
CIS 194: Homework 1
Due Friday, September 5

When solving the homework, strive to create not just code that
works, but code that is stylish and concise. See the style guide on
the website for some general guidelines. Try to write small functions
which perform just a single task, and then combine those smaller
pieces to create more complex functions. Don’t repeat yourself: write
one function for each logical task, and reuse functions as necessary.

Be sure to write functions with exactly the specified name and
type signature for each exercise (to help us test your code). You may
create additional helper functions with whatever names and type
signatures you wish.

You are allowed to use functions in the Data.List standard library.
You can find a list of these functions at http://hackage.haskell.
org/package/base-4.7.0.1/docs/Data-List.html.

Administrivia

• Sign up on Piazza at http://piazza.com/upenn/fall2014/cis194.
We will be using Piazza for Q&A and online discussions.

• Fill out the “Student Survey” on Canvas. It’s listed as a quiz on
that site.

Setup

To aid you in this first assignment, we have provided a skeleton
HW01.hs. Download the file (available from the Lectures page on
the course website) and make sure you can load it into GHCi. If you
can’t get this working, seek help! (Piazza is a good place to start.)

Validating Credit Card Numbers1

Have you ever wondered how websites validate your credit card
number when you shop online? They don’t check a massive database
of numbers, and they don’t use magic. In fact, most credit providers
rely on a checksum formula for distinguishing valid numbers from
random collections of digits (or typing mistakes).

1Adapted from the first practicum assigned in the University of Utrecht functional
programming course taught by Doaitse Swierstra, 2008-2009.

http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
http://hackage.haskell.org/package/base-4.7.0.1/docs/Data-List.html
http://piazza.com/upenn/fall2014/cis194
https://canvas.upenn.edu
http://www.cis.upenn.edu/~cis194/lectures.html
http://piazza.com/upenn/fall2014/cis194/home


cis 194: homework 1 2

In this section, you will implement the validation algorithm for
credit cards. It follows these steps:

• Double the value of every second digit beginning from the right.
That is, the last digit is unchanged; the second-to-last digit is dou-
bled; the third-to-last digit is unchanged; and so on. For example,
[1,3,8,6] becomes [2,3,16,6].

• Add the digits of the doubled values and the undoubled dig-
its from the original number. For example, [2,3,16,6] becomes
2+3+1+6+6 = 18.

• Calculate the remainder when the sum is divided by 10. For the
above example, the remainder would be 8.

If the result equals 0, then the number is valid.

Exercise 1 We first need to be able to break up a number into its last
digit and the rest of the number. Write these functions:

lastDigit :: Integer -> Integer

dropLastDigit :: Integer -> Integer

If you’re stumped, look through some of the arithmetic operators
mentioned in the lecture.

Example: lastDigit 123 == 3

Example: lastDigit 0 == 0

Example: dropLastDigit 123 == 12

Example: dropLastDigit 5 == 0

Exercise 2 Now, we can break apart a number into its digits. Define
the function

toDigits :: Integer -> [Integer]



cis 194: homework 1 3

toDigits should convert positive Integers to a list of digits. (For 0 or
negative inputs, toDigits should return the empty list.)

Example: toDigits 1234 == [1,2,3,4]

Example: toDigits 0 == []

Example: toDigits (-17) == []

Exercise 3 Once we have the digits in the proper order, we need to
double every other one. Define a function

doubleEveryOther :: [Integer] -> [Integer]

Remember that doubleEveryOther should double every other num-
ber beginning from the right, that is, the second-to-last, fourth-to-last,
. . . numbers are doubled.

Note that it’s much easier to perform this operation on a list of
digits that’s in reverse order. You will likely need helper functions to
make this work.

Example: doubleEveryOther [8,7,6,5] == [16,7,12,5]

Example: doubleEveryOther [1,2,3] == [1,4,3]

Exercise 4 The output of doubleEveryOther has a mix of one-digit
and two-digit numbers. Define the function

sumDigits :: [Integer] -> Integer

to calculate the sum of all digits.

Example: sumDigits [16,7,12,5] = 1 + 6 + 7 + 1 + 2 + 5 = 22

Exercise 5 Define the function

validate :: Integer -> Bool

that indicates whether an Integer could be a valid credit card num-
ber. This will use all functions defined in the previous exercises.

Example: validate 4012888888881881 = True

Example: validate 4012888888881882 = False



cis 194: homework 1 4

The Towers of Hanoi2

Exercise 6 The Towers of Hanoi is a classic puzzle with a solution
that can be described recursively. Disks of different sizes are stacked
on three pegs; the goal is to get from a starting configuration with
all disks stacked on the first peg to an ending configuration with all
disks stacked on the last peg, as shown in Figure 1.

⇓

Figure 1: The Towers of Hanoi

The only rules are

• you may only move one disk at a time, and

• a larger disk may never be stacked on top of a smaller one.

For example, as the first move all you can do is move the topmost,
smallest disk onto a different peg, since only one disk may be moved
at a time.

Figure 2: A valid first move.From this point, it is illegal to move to the configuration shown in
Figure 3, because you are not allowed to put the green disk on top of
the smaller blue one.

Figure 3: An illegal configuration.

To move n discs (stacked in increasing size) from peg a to peg b
using peg c as temporary storage,

1. move n− 1 discs from a to c using b as temporary storage

2. move the top disc from a to b

3. move n− 1 discs from c to b using a as temporary storage.

For this exercise, define a function hanoi with the following type:

type Peg = String

type Move = (Peg, Peg)

hanoi :: Integer -> Peg -> Peg -> Peg -> [Move]

2Adapted from an assignment given in UPenn CIS 552, taught by Benjamin Pierce



cis 194: homework 1 5

Given the number of discs and names for the three pegs, hanoi
should return a list of moves to be performed to move the stack of
discs from the first peg to the second.

Note that a type declaration, like type Peg = String above, makes
a type synonym. In this case Peg is declared as a synonym for String,
and the two names Peg and String can now be used interchangeably.
Giving more descriptive names to types in this way can be used to
give shorter names to complicated types, or (as here) simply to help
with documentation.

Example: hanoi 2 "a" "b" "c" == [("a","c"), ("a","b"), ("c","b")]

Exercise 7 (Optional) What if there are four pegs instead of three?
That is, the goal is still to move a stack of discs from the first peg to
the last peg, without ever placing a larger disc on top of a smaller
one, but now there are two extra pegs that can be used as “tempo-
rary” storage instead of only one. Write a function similar to hanoi

which solves this problem in as few moves as possible.
It should be possible to do it in far fewer moves than with three

pegs. For example, with three pegs it takes 215 − 1 = 32767 moves
to transfer 15 discs. With four pegs it can be done in 129 moves. (See
Exercise 1.17 in Graham, Knuth, and Patashnik, Concrete Mathematics,
second ed., Addison-Wesley, 1994.)

Note: This exercise is purely for fun – no credit is associated with
it. But it is fun!


	Administrivia
	Setup
	Validating Credit Card NumbersAdapted from the first practicum assigned in the University of Utrecht functional programming course taught by Doaitse Swierstra, 2008-2009.
	The Towers of HanoiAdapted from an assignment given in UPenn CIS 552, taught by Benjamin Pierce

