accepting computation on input abbbba.

7.15 From PDA’s To Context-Free Grammars

The construction of a context-free grammar from a PDA is not really difficult, but it is quite
messy. The construction is simplified if we first convert a PDA to an equivalent PDA such
that for every move (q, γ) ∈ δ(p, a, Z) (where a ∈ Σ ∪ {ǫ}), we have |γ| ≤ 2. In some sense,
we form a kind of PDA in Chomsky Normal Form.

Proposition 7.20. Given any PDA

M = (Q,Σ,Γ, δ, q0, Z0, F ),

another PDA
M ′ = (Q′,Σ,Γ′, δ′, q′0, Z

′
0, F

′)

can be constructed, such that L(M) = L(M ′) and the following conditions hold:
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(1) There is a one-to-one correspondence between accepting computations of M and M ′;

(2) If M has no ǫ-moves, then M ′ has no ǫ-moves; if M is unambiguous, then M ′ is
unambiguous;

(3) For all p ∈ Q′, all a ∈ Σ ∪ {ǫ}, and all Z ∈ Γ′, if (q, γ) ∈ δ′(p, a, Z), then q 6= q′0 and
|γ| ≤ 2.

The crucial point of the construction is that accepting computations of a PDA accepting
by empty stack and final state can be decomposed into subcomputations of the form

(p, uv, Zα) ⊢∗ (q, v, α),

where for every intermediate ID (s, w, β), we have β = γα for some γ 6= ǫ.

The nonterminals of the grammar constructed from the PDA M are triples of the form
[p, Z, q] such that

(p, u, Z) ⊢+ (q, ǫ, ǫ)

for some u ∈ Σ∗.

Given a PDA
M = (Q,Σ,Γ, δ, q0, Z0, F )

satisfying the conditions of Proposition 7.20, we construct a context-free grammar G =
(V,Σ, P, S) as follows:

V = {[p, Z, q] | p, q ∈ Q,Z ∈ Γ} ∪ Σ ∪ {S},

where S is a new symbol, and the productions are defined as follows: for all p, q ∈ Q, all
a ∈ Σ ∪ {ǫ}, all X, Y, Z ∈ Γ, we have:

(1) S → a ∈ P , if (f, ǫ) ∈ δ(q0, a, Z0), and f ∈ F ;

(2) S → a[p,X, f ] ∈ P , for every f ∈ F , if (p,X) ∈ δ(q0, a, Z0);

(3) S → a[p,X, s][s, Y, f ] ∈ P , for every f ∈ F , for every s ∈ Q, if (p,XY ) ∈ δ(q0, a, Z0);

(4) [p, Z, q]→ a ∈ P , if (q, ǫ) ∈ δ(p, a, Z) and p 6= q0;

(5) [p, Z, s]→ a[q,X, s] ∈ P , for every s ∈ Q, if (q,X) ∈ δ(p, a, Z) and p 6= q0;

(6) [p, Z, t]→ a[q,X, s][s, Y, t] ∈ P , for every s, t ∈ Q, if (q,XY ) ∈ δ(p, a, Z) and p 6= q0.

Proposition 7.21. Given any PDA

M = (Q,Σ,Γ, δ, q0, Z0, F )

satisfying the conditions of Proposition 7.20, the context-free grammar G = (V,Σ, P, S)
constructed as above generates L(M), i.e., L(G) = L(M). Furthermore, G is unambiguous
iff M is unambiguous.
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Proof sketch. We have to prove that

L(G) = {w ∈ Σ∗ | (q0, w, Z0) ⊢
+ (f, ǫ, ǫ), f ∈ F}.

For this, the following claim is proved by induction.

Claim: For all p, q ∈ Q, all Z ∈ Γ, all n ≥ 1, and all w ∈ Σ∗,

[p, Z, q]
n
=⇒
lm

w iff (p, w, Z) ⊢n (q, ǫ, ǫ).

Proof of Claim. This proof has two parts.

Part 1 . We prove by induction on n ≥ 1 that if (p, w, Z) ⊢n (q, ǫ, ǫ), then [p, Z, q]
n
=⇒
lm

w.

In the base case n = 1, we have (p, w, Z) ⊢1 (q, ǫ, ǫ) iff w ∈ Σ∪{ǫ} and (q, ǫ) ∈ δ(p, a, Z).
By construction (4) there is a production [p, Z, q] → w, so there is a leftmost derivation

[p, Z, q]
1
=⇒
lm

w. Observe that the argment is reversible so in fact we have established that

(p, w, Z) ⊢1 (q, ǫ, ǫ) iff [p, Z, q]
1
=⇒
lm

w.

Assume by induction that the assertion of Part 1 holds for all k ≤ n (n ≥ 1) and consider
a computation

(p, w, Z) ⊢ (q1, w1, α1) ⊢
n (q, ǫ, ǫ)

for some w1 ∈ Σ∗, some α1 ∈ Γ+, and some q1 ∈ K. Because a PDA can’t make moves on
the empty stack, α1 6= ǫ. Due to the restriction on the shape of the transitions imposed by
Proposition 7.20, there are two subcases.

Case 1 . (p, w, Z) ⊢ (q1, w1, α1) because w = aw1 for some a ∈ Σ∪{ǫ}, α1 = Y , and (Y, q1) ∈
δ(p, a, Z). Then (q1, w1, Y ) ⊢n (q, ǫ, ǫ), and by the induction hypothesis, [q1, Y, q]

n
=⇒
lm

w1.

Since (Y, q1) ∈ δ(p, a, Z), by construction (5) there is a production [p, Z, q] → a[q1, Y, q], so
we get the leftmost derivation

[p, Z, q]
1
=⇒
lm

a[q1, Y, q]
n
=⇒
lm

aw1 = w

of length n + 1, establishing the induction step.

Case 2 . (p, w, Z) ⊢ (q1, w1, α1) because w = aw1 for some a ∈ Σ ∪ {ǫ}, α1 = XY , and
(XY, q1) ∈ δ(p, a, Z). In the computation (q1, w1, XY ) ⊢

n (q, ǫ, ǫ), since a PDA can’t make
move on the empty stack, there is an earliest state qj (with smallest j such that 1 < j ≤ n)
such that the computation is of the form

(q1, w1, XY ) ⊢
j−1 (qj , wj, Y ) ⊢

n+1−j (q, ǫ, ǫ),

and for every intermediate ID (qi, wi, αi) with 1 ≤ i < j in the first part of the computation,
we have αi = βiY , for some βi 6= ǫ. But then we have the computation

(q1, w1, X) ⊢j−1 (qj , wj, ǫ)
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with w1 = vwj for some v ∈ Σ∗, and since j−1 < n (recall that 1 < j ≤ n), by the induction
hypothesis there is a leftmost derivation

[q1, X, qj ]
j−1
=⇒
lm

v.

Similarly, we have the computation

(qj , wj, Y ) ⊢
n+1−j (q, ǫ, ǫ),

and since n + 1 − j < n (recall that 1 < j ≤ n), by the induction hypothesis there is a
leftmost derivation

[qj , Y, q]
n+1−j
=⇒
lm

wj.

Since (XY, q1) ∈ δ(p, a, Z), by construction (6) there is a production
[p,X, q]→ a[q1, X, qj][qj , Y, q]. Putting leftmost derivations together we obtain the leftmost
derivation

[p,X, q]
1
=⇒
lm

a[q1, X, qj ][qj, Y, q]
j−1
=⇒
lm

av[qj , Y, a]
n+1−j
=⇒
lm

avwj = w

of length n + 1, establishing the induction step.

Part 2 . We prove by induction on n ≥ 1 that if [p, Z, q]
n
=⇒
lm

w, then (p, w, Z) ⊢n (q, ǫ, ǫ).

The base case n = 1 was already established in Part 2. The induction step is basically
obtained by reversing the argument of Part 1. A key point is that a leftmost derivation of
length n+ 1 ≥ 2 is either of the form

[p, Z, q]
1
=⇒
lm

a[q1, Y, q]
n
=⇒
lm

aw1 = w

where [q1, Y, q]
n
=⇒
lm

w1 and w = aw1 , or

[p, Z, q]
1
=⇒
lm

a[q1, X, s][s, Y, q]
j

=⇒
lm

aw1[s, Y, q]
n−j
=⇒
lm

aw1w2,

where [q1, X, s]
j
=⇒
lm

w1 (1 ≤ j < n), [s, Y, q]
n−j
=⇒
lm

w2, and w = aw1w2 (with a ∈ Σ ∪ {ǫ}).

This is where the context-freeness of the rewriting process of a context-free grammar is used.
The details are left as an exercise.

Finally we use the claim prove that L(G) = L(M). For this we prove the two inclusions
L(G) ⊆ L(M) and L(M) ⊆ L(G).

Step 1 . L(G) ⊆ L(M). Consider a leftmost derivation S
n+1
=⇒
lm

w, with w ∈ Σ∗. If n = 0,

since the grammar is constructed such that the only productions S → w that generate a
terminal are of the form S → a if f ∈ F and (f, ǫ) ∈ δ(q0, a, Z0), with w = a ∈ Σ ∪ {ǫ}, we
have the accepting computation

(q0, a, Z0) ⊢ (f, ǫ, ǫ),
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so w = a ∈ L(M).

If n ≥ 1, there are two subcases.

Case 1 . The leftmost derivation is of the form

S
1
=⇒
lm

a[p,X, f ]
n
=⇒
lm

aw1 = w,

with [p,X, f ]
n
=⇒
lm

w1, and where (p,X) ∈ δ(q0, a, Z0), f ∈ F , and a ∈ Σ ∪ {ǫ}. Since

[p,X, f ]
n
=⇒
lm

w1, by the claim, we have a computation

(p, w1, X) ⊢n (f, ǫ, ǫ),

and since (p,X) ∈ δ(q0, a, Z0) and f ∈ F we have an accepting computation

(q0, aw1, Z0) ⊢ (p, w1, X) ⊢n (f, ǫ, ǫ),

so w = aw1 ∈ L(M).

Case 2 . The leftmost derivation is of the form

S
1
=⇒
lm

a[p,X, s][s, Y, f ]
j
=⇒
lm

aw1[s, Y, f ]
n−j
=⇒
lm

aw1w2 = w,

with [p,X, s]
j
=⇒
lm

w1, [s, Y, f ]
n−j
=⇒
lm

w2, 1 ≤ j < n, and where (p,XY ) ∈ δ(q0, a, Z0),

f ∈ F , and a ∈ Σ ∪ {ǫ}. Since [p,X, s]
j
=⇒
lm

w1 and [s, Y, f ]
n−j
=⇒
lm

w2, by the claim we have

computations
(p, w1, X) ⊢j (s, ǫ, ǫ) and (s, w2, Y ) ⊢

n−j (f, ǫ, ǫ).

We also have the production S → a[p,X, s][s, Y, f ], where (p,XY ) ∈ δ(q0, a, Z0) with f ∈ F ,
and a ∈ Σ ∪ {ǫ}, so we obtain the accepting computation

(q0, aw1w2, Z0) ⊢ (p, w1w2, XY ) ⊢
j (s, w2, Y ) ⊢

n−j (f, ǫ, ǫ),

so w = aw1w2 ∈ L(M).

Step 2 . L(M) ⊆ L(G). The proof is essentially obtained by reversing the argument of Step
1. The details are left as an exercise.

The fact that M is unambiguous iff G is unambiguous follows immediately from the
Claim.

In view of Propositions 7.19 and 7.21, the family of context-free languages is exactly the
family of languages accepted by PDA’s. It is harder to give a grammatical characterization
of the deterministic context-free languages. One method is to use Knuth LR(k)-grammars .

Another characterization can be given in terms of strict deterministic grammars due to
Harrison and Havel.
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7.16 The Chomsky-Schutzenberger Theorem

Unfortunately, there is no characterization of the context-free languages analogous to the
characterization of the regular languages in terms of closure properties (R(Σ)).

However, there is a famous theorem due to Chomsky and Schutzenberger showing that
every context-free language can be obtained from a special language, the Dyck set , in terms
of homomorphisms, inverse homomorphisms and intersection with the regular languages.

Definition 7.34. Given the alphabet Σ2 = {a, b, a, b}, define the relation ≃ on Σ∗
2 as follows:

For all u, v ∈ Σ∗
2,

u ≃ v iff ∃x, y ∈ Σ∗
2, u = xaay, v = xy or

u = xbby, v = xy.

Let ≃∗ be the reflexive and transitive closure of ≃, and let D2 = {w ∈ Σ∗
2 | w ≃

∗ ǫ}. This is
the Dyck set on two letters.

It is not hard to prove that D2 is context-free.

Theorem 7.22. (Chomsky-Schutzenberger) For every PDA, M = (Q,Σ,Γ, δ, q0, Z0, F ),
there is a regular language R and two homomorphisms g, h such that

L(M) = h(g−1(D2) ∩ R).

Observe that Theorem 7.22 yields another proof of the fact that the language accepted
a PDA is context-free.

Indeed, the context-free languages are closed under homomorphisms, inverse homomor-
phisms, intersection with the regular languages, and D2 is context-free.

From the characterization of a-transducers in terms of homomorphisms, inverse homo-
morphisms, and intersection with regular languages, we deduce that every context-free lan-
guage is the image of D2 under some a-transduction.
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Chapter 8

A Survey of LR-Parsing Methods

In this chapter we give a brief survey on LR-parsing methods. We begin with the definition
of characteristic strings and the construction of Knuth’s LR(0)-characteristic automaton.
Next, we describe the shift/reduce algorithm. The need for lookahead sets is motivated by
the resolution of conflicts. A unified method for computing FIRST, FOLLOW and LALR(1)
lookahead sets is presented. The method uses a same graph algorithm Traverse which
finds all nodes reachable from a given node and computes the union of predefined sets
assigned to these nodes. Hence, the only difference between the various algorithms for
computing FIRST, FOLLOW and LALR(1) lookahead sets lies in the fact that the initial
sets and the graphs are computed in different ways. The method can be viewed as an
efficient way for solving a set of simultaneously recursive equations with set variables. The
method is inspired by DeRemer and Pennello’s method for computing LALR(1) lookahead
sets. However, DeRemer and Pennello use a more sophisticated graph algorithm for finding
strongly connected components. We use a slightly less efficient but simpler algorithm (a
depth-first search). We conclude with a brief presentation of LR(1) parsers.

8.1 LR(0)-Characteristic Automata

The purpose of LR-parsing , invented by D. Knuth in the mid sixties, is the following: given
a context-free grammar G, for any terminal string w ∈ Σ∗, find out whether w belongs
to the language L(G) generated by G, and if so, construct a rightmost derivation of w in
a deterministic fashion. Of course, this is not possible for all context-free grammars, but
only for those that correspond to languages that can be recognized by a deterministic PDA
(DPDA). Knuth’s major discovery was that for a certain type of grammars, the LR(k)-
grammars, a certain kind of DPDA could be constructed from the grammar (shift/reduce
parsers). The k in LR(k) refers to the amount of lookahead that is necessary in order to
proceed deterministically. It turns out that k = 1 is sufficient, but even in this case, Knuth
construction produces very large DPDA’s, and his original LR(1) method is not practical.
Fortunately, around 1969, Frank DeRemer, in his MIT Ph.D. thesis, investigated a practical
restriction of Knuth’s method, known as SLR(k), and soon after, the LALR(k) method was

225
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discovered. The SLR(k) and the LALR(k) methods are both based on the construction of
the LR(0)-characteristic automaton from a grammar G, and we begin by explaining this
construction. The additional ingredient needed to obtain an SLR(k) or an LALR(k) parser
from an LR(0) parser is the computation of lookahead sets. In the SLR case, the FOLLOW
sets are needed, and in the LALR case, a more sophisticated version of the FOLLOW sets
is needed. We will consider the construction of these sets in the case k = 1. We will discuss
the shift/reduce algorithm and consider briefly ways of building LR(1)-parsing tables.

For simplicity of exposition, we first assume that grammars have no ǫ-rules. This restric-
tion will be lifted in Section 8.10.

Definition 8.1. Given a reduced context-free grammar G = (V,Σ, P, S ′) augmented with a
start production S ′ → S, where S ′ does not appear in any other productions, the set CG of
characteristic strings of G is the following subset of V ∗ (watch out, not Σ∗):

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential forms obtained in rightmost deriva-
tions: those obtained by truncating the part of the sentential form immediately following
the rightmost symbol in the righthand side of the production applied at the last step.

Example 8.1. Consider the grammar G1 given by

S −→ E

E −→ aEb

E −→ ab,

where Σ = {a, b}. The rightmost derivations are of the form

S
1
=⇒
rm

E

S
∗
=⇒
rm

anEbn
1
=⇒
rm

anabbn

S
∗
=⇒
rm

anEbn
1
=⇒
rm

anaEbbn,

with n ≥ 0, so
CG1

= {E, an+1b, an+1Eb | n ≥ 0}.

Observe that this is a regular. This is actually the crucial property of CG.

The fundamental property of LR-parsing, due to D. Knuth, is that CG is a regular
language. Furthermore, a DFA DCG accepting CG can be constructed from G.

Conceptually, it is simpler to construct the DFA accepting CG in two steps:



8.1. LR(0)-CHARACTERISTIC AUTOMATA 227

A→ α“.”aβ

A→ αa“.”β

a

Figure 8.1: Transition on terminal input a.

(1) First, construct a nondeterministic automaton with ǫ-rules, NCG, accepting CG.

(2) Apply the subset construction (Rabin and Scott’s method) to NCG to obtain the DFA
DCG.

In fact, careful inspection of the two steps of this construction reveals that it is possible
to construct DCG directly in a single step, and this is the construction usually found in
most textbooks on parsing.

Definition 8.2. The nondeterministic automaton NCG accepting CG is defined as follows.

The states of NCG
are “marked productions”, where a marked production is a string of

the form A → α“.”β, where A → αβ is a production, and “.” is a symbol not in V called
the “dot” and which can appear anywhere within αβ.

The start state is S ′ → “.”S, and the transitions are defined as follows:

(a) For every terminal a ∈ Σ, if A→ α“.”aβ is a marked production, with α, β ∈ V ∗, then
there is a transition on input a from state A→ α“.”aβ to state A→ αa“.”β obtained
by “shifting the dot.” Such a transition is shown in Figure 8.1.

(b) For every nonterminal B ∈ N , if A→ α“.”Bβ is a marked production, with α, β ∈ V ∗,
then there is a transition on input B from state A → α“.”Bβ to state A → αB“.”β
(obtained by “shifting the dot”), and transitions on input ǫ (the empty string) to all
states B → “.”γi, for all productions B → γi with left-hand side B. Such transitions
are shown in Figure 8.2.

(c) A state is final if and only if it is of the form A → β“.” (that is, the dot is in the
rightmost position).

The above construction is illustrated by the following example.
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A→ α“.”Bβ

B → “.”γ1A→ αB“.”β B → “.”γm

B ǫ ǫ

Figure 8.2: Transitions from a state A→ α“.”Bβ.

Example 8.2. Consider the grammar G1 given by

S −→ E

E −→ aEb

E −→ ab,

where Σ = {a, b}. The NFA for CG1
is shown in Figure 8.3. The result of making the NFA

for CG1
deterministic is shown in Figure 8.4 (where transitions to the “dead state” have been

omitted). The internal structure of the states 1, . . . , 6 is shown below.

1 : S −→ .E

E −→ .aEb

E −→ .ab

2 : E −→ a.Eb

E −→ a.b

E −→ .aEb

E −→ .ab

3 : E −→ aE.b

4 : S −→ E.

5 : E −→ ab.

6 : E −→ aEb.

The next example is slightly more complicated.
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S → .E

E → .aEb

E → a.Eb

E → aE.b

E → aEb.

S → E. E → .ab

E → a.b

E → ab.

 

 

 

E
ǫ

ǫ

E

b

a

b

ǫa ǫ

Figure 8.3: NFA for CG1
.
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1 2 3

4 5 6

a E

E b b
a

Figure 8.4: DFA for CG1
.

Example 8.3. Consider the grammar G2 given by:

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a

T −→ a

The result of making the NFA for CG2
deterministic is shown in Figure 8.5 (where tran-

sitions to the “dead state” have been omitted). The internal structure of the states 1, . . . , 8
is shown below.

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

2 : E −→ E.+ T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a

4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a

T −→ .a

6 : T −→ T ∗ .a

7 : E −→ E + T.

T −→ T. ∗ a

8 : T −→ T ∗ a.
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1 2 5 7

3 6 8

4

  

  

 

E + T

∗ a

T

∗

a a

Figure 8.5: DFA for CG2
.

Note that some of the marked productions are more important than others. For example,
in state 5, the marked production E −→ E + .T determines the state. The other two items
T −→ .T ∗ a and T −→ .a are obtained by ǫ-closure.

Definition 8.3. We call a marked production of the form A −→ α.β, where β 6= ǫ, a core
item. A marked production of the form A −→ β. is called a reduce item. Reduce items only
appear in final states.

If we also call S ′ −→ .S a core item, we observe that every state is completely determined
by its subset of core items . The other items in the state are obtained via ǫ-closure. We
can take advantage of this fact to write a more efficient algorithm to construct in a single
pass the DFA (except for the inclusion of a dead state) accepting CG, also called the LR(0)-
characteristic automaton associated with CG. Let us elaborate on this point.

The trick is that we can determine the successor of a state p on input a ∈ Σ or A ∈ N by
a process know as “shifting the dot”. Given the set C of core items B → α“.”Xβ occurring
in state p, with X ∈ Σ ∪N , the successor state of p on input X is obtained by shifting the
dot, namely creating the set shiftdot(C) of items (not necessarily core items) of the form
B → αX“.”β, and then computing the ǫ-closure of the set shiftdot(C). The ǫ-closure ǫ-clo(p)
of a set S of items is obtained by recursively adding all items of the form A → “.”γ for all
productions with left-hand side A, for each core item of the form B → α“.”Aβ in S.

To construct the characteristic DFA for G, we start with the state obtained by forming
the ǫ-closure of the set {S ′ → “.”S}, and then we systematically construct the successors of
the states obtained so far using the shifting the dot process and ǫ-closure.
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Example 8.4. Consider the grammar of Example 8.3 given by

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a

T −→ a

The start state is the ǫ-closure of {S → .E}, which is

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

All items in this set are core items. The successor on input a is obtained from the core item
{T → .a} by shifting the dot, namely {T → a.}. This set is already closed under ǫ-closure.
We obtain state 4.

The successor on input E is obtained from the core items {S → .E, E → .E + T} by
shifting the dot, namely {S → E., E → E.+ T}. This set is already closed under ǫ-closure.
We obtain state 2.

The successor on input T is obtained from the core items {E → .T, T → .T ∗ a} by
shifting the dot, namely {E → T., T → T. ∗ a}. This set is already closed under ǫ-closure.
We obtain state 3.

Now we need to determine the successors of states 2, 3, 4. State 4 has no core item so it
has no successors.

State 2 contains the single core item {E → E.+T}. The successor on input + is obtained
by shifting the dot, namely {E → E + .T}. The ǫ-closure is the set {E → E + .T, T →
.T ∗ a, T → .a}. We obtain state 5.

State 3 contains the single core item {T → T. ∗ a}. The successor on input a is obtained
by shifting the dot, namely {T → T ∗ .a}. This set is already closed under ǫ-closure. We
obtain state 6.

Next we need to find the successors of states 5 and 6.

State 5 consists of core items. The successor on input a is obtained from the core item
{T → .a} by shifting the dot, namely {T → a.}. This set is already closed under ǫ-closure.
This is state 4.

The successor on input T is obtained from the set of core items {E → E+ .T, T → .T ∗a}
by shifting the dot, namely {E → E + T., T → T. ∗ a} This set is already closed under ǫ-
closure. This is state 7.
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State 6 contains the single core item {T → T ∗ .a}. The successor on input a is obtained
by shifting the dot. This is {T → T ∗ a.}, which is already closed under ǫ-closure. This is
state 8.

State 7 has the single core item {T → T. ∗ a}. The successor on input ∗ is obtained by
shifting the dot. This is {T → T ∗ .a}, which is already closed under ǫ-closure. This is state
6.

Since state 8 has no core items, we have constructed all states and all of their successors,
so the process stops. Again, we found the states

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

2 : E −→ E.+ T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a

4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a

T −→ .a

6 : T −→ T ∗ .a

7 : E −→ E + T.

T −→ T. ∗ a

8 : T −→ T ∗ a.

Also observe the so-called spelling property : all the transitions entering any given state
have the same label.

Definition 8.4. Given a state s, if s contains both a reduce item A −→ γ. and a shift item
B −→ α.aβ, where a ∈ Σ, we say that there is a shift/reduce conflict in state s on input a.
If s contains two (distinct) reduce items A1 −→ γ1. and A2 −→ γ2., we say that there is a
reduce/reduce conflict in state s.

A grammar is said to be LR(0) if the DFA DCG has no conflicts.

The grammar G1 is LR(0). However, it should be emphasized that this is extremely rare
in practice. The grammar G1 is just very nice and a toy example. In fact, G2 is not LR(0)
because it has shit/reduce conflicts in states 2, 3, 7.
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To eliminate conflicts, one can either compute SLR(1)-lookahead sets, using FOLLOW
sets (see Section 8.6), or sharper lookahead sets, the LALR(1) sets (see Section 8.9). For
example, the computation of SLR(1)-lookahead sets for G2 will eliminate the conflicts.

We will describe methods for computing SLR(1)-lookahead sets and LALR(1)-lookahead
sets in Sections 8.6, 8.9, and 8.10. A more drastic measure is to compute the LR(1)-
automaton, in which the states incoporate lookahead symbols (see Section 8.11). However,
as we said before, this is not a practical methods for large grammars.

Example 8.5. In order to motivate the construction of a shift/reduce parser from the DFA
accepting CG, let us consider a rightmost derivation for w = aaabbb in reverse order for the
grammar G1 given by

0: S −→ E

1: E −→ aEb

2: E −→ ab.

aaabbb α1β1v1

aaEbb α1B1v1 E −→ ab

aaEbb α2β2v2

aEb α2B2v2 E −→ aEb

aEb α3β3v3 α3 = v3 = ǫ

E α3B3v3 α3 = v3 = ǫ E −→ aEb

E α4β4v4 α4 = v4 = ǫ

S α4B4v4 α4 = v4 = ǫ S −→ E

1 2 3

4 5 6

a E

E b b
a

Figure 8.6: DFA for CG1
.

Observe that the strings αiβi for i = 1, 2, 3, 4 are all accepted by the DFA for CG1
shown

in Figure 8.6.
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Also, every step from αiβivi to αiBivi is the inverse of the derivation step using the
production Bi −→ βi, and the marked production Bi −→ βi“ .” is one of the reduce items
in the final state reached after processing αiβi with the DFA for CG1

.

This suggests that we can parse w = aaabbb by recursively running the DFA for CG1
.

The first time (which correspond to step 1) we run the DFA for CG1
on w, some string

α1β1 is accepted and the remaining input in v1.

Then we “reduce” β1 to B1 using a production B1 −→ β1 corresponding to some reduce
item B1 −→ β1“ .” in the final state s1 reached on input α1β1.

We now run the DFA for CG1
on input α1B1v1. The string α2β2 is accepted, and we have

α1B1v1 = α2β2v2.

We reduce β2 to B2 using a production B2 −→ β2 corresponding to some reduce item
B2 −→ β2“ .” in the final state s2 reached on input α2β2.

We now run the DFA for CG+1 on input α2B2v2, and so on.

In general, at the (i + 1)th step (i ≥ 1), we run the DFA for CG1
on input αiBivi. The

string αi+1βi+1 is accepted, and we have

αiBivi = αi+1βi+1vi+1.

We reduce βi+1 to Bi+1 using a production Bi+1 −→ βi+1 corresponding to some reduce item
Bi+1 −→ βi+1“ .” in the final state si+1 reached on input αi+1βi+1.

Definition 8.5. The string βi+1 in αi+1βi+1vi+1 is called a handle.

Then we run again the DFA for CG1
on input αi+1Bi+1vi+1. Now, because the DFA for

CG1
is deterministic there is no need to rerun it on the entire string αi+1Bi+1vi+1, because on

input αi+1 it will take us to the same state, say pi+1, that it reached on input αi+1βi+1vi+1!

The trick is that we can use a stack to keep track of the sequence of states used to process
αi+1βi+1. Then to perform the reduction of αi+1βi+1 to αi+1Bi+1, we simply pop a number
of states equal to |βi+1|, encovering a new state pi+1 on top of the stack, and from state pi+1

we perform the transition on input Bi+1 to a state qi+1 (in the DFA for CG1
), so we push

state qi+1 on the stack which now contains the sequence of states on input αi+1Bi+1 that
takes us to qi+1. Then we resume scanning vi+1 using the DGA for CG1

, pushing each state
being traversed on the stack until we hit a final state.

At this point we find the new string αi+2βi+2 that leads to a final state and we continue
as before. The process stops when the remaining input vi+1 becomes empty and when the
reduce item S ′ −→ S. (here, S −→ E.) belongs to the final state si+1.
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Example 8.6. For example, on input α2β2 = aaEbb, we have the sequence of states

1 2 2 3 6;

see Figure 8.6. State 6 contains the marked production E −→ aEb“.” (see Example 8.2), so
we pop the three topmost states 2 3 6 obtaining the stack

1 2

and then we make the transition from state 2 on input E, which takes us to state 3 (see
Figure 8.6), so we push 3 on top of the stack, obtaining

1 2 3.

We continue from state 3 on input b.

Basically, the recursive calls to the DFA for CG1
are implemented using a stack.

What is not clear is that during step i + 1 when reaching a final state si+1, how do we
know which production Bi+1 −→ βi+1 to use in the reduction step? Indeed, state si+1 could
contain several reduce items Bi+1 −→ βi+1“.”.

This is where we assume that we were able to compute some lookahead information, that
is, for every final state s and every input a, we know which unique production n : Bi+1 −→
βi+1 applies. This is recorded in a table name “action,” such that action(s, a) = rn, where
“r” stands for reduce.

Typically we compute SLR(1) or LALR(1) lookahead sets. Otherwise, we could pick
some reducing production nondeterministically and use backtracking. This works but the
running time may be exponential.

The DFA for CG and the action table giving us the reductions can be combined to form
a bigger action table which specifies completely how the parser using a stack works. This
kind of parser called a shift-reduce parser is discussed in the next section.

In order to make it easier to compute the reduce entries in the parsing table, we assume
that the end of the input w is signalled by a special endmarker traditionally denoted by $.

8.2 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA. Firstly, push moves, called shift moves ,
are restricted so that exactly one symbol is pushed on top of the stack. Secondly, more
powerful kinds of pop moves, called reduce moves , are allowed. During a reduce move, a
finite number of stack symbols may be popped off the stack, and the last step of a reduce
move, called a goto move, consists of pushing one symbol on top of new topmost symbol in
the stack.
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Shift/reduce parsers use parsing tables constructed from the LR(0)-characteristic au-
tomaton DCG associated with the grammar. The shift and goto moves come directly from
the transition table of DCG, but the determination of the reduce moves requires the compu-
tation of lookahead sets . The SLR(1) lookahead sets are obtained from some sets called the
FOLLOW sets (see Section 8.6), and the LALR(1) lookahead sets LA(s, A −→ γ) require
fancier FOLLOW sets (see Section 8.9).

The construction of shift/reduce parsers is made simpler by assuming that the end of
input strings w ∈ Σ∗ is indicated by the presence of an endmarker , usually denoted $, and
assumed not to belong to Σ.

Example 8.7. Consider the grammar G1 of Example 1, where we have numbered the pro-
ductions 0, 1, 2:

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab

The parsing tables associated with the grammar G1 are shown below:

a b $ E
1 s2 4
2 s2 s5 3
3 s6
4 acc
5 r2 r2 r2
6 r1 r1 r1

1 2 3

4 5 6

a E

E b b
a

Figure 8.7: DFA for CG1
.

Entries of the form si are shift actions , where i denotes one of the states, and entries of
the form rn are reduce actions , where n denotes a production number (not a state). The
special action acc means accept, and signals the successful completion of the parse. Entries
of the form i, in the rightmost column, are goto actions . All blank entries are error entries,
and mean that the parse should be aborted.



238 CHAPTER 8. A SURVEY OF LR-PARSING METHODS

We will use the notation action(s, a) for the entry corresponding to state s and terminal
a ∈ Σ ∪ {$}, and goto(s, A) for the entry corresponding to state s and nonterminal A ∈
N − {S ′}.

Assuming that the input is w$, we now describe in more detail how a shift/reduce parser
proceeds.

The parser uses a stack in which states are pushed and popped. Initially, the stack
contains state 1 and the cursor pointing to the input is positioned on the leftmost symbol.
There are four possibilities:

(1) If action(s, a) = sj, then push state j on top of the stack, and advance to the next
input symbol in w$. This is a shift move.

(2) If action(s, a) = rn, then do the following: first, determine the length k = |γ| of the
righthand side of the production n : A −→ γ. Then pop the topmost k symbols off
the stack (if k = 0, no symbols are popped). If p is the new top state on the stack
(after the k pop moves), push the state goto(p, A) on top of the stack, where A is the
lefthand side of the “reducing production” A −→ γ. Do not advance the cursor in the
current input. This is a reduce move.

(3) If action(s, $) = acc, then accept. The input string w belongs to L(G).

(4) In all other cases, error, abort the parse. The input string w does not belong to L(G).

Observe that no explicit state control is needed. The current state is always the current
topmost state in the stack.

Example 8.8. We illustrate below a parse of the input aaabbb$.

stack remaining input action
1 aaabbb$ s2
12 aabbb$ s2
122 abbb$ s2
1222 bbb$ s5
12225 bb$ r2
1223 bb$ s6
12236 b$ r1
123 b$ s6
1236 $ r1
14 $ acc

For example, on line 4, the top of stack is 2 and the current input is b, so the action
table of Example 8.7 specifies that the action is a shift to state 5, which causes state 5 to
be pushed on top of the stack and b to be removed from the remaining input. On line 5, the
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top of stack is 5 and the current input is b, so the action table of Example 8.7 specifies that
the action is a reduce by production 2, namely E → ab. Consequently we pop the topmost
states 2 and 5 off the stack, uncovering the new top of stack 2, and from this state on input
E, the goto table of Example 8.7 tells us to push 3 on top of the stack. The remaining input
remains the same.

Observe that the sequence of reductions read from bottom-up yields a rightmost deriva-
tion of aaabbb from E (or from S, if we view the action acc as the reduction by the production
S −→ E). This is a general property of LR-parsers.

Example 8.9. The shift and goto entries of the parsing tables for the grammar

0: S −→ E

1: E −→ E + T

2: E −→ T

3: T −→ T ∗ a

4: T −→ a

of Example 8.3 are obtained directly from the characteristic automaton shown in Figure 8.5.
We obtain the following table

a + ∗ $ E T
1 s4 2 3
2 s5
3 s6
4
5 s4 7
6 s8
7 s6
8

Recall that the internal structure of the states 1, . . . , 8 is

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a

T −→ .a

2 : E −→ E.+ T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a

4 : T −→ a.
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5 : E −→ E + .T

T −→ .T ∗ a

T −→ .a

6 : T −→ T ∗ .a

7 : E −→ E + T.

T −→ T. ∗ a

8 : T −→ T ∗ a.

Observe that there is a shift/reduce conflicts in state 2 on input +, in state 3 on input ∗,
and from state 7 on ∗. These conficts can be resolved by computing the SLR(1) lookahead
sets using the FOLLOW sets. This method is explained in Section 8.6,

It can be shown that

FOLLOW(T ) = {+.∗, $}, FOLLOW(E) = {+, $}.

The SLR(1) reduce entries in the parsing tables are determined as follows: for every
state s containing a reduce item B −→ γ., if B −→ γ is the production number n, enter
the action rn for state s and every terminal a ∈ FOLLOW(B). If the resulting shift/reduce
parser has no conflicts, we say that the grammar is SLR(1). If s is the state containing the
reduce item S ′ → S., the action from state s on input $ is accept (acc).

The following SLR(1)-parsing table is obtained from the table of Example 8.9.

a + ∗ $ E T
1 s4 2 3
2 s5 acc
3 r2 s6 r2
4 r4 r4 r4
5 s4 7
6 s8
7 r1 s6 r1
8 r3 r3 r3

For the LALR(1) reduce entries, enter the action rn for state s and production n : B −→
γ, for all a ∈ LA(s, B −→ γ). See Section 8.9. If the shift/reduce parser obtained using
LALR(1)-lookahead sets has no conflicts, we say that the grammar is LALR(1).

8.3 Computation of FIRST

In order to compute the FOLLOW sets, we first need to to compute the FIRST sets! For
simplicity of exposition, we first assume that grammars have no ǫ-rules. The general case
will be treated in Section 8.10.
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Definition 8.6. Given a context-free grammar G = (V,Σ, P, S ′) (augmented with a start
production S ′ −→ S), for every nonterminal A ∈ N = V − Σ, let

FIRST(A) = {a | a ∈ Σ, A
+

=⇒ aα, for some α ∈ V ∗}.

For a nonempty terminal string av ∈ Σ+, let FIRST(av) = {a}.

The key to the computation of FIRST(A) is the following observation: a is in FIRST(A)
if either a is in

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, for some α ∈ V ∗},

or a is in
{a | a ∈ FIRST(B), A −→ Bα ∈ P, for some α ∈ V ∗, B 6= A}.

Note that the second assertion is true because, if B
+

=⇒ aδ, then A =⇒ Bα
+

=⇒ aδα, and
so, FIRST(B) ⊆ FIRST(A) whenever A −→ Bα ∈ P , with A 6= B.

Hence, the FIRST sets are the least solution of the following set of recursive equations:
For each nonterminal A,

FIRST(A) = INITFIRST(A) ∪
⋃
{FIRST(B) | A −→ Bα ∈ P, A 6= B}.

For an example of FIRST sets, see Example 8.10.

In order to explain the method for solving such systems, we will formulate the problem
in more general terms, but first, we describe a “naive” version of the shift/reduce algorithm
that hopefully demystifies the “‘optimized version” described in Section 8.2.

8.4 The Intuition Behind the Shift/Reduce Algorithm

Let DCG = (K, V, δ, q0, F ) be the DFA accepting the regular language CG, and let δ∗ be the
extension of δ to K×V ∗. Let us assume that the grammar G is either SLR(1) or LALR(1),
which implies that it has no shift/reduce or reduce/reduce conflicts.

We can use the DFA DCG accepting CG recursively to parse L(G). The function CG is
defined as follows: Given any string µ ∈ V ∗,

CG(µ) =




error if δ∗(q0, µ) = error;
(δ∗(q0, θ), θ, v) if δ∗(q0, θ) ∈ F , µ = θv and θ is the

shortest prefix of µ s.t. δ∗(q0, θ) ∈ F .

The naive shift-reduce algorithm is shown below:

begin

accept := true;
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stop := false;

µ := w$; {input string}

while ¬stop do

if CG(µ) = error then

stop := true; accept := false

else

Let (q, θ, v) = CG(µ)

Let B → β be the production so that

action(q,FIRST(v)) = B → β and let θ = αβ

if B → β = S ′ → S then

stop := true

else

µ := αBv {reduction}

endif

endif

endwhile

end

The idea is to recursively run the DFA DCG on the sentential form µ, until the first final
state q is hit. Then the sentential form µ must be of the form αβv, where v is a terminal
string ending in $, and the final state q contains a reduce item of the form B −→ β, with
action(q,FIRST(v)) = B −→ β. Thus, we can reduce µ = αβv to αBv, since we have found
a rightmost derivation step, and repeat the process.

Note that the major inefficiency of the algorithm is that when a reduction is performed,
the prefix α of µ is reparsed entirely by DCG. Since DCG is deterministic, the sequence
of states obtained on input α is uniquely determined. If we keep the sequence of states
produced on input θ by DCG in a stack, then it is possible to avoid reparsing α. Indeed, all
we have to do is update the stack so that just before applying DCG to αAv, the sequence
of states in the stack is the sequence obtained after parsing α. This stack is obtained by
popping the |β| topmost states and performing an update which is just a goto move. This
is the standard version of the shift/reduce algorithm!

8.5 The Graph Method for Computing Fixed Points

Let X be a finite set representing the domain of the problem (in Section 8.3 above, X = Σ),
let F (1), . . . , F (N) be N sets to be computed and let I(1), . . . , I(N) be N given subsets of
X . The sets I(1), . . . , I(N) are the initial sets. For example, the initial sets could be the
sets INITFIRST and the sets F (i) the sets FIRST of Section 8.3. The initial sets could also
be the sets INITFOLLOW and the sets F (i) the sets FOLLOW of Section 8.6.
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We also have a directed graph G whose set of nodes is {1, . . . , N} and which represents
relationships among the sets F (i), where 1 ≤ i ≤ N . The graph G has no parallel edges and
no loops, but it may have cycles. If there is an edge from i to j, this is denoted by iGj (note
that the absense of loops means that iGi never holds). Also, the existence of a path from i
to j is denoted by iG+j.

The graph G represents a relation, and G+ is the graph of the transitive closure of this
relation. The existence of a path from i to j, including the null path, is denoted by iG∗j.
Hence, G∗ is the reflexive and transitive closure of G. We want to solve for the least solution
of the system of recursive equations:

F (i) = I(i) ∪ {F (j) | iGj, i 6= j}, 1 ≤ i ≤ N. (†)

Since (2X)N is a complete lattice under the inclusion ordering (which means that ev-
ery family of subsets has a least upper bound, namely, the union of this family), it is an
ω-complete poset, and since the function F : (2X)N → (2X)N induced by the system of
equations is easily seen to preserve least upper bounds of ω-chains, the least solution of the
system can be computed by the standard fixed point technique (as explained in Section 7.7).
We simply compute the sequence of approximations (F k(1), . . . , F k(N)), where

F 0(i) = ∅, 1 ≤ i ≤ N,

and

F k+1(i) = I(i) ∪
⋃
{F k(j) | iGj, i 6= j}, 1 ≤ i ≤ N.

It is easily seen that we can stop at k = N − 1, and the least solution is given by

F (i) = F 1(i) ∪ F 2(i) ∪ · · · ∪ FN(i), 1 ≤ i ≤ N.

However, the above expression can be simplified to

F (i) =
⋃
{I(j) | iG∗j}, 1 ≤ i ≤ N. (††)

This last expression shows that in order to compute F (i), it is necessary to compute the
union of all the initial sets I(j) reachable from i (including i). Hence, any transitive closure
algorithm or graph traversal algorithm will do. For simplicity and for pedagogical reasons,
we use a depth-first search algorithm.

Going back to FIRST, we see that all we have to do is to compute the INITFIRST sets,
the graph GFIRST, and then use the graph traversal algorithm.

The graph GFIRST is computed as follows: the nodes are the nonterminals and there is
an edge from A to B (A 6= B) if and only if there is a production of the form A −→ Bα, for
some α ∈ V ∗.
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E

T F

Figure 8.8: Graph GFIRST for G1.

Example 8.10. Computation of the FIRST sets for the grammar G1 given by the rules:

S −→ E$

E −→ E + T

E −→ T

T −→ T ∗ F

T −→ F

F −→ (E)

F −→ −T

F −→ a,

with Σ = {+, ∗, (, ),−, a, $}. Note the inclusion of $. We get

INITFIRST(E) = ∅, INITFIRST(T ) = ∅, INITFIRST(F ) = {(,−, a}.

The graph GFIRST is shown in Figure 8.8. We have

FIRST(F ) = INITFIRST(F ),

FIRST(T ) = INITFIRST(T ) ∪ INITFIRST(F ),

FIRST(E) = INITFIRST(F ) ∪ INITFIRST(T ) ∪ INITFIRST(E),

so we obtain the following FIRST sets:

FIRST(E) = FIRST(T ) = FIRST(F ) = {(,−, a}.

8.6 Computation of FOLLOW

The sets FOLLOW(A) are defined below.

Definition 8.7. Given any context-free grammar G, for any nonterminal A,

FOLLOW(A) = {a | a ∈ Σ, S
+

=⇒ αAaβ, for some α, β ∈ V ∗}.
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Note that a is in FOLLOW(A) if either a is in

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAXβ ∈ P, a ∈ FIRST(X), α, β ∈ V ∗}

or a is in
{a | a ∈ FOLLOW(B), B −→ αA ∈ P, α ∈ V ∗, A 6= B}.

Indeed, if S
+

=⇒ λBaρ, then S
+

=⇒ λBaρ =⇒ λαAaρ, and so,

FOLLOW(B) ⊆ FOLLOW(A)

whenever B −→ αA is in P , with A 6= B.

Hence, the FOLLOW sets are the least solution of the set of recursive equations: For all
nonterminals A,

FOLLOW(A) = INITFOLLOW(A) ∪
⋃
{FOLLOW(B) | B −→ αA ∈ P, α ∈ V ∗, A 6= B}.

According to the method explained above, we just have to compute the INITFOLLOW
sets (using FIRST) and the graph GFOLLOW, which is computed as follows: the nodes
are the nonterminals and there is an edge from A to B (A 6= B) if and only if there is a
production of the form B −→ αA in P , for some α ∈ V ∗. Note the duality between the
construction of the graph GFIRST and the graph GFOLLOW.

Example 8.11. Computation of the FOLLOW sets for the grammar G1 of Example 8.10.

INITFOLLOW(E) = {+, ), $}, INITFOLLOW(T ) = {∗}, INITFOLLOW(F ) = ∅.

The graph GFOLLOW is shown in Figure 8.9. We have

E

T F

Figure 8.9: Graph GFOLLOW for G1.

FOLLOW(E) = INITFOLLOW(E),

FOLLOW(T ) = INITFOLLOW(T ) ∪ INITFOLLOW(E) ∪ INITFOLLOW(F ),

FOLLOW(F ) = INITFOLLOW(F ) ∪ INITFOLLOW(T ) ∪ INITFOLLOW(E),

and so

FOLLOW(E) = {+, ), $}, FOLLOW(T ) = {+, ∗, ), $}, FOLLOW(F ) = {+, ∗, ), $}.
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8.7 Algorithm Traverse

The input is a directed graph Gr having N nodes, and a family of initial sets I[i], 1 ≤ i ≤ N .
We assume that a function successors is available, which returns for each node n in the graph,
the list successors[n] of all immediate successors of n. The output is the list of sets F [i],
1 ≤ i ≤ N , solution of the system of recursive equations of Section 8.5. Hence,

F [i] =
⋃
{I[j] | iG∗j}, 1 ≤ i ≤ N.

The procedure Reachable visits all nodes reachable from a given node. It uses a stack
STACK and a boolean array V ISITED to keep track of which nodes have been visited.
The procedures Reachable and traverse are shown in Figure 8.10.

8.8 More on LR(0)-Characteristic Automata

Let G = (V,Σ, P, S ′) be an augmented context-free grammar with augmented start produc-
tion S ′ −→ S$ (where S ′ only occurs in the augmented production). The righmost derivation
relation is denoted by =⇒

rm
.

Recall that the set CG of characteristic strings for the grammar G is defined by

CG = {αβ ∈ V ∗ | S ′ ∗
=⇒
rm

αAv =⇒
rm

αβv, αβ ∈ V ∗, v ∈ Σ∗}.

The fundamental property of LR-parsing, due to D. Knuth, is stated in the following
theorem:

Theorem 8.1. Let G be a context-free grammar and assume that every nonterminal derives
some terminal string. The language CG (over V ∗) is a regular language. Furthermore, a
deterministic automaton DCG accepting CG can be constructed from G.

The construction ofDCG can be found in various places, including the book on Compilers
by Aho, Sethi and Ullman. We explained this construction in Section 8.1. The proof that the
NFA NCG constructed as indicated in Section 8.1 is correct, i.e., that it accepts precisely CG,
is nontrivial, but not really hard either. This will be the object of a homework assignment!
However, note a subtle point: The construction of NCG is only correct under the assumption
that every nonterminal derives some terminal string. Otherwise, the construction could yield
an NFA NCG accepting strings not in CG.

Recall that the states of the characteristic automaton DCG are sets of items (or marked
productions), where an item is a production with a dot anywhere in its right-hand side.
Note that in constructing DCG, it is not necessary to include the state {S ′ −→ S$.} (the
endmarker $ is only needed to compute the lookahead sets).
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Procedure Reachable(Gr : graph; startnode : node; I : listofsets;

varF : listofsets);

var currentnode, succnode, i : node;STACK : stack;

V ISITED : array[1..N ] of boolean;

begin

for i := 1 to N do

V ISITED[i] := false;

STACK := EMPTY ;

push(STACK, startnode);

while STACK 6= EMPTY do

begin

currentnode := top(STACK); pop(STACK);

V ISITED[currentnode] := true;

for each succnode ∈ successors(currentnode) do

if ¬V ISITED[succnode] then

begin

push(STACK, succnode);

F [startnode] := F [startnode] ∪ I[succnode]

end

end

end

The sets F [i], 1 ≤ i ≤ N , are computed as follows:

begin

for i := 1 to N do

F [i] := I[i];

for startnode := 1 to N do

Reachable(Gr, startnode, I, F )

end

Figure 8.10: Algorithm traverse.
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Definition 8.8. If a state p contains a marked production of the form A −→ β., where the
dot is the rightmost symbol, state p is called a reduce state and A −→ β is called a reducing
production for p. Given any state q, we say that a string β ∈ V ∗ accesses q if there is a path
from some state p to the state q on input β in the automaton DCG.

Given any two states p, q ∈ DCG, for any β ∈ V ∗, if there is a sequence of transitions in
DCG from p to q on input β, this is denoted by

p
β
−→ q.

The LALR(1)-lookahead sets are defined in the next section.

8.9 LALR(1)-Lookahead Sets

From now on we assume that the endmarker $ belongs to Σ and that the augmented start
production is S ′ −→ S$. However, we only parse input strings of the form w$, where $ does
not occur in w. The initial state which is the closure of the item S ′ −→ .S$ is denoted by 1.

Definition 8.9. For any reduce state q and any reducing production A −→ β for q, let

LA(q, A −→ β) = {a | a ∈ Σ, S ′ ∗
=⇒
rm

αAav =⇒
rm

αβav, α, β ∈ V ∗, v ∈ Σ∗, αβ accesses q}.

We also set
LA({S ′ −→ S.$}, S ′ −→ S$) = {$},

where {S ′ −→ S.$} denote the successor s of the start state 1 on input S.

In words, LA(q, A −→ β) consists of the terminal symbols for which the reduction by
production A −→ β in state q is the correct action (that is, for which the parse will terminate
successfully). The LA sets can be computed using the FOLLOW sets defined below.

Definition 8.10. For any state p and any nonterminal A, let

FOLLOW(p, A) = {a | a ∈ Σ, S ′ +
=⇒
rm

αAav, α ∈ V ∗, v ∈ Σ∗ and α accesses p}.

Since any nontrivial rightmost derivation arising in Definition 8.10 is of the form

S ′ ∗
=⇒
rm

α1Bv1 =⇒
rm

α1α2Av2v1 = αAav,

with α1, α2, α ∈ V ∗, v1, v2, v ∈ Σ∗, α = α1α2, av = v2v1, and (B → α2Av2) ∈ P , by con-
struction of DCG, we see that α = α2α1 accesses a state p containing the marked production
B → α2“.”Av2, so there must be a transition from state p on input A. Consequently, the sets
FOLLOW(p, A) are defined only for pairs (p, A) such that there is a transition from state p
on input A.
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Since there is a rightmost derivation

S ′ +
=⇒
rm

αAav =⇒
rm

αβav,

with (A → β) ∈ P and where αβ accesses q, there is a state p such that p
β
−→ q and α

accesses p, so it is easy to see that the following result holds:

Proposition 8.2. For every reduce state q and any reducing production A −→ β for q, we
have

LA(q, A −→ β) =
⋃
{FOLLOW(p, A) | p

β
−→ q}.

Intuitively, when the parser makes the reduction by production A −→ β in state q, each
state p as above is a possible top of stack after the states corresponding to β are popped.
Then the parser must read A in state p, and the next input symbol will be one of the symbols
in FOLLOW(p, A).

The computation of FOLLOW(p, A) is similar to that of FOLLOW(A). First, we compute
INITFOLLOW(p, A), given by

INITFOLLOW(p, A) = {a | a ∈ Σ, ∃q, r, p
A
−→ q

a
−→ r}.

These are the terminals that can be read in DCG after the “goto transition” on nonterminal
A has been performed from p. These sets can be easily computed from DCG.

Observe that
$ ∈ INITFOLLOW(1, S),

although technically there is no transition from the state s containing the items S ′ → S.$
on input $.

Next, observe that if B −→ αA is a production and if

S ′ ∗
=⇒
rm

λBav

where λ accesses p′, then
S ′ ∗

=⇒
rm

λBav =⇒
rm

λαAav

where λ accesses p′ and p′
α
−→ p. Hence λα accesses p and

FOLLOW(p′, B) ⊆ FOLLOW(p, A)

whenever there is a production B −→ αA and p′
α
−→ p.

From this, the following recursive equations are easily obtained.

Proposition 8.3. For all p and all A,

FOLLOW(p, A) = INITFOLLOW(p, A) ∪
⋃
{FOLLOW(p′, B) | B −→ αA ∈ P, α ∈ V ∗ and p′

α
−→ p}.
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From Section 8.5, we know that these sets can be computed by using the algorithm
traverse. All we need is to compute the graph GLA.

The nodes of the graph GLA are the pairs (p, A), where p is a state, A is a nonterminal,
and there is a nonterminal transition on A from p. Such pairs can be obtained from the
parsing table. There is an edge from (p, A) to (p′, B) if and only if there is a production of
the form B −→ αA in P for some α ∈ V ∗ and p′

α
−→ p in DCG.

Also, using the spelling property , that is, the fact that all transitions entering a given
state have the same label, it is possible to compute the relation lookback defined as follows:

(q, A) lookback (p, A) iff p
β
−→ q

for some reduce state q and reducing production A −→ β. The relation lookback is used to
compute

LA(q, A −→ β) =
⋃
{FOLLOW(p, A) | p

β
−→ q}.

Since there are no incoming transitions into the start state 1, transitions from any node
of the form (1, A) can only go to a node of the form (1, B).

The above considerations show that the FOLLOW sets of Section 8.6 are obtained by
ignoring the state component from FOLLOW(p, A).

We now give an example of grammar which is LALR(1) but not SLR(1).

Example 8.12. The grammar G2 is given by:

0 : S ′ −→ S$

1: S −→ L = R

2: S −→ R

3: L −→ ∗R

4: L −→ id

5: R −→ L,

with Σ = {=, ∗, id, $}. The characteristic automaton DCG2 associated with G2 is shown in
Figure 8.11.

The states of the DCG2 are listed below.

1 : S ′ −→ .S$

S −→ .L = R

S −→ .R

L −→ . ∗R

L −→ .id

R −→ .L
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1

2

S’ -->S.$

S

R

4

S --> R.

L

3
=

7

id

*

5

8

R L

L --> *R.

9

L

10

R

R--> L. S--> L = R.

*

id

*
6

L --> id. id

R--> L.

Figure 8.11: The characteristic automaton for G2.

2 : S ′ −→ S.$

3 : S −→ L. = R

R −→ L.

4 : S −→ R.

5 : L −→ ∗.R

R −→ .L

L −→ . ∗R

L −→ .id

6 : L −→ id.

7 : S −→ L = .R

R −→ .L

L −→ . ∗R

L −→ .id

8 : L −→ ∗R.

9 : R −→ L.

10 : S −→ L = R.
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We find that

INITFIRST(S) = ∅

INITFIRST(L) = {∗, id}

INITFIRST(R) = ∅.

The graph GFIRST is shown in Figure 8.12.

S

RL

Figure 8.12: The graph GFIRST.

Then we find that

FIRST(S) = {∗, id}

FIRST(L) = {∗, id}

FIRST(R) = {∗, id}.

We also have

INITFOLLOW(S) = {$}

INITFOLLOW(L) = {=}

INITFOLLOW(R) = ∅.

The graph GFOLLOW is shown in Figure 8.13.

S

RL

Figure 8.13: The graph GFOLLOW.
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Then we find that

FOLLOW(S) = {$}

FOLLOW(L) = {=, $}

FOLLOW(R) = {=, $}.

Note that there is a shift/reduce conflict in state 3 on input =, since there is a shift
on input = (since S −→ L. = R is in state 3), and a reduce for R → L, since = is in
FOLLOW(R). However, as we shall see, the conflict is resolved if the LALR(1) lookahead
sets are computed.

The graph GLA is shown in Figure 8.14. If we look at Figure 8.11, we see that the pairs
(p, A) for which there is a transition from p on input A are:

(1, L), (1, R), (1, S), (5, L), (5, R), (7, L), (7, R).

Let us determine some of the edges. Since there is a production S → L = R and since
state 7 is reached from state 1 on input “L = ”, there is an edge from (7, R) to (1, S) (here
α = “L = ” in B → αA, with B = S and A = R).

Since there is a production R→ L, there is an edge from (7, L) to (7, R) (here α = ǫ in
B → αA, with B = R and A = L).

Since there is a production L→ ∗R and since state 5 is reached from state 1 on input ∗,
there is an edge from (5, R) to (1, L) (here α = ∗ in B → αA, with B = L and A = R).

Since there is a production R→ L, there is an edge from (5, L) to (5, R) (here α = ǫ in
B → αA, with B = R and A = L).

Similarly, the edge from (1, L) to (1, R) arises from the production R→ L and the edge
from (1, R) to (1, S) arises from the production S → R.

We get the following INITFOLLOW and FOLLOW sets:

INITFOLLOW(1, S) = {$} FOLLOW(1, S) = {$}

INITFOLLOW(1, R) = ∅ FOLLOW(1, R) = {$}

INITFOLLOW(1, L) = {=} FOLLOW(1, L) = {=, $}

INITFOLLOW(5, R) = ∅ FOLLOW(5, R) = {=, $}

INITFOLLOW(5, L) = ∅ FOLLOW(5, L) = {=, $}

INITFOLLOW(7, R) = ∅ FOLLOW(7, R) = {$}

INITFOLLOW(7, L) = ∅ FOLLOW(7, L) = {$}.

Recall from Proposition 8.2 that for every reduce state q and any reducing production
A −→ β for q, we have

LA(q, A −→ β) =
⋃
{FOLLOW(p, A) | p

β
−→ q}.
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(1, S)

(1, R)

(1, L)

(5, R)

(5, L)

(7, R)

(7, L)

Figure 8.14: The graph GLA.

By definition, LA(2, S ′ −→ S$) = {$}. Using Figure 8.11, to determine LA(3, R −→ L)
we see that state 3 is entered from state 1 on input L. To determine LA(4, S −→ R), we see
that state 4 is entered from state 1 on input R. To determine LA(6, L −→ id), we see that
state 6 is entered from states 1, 5 and 7 on input id. To determine LA(8, L −→ ∗R), we see
that state 8 is entered from states 1, 5 and 7 on input ∗R. To determine LA(9, R −→ L), we
see that state 9 is entered from states 5 and 7 on input L. To determine LA(10, S −→ L = R),
we see that state 10 is entered from states 1 on input “L = R”.

Thus, we get

LA(2, S ′ −→ S$) = {$}

LA(3, R −→ L) = FOLLOW(1, R) = {$}

LA(4, S −→ R) = FOLLOW(1, S) = {$}

LA(6, L −→ id) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}

LA(8, L −→ ∗R) = FOLLOW(1, L) ∪ FOLLOW(5, L) ∪ FOLLOW(7, L) = {=, $}

LA(9, R −→ L) = FOLLOW(5, R) ∪ FOLLOW(7, R) = {=, $}

LA(10, S −→ L = R) = FOLLOW(1, S) = {$}.

Since LA(3, R −→ L) does not contain =, the conflict is resolved. The parsing tables for
G2 are shown below.
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= ∗ id $ L R S
1 s5 s6 3 4 2
2 acc
3 s7 r5
4 r2
5 s5 s6 9 8
6 r4 r4
7 s5 s6 9 10
8 r3 r3
9 r5 r5
10 r1

We now consider the changes that have to be made when ǫ-rules are allowed.

8.10 Computing FIRST, FOLLOW, etc. in the Presence

of ǫ-Rules

First, it is necessary to compute the set E of erasable nonterminals , that is, the set of

nonterminals A such that A
+

=⇒ ǫ.

We let E be a boolean array and change be a boolean flag. An algorithm for computing
E is shown in Figure 8.15. Then in order to compute FIRST, we compute

INITFIRST(A) = {a | a ∈ Σ, A −→ aα ∈ P, or

A −→ A1 · · ·Akaα ∈ P, for some α ∈ V ∗, and E(A1) = · · · = E(Ak) = true}.

The graph GFIRST is obtained as follows: the nodes are the nonterminals, and there is
an edge from A to B if and only if either there is a production A −→ Bα, or a production
A −→ A1 · · ·AkBα, for some α ∈ V ∗, with E(A1) = · · · = E(Ak) = true. Then we extend
FIRST to strings in V +, in the obvious way.

Given any string β ∈ V +, if |β| = 1, then β = X for some X ∈ V , and

FIRST(β) = FIRST(X)

as before, else if β = X1 · · ·Xn with n ≥ 2 and Xi ∈ V , then

FIRST(β) = FIRST(X1) ∪ · · · ∪ FIRST(Xk+1),

where k, 0 ≤ k ≤ n− 1, is the largest integer so that X1, . . . , Xk are nonterminals and

E(X1) = · · · = E(Xk) = true.
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begin

for each nonterminal A do

E(A) := false;

for each nonterminal A such that A −→ ǫ ∈ P do

E(A) := true;

change := true;

while change do

begin

change := false;

for each A −→ A1 · · ·An ∈ P

s.t. E(A1) = · · · = E(An) = true do

if E(A) = false then

begin

E(A) := true;

change := true

end

end

end

Figure 8.15: Algorithm for computing E.

In particular, if X1 ∈ Σ or E(X1) = false, then FIRST(β) = FIRST(X1).

To compute FOLLOW, we first compute

INITFOLLOW(A) = {a | a ∈ Σ, B −→ αAβ ∈ P, α ∈ V ∗, β ∈ V +, and a ∈ FIRST(β)}.

The graph GFOLLOW is computed as follows: the nodes are the nonterminals. There
is an edge from A to B if either there is a production of the form B −→ αA, or B −→
αAA1 · · ·Ak, for some α ∈ V ∗, and with E(A1) = · · · = E(Ak) = true. Do not forget that
when computing the FOLLOW sets we assume that the start production is S ′ → S$, so that
we automatically have $ ∈ INITFOLLOW(S).

The computation of the LALR(1) lookahead sets is also more complicated because an-
other graph is needed in order to compute INITFOLLOW(p, A).

First, the graph GLA is defined in the following way: the nodes are still the pairs (p, A)
where there is a transition from state p on input A as before but there is an edge from (p, A)
to (p′, B) if and only if either there is some production B −→ αA, for some α ∈ V ∗ and

p′
α
−→ p, or a production B −→ αAβ, for some α ∈ V ∗, β ∈ V +, β

+
=⇒ ǫ, and p′

α
−→ p.
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The sets INITFOLLOW(p, A) are computed in the following way: first, let

DR(p, A) = {a | a ∈ Σ, ∃q, r, p
A
−→ q

a
−→ r}.

The sets DR(p, A) are the direct read sets. Note that for the start 1, we have

$ ∈ DR(1, S).

Then

INITFOLLOW(p, A) = DR(p,A) ∪
⋃
{a | a ∈ Σ, S ′ ∗

=⇒
rm

αAβav =⇒
rm

αAav, α ∈ V ∗, β ∈ V +, β
+

=⇒ ǫ, α accesses p}.

The set INITFOLLOW(p, A) is the set of terminals that can be read before any handle
containing A is reduced.

The graph GREAD is defined as follows. The nodes are the pairs (p, A), and there is an

edge from (p, A) to (r, C) if and only if p
A
−→ r and r

C
−→ s, for some s, with E(C) = true.

Then it is not difficult to show the following result.

Proposition 8.4. The INITFOLLOW sets are the least solution of the set of recursive
equations:

INITFOLLOW(p, A) = DR(p, A) ∪
⋃
{INITFOLLOW(r, C) | (p, A)GREAD (r, C)}.

Hence the INITFOLLOW sets can be computed using the algorithm traverse on the graph
GREAD and the sets DR(p, A), and then, the FOLLOW sets can be computed using traverse
again, with the graph GLA and sets INITFOLLOW. Finally, the sets LA(q, A −→ β) are
computed from the FOLLOW sets using the graph lookback.

Example 8.13. Consider the grammar G3 given by:

0 : S −→ E$

1: E −→ aEb

2: E −→ ǫ.

We leave it as an exercise to construct the LR(0)-characteristic automaton for G3, whose
states are listed bellow.

1 : S −→ .E$

E −→ .aEb

E −→ .
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2 : E −→ a.Eb

E −→ .aEb

E −→ .

3 : E −→ aE.b

4 : E −→ aEb.

5 : S −→ E.$

The characteristic automaton for G3 is shown in Figure 8.16.

1

E --> .

5

E

S --> E.$

2

a

E --> .

a

E
3

b

4

E --> aEb.

Figure 8.16: The characteristic automaton for G3.

The shift and goto entries are recorded in the following table.

a b $ E
1 s2 5
2 s2 3
3 s4
4
5

Since states 1 and 2 are the only states from which there is a nonterminal transition, the
notdes of both graphs GLA and GREAD have nodes (1, E) and (2, E). The transition from
1 on input E goes to 5 and the transition from 2 on input E goes to 3. Since there are no
transitions on E coming out of these states, the graph GREAD has no edges.

There are no productions of the form B → αA or B → αAβ with β
+

=⇒ ǫ, so the graph
GLA has no edges either.

We find that

DR(1, E) = {$}, DR(2, E) = {b},
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since there is a path on input Eb from state 2 to state 4. Since GREAD has no edges, we
obtain

INITIFOLLOW(1, E) = {$}, INITFOLLOW(2, E) = {b},

and since GLA has no edges, we obtain

FOLLOW(1, E) = {$}, FOLLOW(2, E) = {b}.

We have
LA(1, E → ǫ) = {$},

since 2 goes to itself on input ǫ we have

LA(2, E → ǫ) = FOLLOW(2, E) = {b},

and since there is a path on input aEb from both state 1 and state 2 to state 4,

LA(4, E → aEb) = FOLLOW(1, E) ∪ FOLLOW(2, E) = {b, $}.

We obtain the following LALR(1)-table.

a b $ E
1 s2 r2 5
2 s2 r2 3
3 s4
4 r1 r1
5 acc

From Section 8.5, we note that F (i) = F (j) whenever there is a path from i to j and a
path from j to i, that is, whenever i and j are strongly connected . Hence, the solution of
the system of recursive equations can be computed more efficiently by finding the maximal
strongly connected components of the graph G, since F has a same value on each strongly
connected component. This is the approach followed by DeRemer and Pennello in Efficient
Computation of LALR(1) Lookahead sets, by F. DeRemer and T. Pennello, TOPLAS, Vol.
4, No. 4, October 1982, pp. 615-649.

8.11 LR(1)-Characteristic Automata

We conclude this brief survey on LR-parsing by describing the construction of LR(1)-parsers.
The new ingredient is that when we construct an NFA accepting CG, we incorporate looka-
head symbols into the states. Thus, a state is a pair (A −→ α.β, b), where A −→ α.β is a
marked production, as before, and b ∈ Σ ∪ {$} is a lookahead symbol . The new twist in the
construction of the nondeterministic characteristic automaton is the following:

The start state is (S ′ → .S, $), and the transitions are defined as follows:
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(a) For every terminal a ∈ Σ, there is a transition on input a from state (A→ α.aβ, b) to
the state (A→ αa.β, b) obtained by “shifting the dot” (where a = b is possible). Such
a transition is shown in Figure 8.17.

(b) For every nonterminal B ∈ N , there is a transition on inputB from state (A→ α.Bβ, b)
to state (A → αB.β, b) (obtained by “shifting the dot”), and transitions on input ǫ
(the empty string) to all states (B → .γ, a), for all productions B → γ with left-hand
side B and all a ∈ FIRST(βb). Such transitions are shown in Figure 8.18.

(c) A state is final if and only if it is of the form (A → β., b) (that is, the dot is in the
rightmost position).

Example 8.14. Consider the grammar G4 given by:

0 : S −→ E

1: E −→ aEb

2: E −→ ǫ.

The result of making the NFA for CG4
deterministic is shown in Figure 8.19 (where

transitions to the “dead state” have been omitted). Actually, we can bypass the construction
of the NFA and construct the DFA directly using the shifting the dot method and ǫ-closure.
The internal structure of the states 1, . . . , 8 is determined as follows.

(A→ α.aβ, b)

(A→ αa.β, b)

a

Figure 8.17: Transition on terminal input a.
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(A→ α.Bβ, b)

(A→ αB.β, b) (B → .γ, a)

B ǫ ǫ ǫ

Figure 8.18: Transitions from a state (A→ α.Bβ, b).

The first core item is (S → .E, $). We have β = ǫ in A → α.Bβ since the production
involved is S → E, so FIRST(β$) = {$}, and by ǫ-closing we obtain the state

1 : S −→ .E, $

E −→ .aEb, $

E −→ ., $

The successor of state 1 on input a is determined by the core item (E → a.Eb, $). We
have β = b in A → α.Bβ since the production involved is E → aEb, so FIRST(β$) =
FIRST(b$) = {b}, and we obtain the state

2 : E −→ a.Eb, $

E −→ .aEb, b

E −→ ., b

The successor of state 2 on input a is determined by the core item (E → a.Eb, b). We
have β = b in A → α.Bβ since the production involved is E → aEb, so FIRST(βb) =
FIRST(bb) = {b}, and we obtain the state

3 : E −→ a.Eb, b

E −→ .aEb, b

E −→ ., b

The successor of state 2 on input E is determined by the core item (E → aE.b, $). The
ǫ-closure is trivial so we obtain the state

4 : E −→ aE.b, $
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The successor of state 4 on input b is determined by the core item (E → aEb., $). The
ǫ-closure is trivial so we obtain the state

5 : E −→ aEb., $

The successor of state 3 on input E is determined by the core item (E → aE.b, b). The
ǫ-closure is trivial so we obtain the state

6 : E −→ aE.b, b

The successor of state 6 on input b is determined by the core item (E → aEb., b). The
ǫ-closure is trivial so we obtain the state

7 : E −→ aEb., b

The successor of state 1 on input E is determined by the core item (S → E.$., $). The
ǫ-closure is trivial so we obtain the state

8 : S −→ E., $

1 2 3

4

5

6

7

8

   

  

 

a a

E E E

b b

a

Figure 8.19: DFA for CG3
.

The LR(1)-shift/reduce parser associated with DCG is built as follows: the shift and
goto entries come directly from the transitions of DCG, and for every state s, for every item
(A −→ γ, b) in s, enter an entry rn for state s and input b, where A −→ γ is production
number n. If the resulting parser has no conflicts, we say that the grammar is an LR(1)
grammar.

The LR(1)-shift/reduce parser for G3 is shown below. It has no conflicts.
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a b $ E
1 s2 r2 8
2 s3 r2 4
3 s3 r2 6
4 s5
5 r1
6 r1 s7
7 r1
8 acc

Observe that there are three pairs of states, (2, 3), (4, 6), and (5, 7), where both states in
a common pair only differ by the lookahead symbols.

We can merge the states corresponding to each pair, because the marked items are the
same, but now, we have to allow lookahead sets. Thus, the merging of (2, 3) yields

2′ : E −→ a.Eb, {b, $}

E −→ .aEb, {b}

E −→ ., {b},

the merging of (4, 6) yields
3′ : E −→ aE.b, {b, $},

the merging of (5, 7) yields
4′ : E −→ aEb., {b, $}.

We obtain a merged DFA with only five states, and the corresponding shift/reduce parser is
given below:

a b $ E
1 s2′ r2 8
2′ s2′ r2 3′

3′ s4′

4′ r1 r1
8 acc

The reader should verify that this is the LALR(1)-parser obtained in Example 8.13. The
reader should also check that FOLLOW(E) = {b, $} (for the grammar of Example 8.13) and
that the SLR(1)-parser is given below:

a b $ E
1 s2 r2 r2 5
2 s2 r2 r2 3
3 s4
4 r1 r1
5 acc
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The difference between the two parsing tables is that the LALR(1)-lookahead sets are
sharper than the SLR(1)-lookahead sets. This is because the computation of the LALR(1)-
lookahead sets uses a sharper version of FOLLOW sets.

It can also be shown that if a grammar is LALR(1), then the merging of states of an
LR(1)-parser always succeeds and yields the LALR(1) parser. Of course, this is a very
inefficient way of producing LALR(1) parsers, and much better methods exist, such as the
graph method described in these notes. However, there are cases where the merging fails.
Sufficient conditions for successful merging have been investigated, but there is still room
for research in this area.



Chapter 9

Phrase-Structure Grammars and
Context-Sensitive Grammars

9.1 Phrase-Structure Grammars

Context-free grammars can be generalized in various ways. The most general grammars
generate exactly the listable (also known as recursively enumerable) languages.

Between the context-free languages and the listable languages, there is a natural class of
languages, the context-sensitive languages.

The context-sensitive languages also have a Turing-machine characterization. We begin
with phrase-structure gammars.

Definition 9.1. A phrase-structure grammar is a quadruple G = (V,Σ, P, S), where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

The set N = V −Σ is called the set of nonterminal symbols (for short, nonterminals).

• P ⊆ V ∗NV ∗ × V ∗ is a finite set of productions (or rewrite rules, or rules).

Every production 〈α, β〉 is also denoted as α→ β. A production of the form α→ ǫ is called
an epsilon rule or null rule.

Example 9.1. Consider the grammar.

G1 = ({S,A,B, C,D,E, a, b}, {a, b}, P, S),

265
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where P is the set of rules

S −→ ABC,

AB −→ aAD,

AB −→ bAE,

DC −→ BaC,

EC −→ BbC,

Da −→ aD,

Db −→ bD,

Ea −→ aE,

Eb −→ bE,

AB −→ ǫ,

C −→ ǫ,

aB −→ Ba,

bB −→ Bb.

It can be shown that this grammar generates the language

L = {ww | w ∈ {a, b}∗},

which is not context-free. Here is a derivation of abab:

S =⇒ ABC =⇒ aADC =⇒ aABaC =⇒ abAEaC =⇒ abAaEC

=⇒ abAaBbC =⇒ abABabC =⇒ ababC =⇒ abab.

9.2 Derivations and Type-0 Languages

The productions of a grammar are used to derive strings. In this process, the productions
are used as rewrite rules.

Definition 9.2. Given a phrase-structure grammar G = (V,Σ, P, S), the (one-step) deriva-
tion relation =⇒G associated with G is the binary relation =⇒G⊆ V ∗×V ∗ defined as follows:
for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗ and some production (γ → δ) ∈ P (recall that γ ∈ V ∗NV ∗ and
δ ∈ V ∗), such that

α = λγρ and β = λδρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of
=⇒G is denoted as

∗
=⇒G.
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When the grammar G is clear from the context, we ususally omit the subscript G in

=⇒G,
+

=⇒G, and
∗

=⇒G.

The language generated by a phrase-structure grammar is defined as follows.

Definition 9.3. Given a phrase-structure grammar G = (V,Σ, P, S), the language generated
by G is the set

L(G) = {w ∈ Σ∗ | S
+

=⇒ w}.

A language L ⊆ Σ∗ is a type-0 language iff L = L(G) for some phrase-structure grammar G.

The following proposition can be shown.

Proposition 9.1. A language L is listable (recursively enumerable) iff it generated by some
phrase-structure grammar G.

In one direction, we can construct a nondeterministic Turing machine simulating the
derivations of the grammar G. In the other direction, we construct a grammar simulating
the computations of a Turing machine.

We now consider some variants of the phrase-structure

9.3 Type-0 Grammars, Context-Sensitive Grammars,

Monotonic Grammars

We begin with type-0 grammars. At first glance, it may appear that they are more restrictive
than phrase-structure grammars, but this is not so.

Definition 9.4. A type-0 grammar is a phrase-structure grammar G = (V,Σ, P, S), such
that the productions are of the form

α→ β,

where α ∈ N+. A production of the form α→ ǫ is called an epsilon rule or null rule.

Proposition 9.2. A language L is generated by a phrase-structure grammar iff it is generated
by some type-0 grammar.

To prove Proposition 9.2 we use the trick of replacing every terminal a occurring in the
left-hand side of a production α → β by a new nonterminal Xa and adding the production
Xa → a.

We now place additional restrictions on productions, obtaining context-sensitive gram-
mars.
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Definition 9.5. A context-sensitive grammar (for short, csg) is a phrase-structure grammar
G = (V,Σ, P, S), such that the productions are of the form

αAβ → αγβ,

with A ∈ N , γ ∈ V +, α, β ∈ V ∗, or
S → ǫ,

and if S → ǫ ∈ P , then S does not appear on the right-hand side of any production.

The reason why a production αAβ → αγβ is called context-sensitive is that it consists
of a context-free production A→ γ together with some context α β, so that the rule A→ γ
can only be applied to a string if this string contains not only A but the whole string αAβ
as a substring. We can think of the rule A→ γ as being applicable only if A occurs in the
context α β.

The notion of derivation is defined as before. A language L is context-sensitive iff it is
generated by some context-sensitive grammar.

We can also define monotonic grammars.

Definition 9.6. A monotonic grammar is a phrase-structure grammar G = (V,Σ, P, S),
such that the productions are of the form

α→ β

with α, β ∈ V + and |α| ≤ |β|, or
S → ǫ,

and if S → ǫ ∈ P , then S does not appear on the right-hand side of any production.

Example 9.2. Consider the monotonic grammar

G2 = ({S,A,B, C, a, b, c}, {a, b, c}, P, S),

where P is the set of rules

S −→ ABC,

S −→ ABCS,

AB −→ BA,

AC −→ CA,

BC −→ CB,

BA −→ AB,

CA −→ AC,

CB −→ BC,

A −→ a,

B −→ b,

C −→ c.
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It can be shown that this grammar generates the language

L = {w ∈ {a, b, c}+ | #(a) = #(b) = #(c)},

which is not context-free Here is derivation of acbbac:

S =⇒ ABCS =⇒ ABCABC =⇒ ACBABC =⇒ ACBBAC =⇒ aCBBAC

=⇒ acBBAC =⇒ acbBAC =⇒ acbbAC =⇒ acbbaC =⇒ acbbac.

By definition, a context-sensitive grammar is automatically a monotonic grammar since
a context-sensitive production is of the form αAβ → αγβ with γ 6= ǫ, so |αAβ| ≤ |αγβ|.
Conversely, a monotonic grammar can be converted to a context-sensitive grammar as shown
below.

Proposition 9.3. A language L is generated by a context-sensitive grammar iff it is gener-
ated by some monotonic grammar.

Proposition 9.3 is proved as follows:

Proof sketch.

Step 1 . Construct a new monotonic grammar G1 such that the rules are of the form

α→ β,

with |α| ≤ |β| and α ∈ N+, or S → ǫ, where S does not appear on the left-hand side of any
rule.

This can be achieved by replacing every terminal a occurring on the left hand-side of a
rule by a new nonterminal Xa and adding the rule

Xa → a.

Step 2 . Given a rule α→ β, let

w(G1) = max{|β| | α→ β ∈ G1}.

Construct a new monotonic grammar G2 such that the rules α→ β satisfy the conditions:

(1) α ∈ N+

(2) w(G2) ≤ 2.
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Given a rule
π : A1 · · ·Am → B1 · · ·Bn,

with m ≤ n,

if n ≤ 2, OK;

if 2 ≤ m < n, create the two rules

A1 · · ·Am → B1 · · ·Bm−1Xπ, (1)

Xπ → Bm · · ·Bn. (2)

Next we process productions of type (2) as follows. If m = 1 and n ≥ 3, create the n− 1
rules:

A1 → B1Xπ,1,

Xπ,1 → B2Xπ,2,

· · · → · · · ,

Xπ,n−2 → Bn−1Bn.

We also process productions of type (1) as follows. If m = n and n ≥ 3, create the n− 1
rules:

A1A2 → B1Xπ,1,

Xπ,1A3 → B2Xπ,2,

· · · → · · · ,

Xπ,n−2An → Bn−1Bn.

In all cases, w(G2) is reduced.

Step 3 . Create a context-sensitive grammar from G2 as follows:

If A→ β, OK.

If AB → CD and A = C or D = B, OK.

If π : AB → CD, where A 6= C and D 6= B, create the four rules

AB → [π,A]B,

[π,A]B → [π,A][π,B],

[π,A][π,B]→ C[π,B],

C[π,B]→ CD.

This concludes the proof.

Context-sensitive languages are computable (recursive). This is shown as follows.
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Definition 9.7. For any n ≥ 1 define the sequence of sets W n
i ⊆ V +, as follows:

W n
0 = {S},

W n
i+1 =W n

i ∪ {β ∈ V
+ | α =⇒ β, α ∈ W n

i , |β| ≤ n}.

It is clear that
W n

0 ⊆W n
1 ⊆ · · · ⊆W n

i ⊆W n
i+1 ⊆ · · · ,

and if |V | = K, since V i contains Ki strings and since

W n
i ⊆

n⋃

j=1

V j,

every W n
i contains at most K +K2 + · · ·+Kn strings, and by the familiar argument, there

is some smallest i, say i0, such that

W n
i0
= W n

i0+1,

and W n
j = W n

i0
for all j > i0.

The following proposition holds.

Proposition 9.4. Given a context-sensitive grammar G, for every n ≥ 1, for every i ≥ 0,

W n
i = {β ∈ V + | S

k
=⇒ β, k ≤ i, |β| ≤ n}.

Furthermore, there is some smallest i, say i0 such that

W n
i0
= {β ∈ V + | S

∗
=⇒ β, |β| ≤ n}.

Proof sketch. By definition of W n
i , it is obvious that

W n
i ⊆ {β ∈ V

+ | S
k

=⇒ β, k ≤ i, |β| ≤ n}.

Conversely, to show that

{β ∈ V + | S
k

=⇒ β, k ≤ i, |β| ≤ n} ⊆W n
i ,

we proceed by induction on i.

The claim is trivial for i = 0. Given a derivation

S
k

=⇒ δ =⇒ β, k ≤ i, |β| ≤ n,

we must have |δ| ≤ n, since otherwise, because the grammar is context-sensitive, we must
have |δ| ≤ |β|, and we would have |β| > n, a contradiction.
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By the induction hypothesis, we get δ ∈ W n
i , and by the definition of W n

i+1, we have
β ∈ W n

i+1.

For the second part of the proposition, if |β| = n with n ≥ 1, there is some k ≥ 0 such

that S
k

=⇒ β.

But then, β ∈ W n
k , which implies that β ∈ W n

i0
, since

W n
0 ⊆W n

1 ⊆ · · · ⊆W n
i0
,

and W n
j = W n

i0
for all j > i0.

As a corollary of Proposition 9.4 we have the following result.

Proposition 9.5. Given a context-sensitive grammar G, for any β ∈ V ∗, it is decidable
whether S

∗
=⇒ β. Thus L(G) is computable (recursive).

Proof. Indeed, if β = ǫ, we must have the production S −→ ǫ.

Otherwise, if |β| = n with n ≥ 1, by Proposition 9.4, we have β ∈ W n
i0
. Thus, is is enough

to compute W n
i0
, which is finite, and to test whether β is in it.

Remark: If the grammar G is not context-sensitive, we can’t claim that

W n
i = {β ∈ V + | S

k
=⇒ β, k ≤ i, |β| ≤ n},

but the other facts remain true. Unfortunately, W n
i0
may not be computable any more!

The context-sensitive languages are accepted by space-bounded Turing machines, defined
as follows.

Definition 9.8. A linear-bounded automaton (for short, lba) is a nondeterministic Turing
machine such that for every input w ∈ Σ∗, there is some accepting computation in which
the tape contains at most |w|+ 1 symbols.

Proposition 9.6. A language L is generated by a context-sensitive grammar iff it is accepted
by a linear-bounded automaton.

The class of context-sensitive languages is very large. The main problem is that no
practical methods for constructing parsers from csg’s are known.
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