L

Lecture 9:
- More Constraint
Programmmg

aaaaaaaaa

mailto:ilal@seas.upenn.edu

Logistics

HW4 due Wednesday 4/2

Get it out of the way so you can work on the project
Will be graded manually (lenient)

Project proposals - feedback to be released soon
Refer back to the feedback periodically while working

Project checkpoint due 4/10
Aim for ~75% completion

Recap: Constraint Programs

Find an assignment of variables to values, subject
to general constraints

Discrete, finitely bounded domains (integers only)
May or may not optimize an objective

The “if..then..."”
COMMndraummement logic along the lines of;

‘If x condition holds, then y must hold’
.e. we want a constraint to be tied to a variable / other constraint

The “if..then..."
COMMWHMpLement logic along the lines of;

‘If x condition holds, then y must hold’

The “if..then..."”
COMMWHMpLement logic along the lines of;

‘If x condition holds, then y must hold’

| / e Ifi =0,then0<= 5§, <= 400

o |f =1, then 400 <= 61 <= 400

The “if..then..."”
COMMndraummement logic along the lines of;

‘If x condition holds, then y must hold’

40

| / e Ifi =0,then0<=5, <=400

o Ifi =1,then400<=§, <= 400

ey 400 < 8y < 400

The “if..then..."
COMMWHMpLement logic along the lines of;

‘If x condition holds, then y must hold’

With Constraint Programming, our constraints arent just
linear inequalities, so we need a more general way of
handling this!

Constraints for BoolVars

Recall model .NewBoolVar (name)
Equivalent to model .NewIntVar (0, 1, name)

boolvar.Not ()

model .AddBoolOr (boolvars list)
model . AddBoolAnd (boolvars list)
model .AddImplication (bl, b2)

Ex: Magic Sequence

* A magic sequence is a sequence s, 4, ..., S, Where
s; = number of occurrences of i in the sequence

e EX

Ex: Magic Sequence

A magic sequence is a sequence s, sy, ..., S, Where
s; = number of occurrences of i in the sequence

...

Ex: Magic Sequence

A magic sequence is a sequence sy, Sy, ..., S, Where
s; = humber of occurrences of i in the sequence

PROBLEM: Given n, does there exist a magic sequence s, s, ..
s, and if so, what is it?

Ex: Magic Sequence

A magic sequence is a sequence sy, Sy, ..., S, Where
s; = humber of occurrences of i in the sequence

Step 1: Define the variables

Each S, will be a variable.

Ex: Magic Sequence

A magic sequence is a sequence sy, Sy, ..., S, Where
s; = humber of occurrences of i in the sequence

Step 2: Define the values for the variables

The minimum s, can be is 0, the maximum is (n+1)

Ex: Magic Sequence

A magic sequence is a sequence sy, Sy, ..., S, Where
s; = humber of occurrences of i in the sequence

Step 3: Define the constraints for the problem.

S. = # of occurrences of i amongst s , .., s

“If the value i appears j times, then s, = j”

Reification

o Allows us to express “if-then” relationships as constraints
o EX If xis equalto 5, then y must be greater than 7"

e Reification: the process of linking a logical condition to a
boolean variable

e Introduce a new boolean (0/1) variable b which is
true if and only if constraint ¢ holds (b & ¢)

Essentially, name truth value of ¢ with variable b

Reification

"If x Is equal to 5, then y must be greater than 7°
Step 1: Introduce a boolean variable which will indicate whether x = 5

is_x_five = model.NewBoolVar("is_x_five")

Step 2: Tie the boolean indicator with the condition x = 5
T ==0) &> isx five=1

model.Add(x == 5).0OnlyEnforcelf (is_x_five)
model.Add(x != 5).0OnlyEnforcelf (is_x_five.Not())

Step 3: Add further constraints with respect to the indicator:

model.add(y > 7).0OnlyEnforcelf(is_x_five)

Reification in OR-Tools

OR-Tools API uses half-reification: instead of b © c,
just supports b = ¢

Can fully reify by combiningb = candb = ¢

constraint.OnlyEnforcelf (bool var)
Meansbool var = constraint

)\, Reification Warning

constraint.OnlyEnforceIf only works for these constraints:
Add
AddBoolOr
AddBoolAnd
AddLinearExpressionInDomain (havent seen this one yet)

This is usually all you need

Magic Sequence in OR-Tools

Initialize model and s; variables

model = cp model.CpModel()

S =1}
for i in range(n+l):
S[i] = model.NewIntVar(@, n+l, f's_{i}")

—

Magic Sequence in OR-Tools

Reify constraints s; = j into new boolean variables

eq = {}

for 1 in range(n+1):

for j in range(n+1l):
eq[i, j] = model.NewBoolVar(f's {i} == {j}")
model.Add(S[1] == j).OnlyEnforceIf(eq[i, j])
model.Add(S[1] != j).OnlyEnforceIf(eq[i, j].Not())

Magic Sequence in OR-Tools

Make s; equal to number of occurrences of i

for 1 in range(n+l):
model.Add(
S[i] == sum(eq[j, 1] for j in range(n+l))

)

Magic Sequence in OR-Tools

Solve and print the output

solver = cp_model.CpSolver()
if solver.Solve(model) == cp model.FEASIBLE:

print([f's_{i}={solver.Value(S[i])}' for 1 in range(n+1l)])

Non-contiguous Domains

cp_model .Domain.FromValues ([0,2,4,6,8])

0

1

2

3

4

5

6

7

8

cp_model .Domain.FromIntervals ([0, 2],[6, 8])

0

1

2

3

4

5

6

7

8

model .NewIntVarFromDomain (domain,

name)

Linear Expressions on
qu@iﬂt%sult of a linear expression must fall into a domain

cp_model .AddLinearExpressionInDomain (
X + vy,

cp_model .Domain.FromValues ([0,2,4])

0,0 (1,0|2,0|3,0]4,0
0,11,1(2,1[3,1]4,1

’ ’ ’ 4 4

14 1/ 4 4 4

Ex: Shipping Allotments

Shipping company has n ships with capacity 100 each
Want to load all shipments of varying sizes onto ships

Goal: maximize number of ships which have at least 20
capacity unused (in case of emergency)

See worked solution in additional code (ships.py)

0/100Kkg 0/100kg

100/100 100/100

s B

Solving the Problem

Step 1. Define the variables

N, .= Number of boxes of size k on ship s

Solving the Problem

Step 2: Define the values for the variables

- number of shipments of size k on ship s

nk,s>=O

N, . <= # of size k boxes we have

Solving the Problem

Step 3: Define the constraints

n, (= humber of shipments of size k on ship s

e FEach boxis on exactly one ship

For each “box” k , E Nk ship i == county

1

e We do not exceed the capacity of a ship

For each ship s, Z k-ng s < capacity
k

Solving the Problem

Step 4. Include Objective

e Maximize thelnumber of ships with 20 free capacity

count_cap

For each ship, if it has 20 free capacity, then it contributes to count_cap

Reification!
(go to code)

Tuning the CP-SAT Solver

We can play around with CP-SAT internals to

possibly speed up the search

There are tons of parameters that can be adjusted
Some are documented better than others..

https://qgithub.com/google/or-tools/blob/stable/ortool
s/sat/sat_parameters.proto

Warning: these things are generally far less
important than having a good encoding

https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto
https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

Parallelization

We can run solver computation in parallel across
multiple threads

solver = cp_model.CpSolver()

solver.parameters.num_search_workers =

By default, CP-SAT will try to use all available cores

Hinting

We can give the model a hint to try setting a
variable to a specified value

model.AddHint(x, 5)

Quick & Dirty Optimization

Finding an optimal solution can take far longer than
finding a feasible solution
Often in practice, we dont really care about having the
true optimal value with total certainty

Just want it to be “close enough”

Quick & Dirty Optimization

Solution:

Optimize objective and run solver for a reasonable amount of
time (depends on your patience)

Interrupt early with Ctrl+C ormax_time in seconds param
If interrupted, solver returns FEASIBLE instead of OPTIMAL
Print the intermediate objective value and solution and
decide if it's "good enough”
For tough problems, no guarantee that you are close to optimal!

best boundin response stats gives best LB (when minimizing)
or UB (when maximizing) proved so far for optimal value

Quick & Dirty Optimization

Helpful set log search progress param to True
Prints every time a new best solution is found

Sometimes helpful: custom solution callback
Called each time any new feasible solution is found

ass BestSolutionFinder(cp_model.CpSolverSolutionCallback): solver = cp_model.CpSolver()
solver.parameters.num_search_workers

def __init_ (self, minimizing=True): solver.parameters.log_search_progress = True
cp_model.CpSolverSolutionCallback.__init__ (self)
self.minimizing = minimizing best = BestSolutionFinder()
self.best_value = (1 if minimizing else -1) * float('inf"') solver.SolveWithSolutionCallback(model, best)

lef on_solution_callback(self):
obj = self.ObjectiveValue()
inimizing and obj < self.best_value) \
elf.minimizing and obj > self.best_value):

: best_value = se¢ bjectivevalue()
print(f'New best value: {self.best_value}')

Approximating Feasibility
What if non-optimization problem is too hard to solve?

Cant interrupt early for a "good enough” solution;
intermediate solution is feasible or it is not

What if we were OK with a "not quite feasible” solution?
What could “not quite feasible” mean?

Soft Constraints

Constraints like Add (. . .) are hard constraints
Must be satisfied

Soft constraints: can be violated, but incurs a penalty

Transform feasibility problem into optimization problem by
minimizing penalty
Allows interrupting early if youre OK with some violated constraints
Can sometimes be faster than solving with hard constraints!

Ex: Soft Graph Coloring

Hard constraint:
for every edge (u, v), color(u) # color(v)

Soft constraint
penalty = num. edges (u, v) with color(u) = color(v)

Can count number of violated constraints using reification

Optimizing Pairs of
Objleﬁtjm& to add soft constraint with penalty p but

problem already optimizes (say, minimizes) objective o0?
Key idea: why not minimize both?
Attempt 1. minimize o + p

Problem: o and p may be interrelated

E.g.. minimum possible value of o may be lower when
p =1than whenp =0 |

()

Optimizing Pairs of
Obj%tiMQSoid interdependence by minimizing p first

and using o to break ties
Aka, minimize (p, o) over the lexicographic ordering

How to make sure that p is minimized before o?
Attempt 2:

minimize Mp + o, where M = 0,4 — Omin + 1
Can generalize to maximization

General CP-SAT Modeling

Tlpﬁt be afraid to add new variables/constraints, but be
aware of roughly how many you have (0(n)? 0(n3)?)

» Tryto restrict range of values for each variable
Use boolean variables/constraints when possible
Experiment with hard vs. soft constraints
If possible, split into subproblems, then combine solutions
Make it easy to toggle constraints on/off for debugging

MIP vs CP-SAT

MIP

CP-SAT

Supports infinite bounds

Supports fractional variables and
coefficients

Better handles LP-style problems
(with integers mixed in)

Reification of constraints is possible,
but requires algebraic modeling trick

Better handles combinatorial
problems, Booleans

More sophisticated interface

Lots of specialized modeling objects
Modeling may be easier

Models may be more extensible
Reification is easier, more performant

Neither is clearly more performant in general

Neither is an evolution of the other

