%€ X ¢ CIS1921 AR

Lecture 7:

Concluding Mixed-Integer
Programming

Reminders

HW3 release tonight or tomorrow depending on
how I'm feeling

HW3 due March 18
Next class
Following week spring break

Week after that - super special lecture.

CPU Job Assignment
Prﬂb&@(ﬂ%obs that must be completed

There are m CPUs available to do the jobs
Each CPU can do at most one job, hence m >=n

There is a cost associated with running a particular
Job on a particular CPU

How to assign jobs to CPUs, minimizing total cost?

Variables

1 if CPU c gets job j

Le,j =
0 else

for ¢ in range(num_cpus):
for j in range(num_jobs):

x[c, j] = model.IntVar(@, 1, f'cpu {c} gets job {j}')

Constraint

e FEach CPU gets at most 1job

For each CPU c, Z Tei <1

j€jobs

for ¢ in range(num_cpus):
model.Add|(

sum(x[c, j] for j in range(num_jobs)) <= w

)

Constraint

e FEach Job gets exactly one CPU

For a job j*, over all CPUs, exactly one of x., j«,Zc, j*, ..., Tc, j+ €quals 1

for j in range(num_jobs):
mode 1. Add (

sum(x[c, j] for ¢ in range(num_cpus))

How do MIP solvers work? ||||

e Most fundamental technique: branch and bound

Chess engines work using branch and bound too (“alpha-beta pruning”)

e Forsimplicity, let's assume that all integer
variables have lower and upper bounds

Ib(x) < x < ub(x)

Naive Branching illa

e Wantto solve MIP P where integer variables are bounded
e What's a first step for tree traversal of the search space?
o ldea: split the domain of a variable in half

Generates subproblems which can be solved recursively

e Pick whichever subproblem has the higher objective value,
and discard infeasible solutions

Naive Branching
(Pseudocode)

find the optimal objective value for P

naive (P) :

if 1b = ub for all vars:

if P violates a constraint:

return INFEASIBLE (-inf)

return objective value (P)
let x be a variable with 1lb(x) < ub(x)
let m = |(1b(x) + ub(x)) / 2]
return max{naive (P|x < m), naive(P|x = m)}

How bad is Naive Branching?

Does naive branching even terminate?

Only for pure integer programs!

Which assignments does the algorithm discard or visit?
Need to evaluate both branches -- visits all feasible solutions!

Basically the same as brute force

Runtime scales with size of search space

Recall: LP Relaxation ||||

e ForaMIP P, we get its LP relaxation LP(P) by allowing all
variables to be fractional

Can't just round LP solution

» Key observation: the LP solution \"w - max 5x + 8y
Is always at least as good as the
MIP solution (by objective value) \
—4 X
e Corollary:if all integer vars take R(2:25) 4 8(3.75) = 41.25
integer values in optimal solution |)
to LP(P), thenitis also optimal - i \\ |
solutionto P Y

11

Adding Inference s

e Idea: since LP is polytime-solvable, use LP solver as inference engine!

® Instead of recursing until all variables have one value, solve LP(P) and
check whether all integer variables have integer values

® Branch on integer variable x whose value v is fractional in LP(P)
Create subproblems x < |v] and x = [v]

12

Pruning Fruitless Nodes

Idea: discard partial solutions that will never yield a better objective
value than one we've already found

- Ifweve seen a MIP solution with a better
objective value than LP(P), discard P since
any integer solution can only be worse

Branch & Bound

First version developed by Ailsa Land and Alison Harcourt in 1960
Combines branching of solution space with bounds-based pruning

B&B is an algorithm paradigm: a "'meta-algorithm” that can be used to
design algorithms for many different optimization algorithms

Branch & Bound

find the optimal objective value for P

best seen is the best objective value so far

branch and bound (P, best _seen = -inf):

let LP_soln = solve LP(LP(P))

if LP_soln = INFEASIBLE: return INFEASIBLE

if objective value(LP_soln) < best_seen:

return -inf

let objl = branch_and bound(P|x < |v]|, best_seen)
set best_seen = max{objl, best_seen}

let obj2 = branch_and bound(P|x > [v], best_seen)
return max{objl, obj2}

Example: Branch & Bound

max
s.t.

f(x,y) = 5x + 8y
S5x +9y <45
1ix+12y <7
x,y € [0..100]

£(2.31,3.72)
= 41.28

Example: Branch & Bound alls

max f(x,y) = 5x + 8y f(%sl,lsé?)
st. S5x + 9y <45 ‘V :
1.1x - 12y < 7 £(2,3.889)
x,y € [0..100] = 4till

Example: Branch & Bound

max f(x,y) = 5x+ 8y f(igifézgz)
st. S5x + 9y < 45 ‘V :
1.1x + 12y <7 £(2,3.889)
x,y € [0..100] = 4till
y<3

f(2,3)
=34

Example: Branch & Bound

max f(x,y) = 5x+ 8y f(igifézgz)
st. S5x + 9y < 45 ‘V :
1.1x + 12y <7 £(2,3.889)
= 41111
x,y € [0..100] < .

M £(2.3) £(18,4)

=34 = 41

Example: Branch & Bound

max f(x,y) = 5x+ 8y f(%gzlt'fé?)
st 5x + 9y <45 ‘V
1.1x + 12y <7 £(2,3.889)
= 41111
x,y € [0..100] < .
h 1(2,3) £(184)
=34 = 41
f(1,4.444)
= 40.555

Example: Branch & Bound

max f(x,y) = 5x + 8y f(§3£11,13é782)
st 5x + 9y <45 ‘V
1.1x + 12y < 7 (2, 3.889)
= 41111
x,y € [0..100] s .
£(2.3) £(1.8,4)
=34 = 41
(1, 4.444)
= 40.555
——
f(L,4)

Example: Branch & Bound

max f(x,y) = 5x+ 8y
s.t. S5x +9y <45
11x+12y <7

x,y € [0..100]

f(2.31,3.72)
= 41.28
f(2,3.889)
= 41.111
y<3 y=4
f(2,3) f(1.8,4)
=34 = 41
f(1,4.444)
= 40.555
f(1,4) £(0,5)
=37 =40

Example: Branch & Bound

max
st

f(x,y) = 5x +8y
5x + 9y <45
1lix+12y <7
x,y € [0..100]

£(2.31,3.72)
= 41.28

y

f(2,3.889)
= 41.111

y =4

£(1.8,4)
= 41

x<1 X =2

f(1,4.444)
= 40.555

Example: Branch & Bound

max f(x,y) = 5x+ 8y f(%3z11'13é732)
st 5x + 9y < 45 x<2 x>3
1.ix+ 12y <7 £(2,3.889) £(3,3.083)
x,y € [0..100] = 41.111 = 39.666
' N y<3 y=4
£(2,3) f(18,4)
=34 = 41
x<1
£(1,4.444)
= 40.555
y\yzi
f(1,4) £(0,5)
=37 =40

Example: Branch & Bound

max f(x,y) = 5x+ 8y f(%3z11'13é732)
st 5x + 9y < 45 x<2 x>3
1.ix+ 12y <7 £(2,3.889) £(3,3.083)
= 41.111 = 39.666
x,y € [0..100] e a4 .
f(2.3) £(18,4) %
=34 = 41
x<1
£(1,4.444)
= 40.555
y\yzi
f(1,4) £(0,5)
=37 =40

Iterative Branch & Bound

find the optimal objective value for F,
branch_and bound(F)) :
let best _seen = -inf
let subproblems to visit = {Fj}
while to_visit is nonempty:
let P = subproblems to visit.pop()
let LP soln = solve LP(LP(P))
i B 4 LP;gbln = INFEASEﬁLE: continue
if objective value (LP_soln) < best seen: continue
if LP _soln satisfies integrality constraints for P:
set best seen = objective_value (LP_soln)
continue
let x be an int var with fractional value v in LP_soln

subproblems to_visit.add(branch and bound(P|x < |v]))
subproblems to_visit.add(branch _and bound(P|x > [v]))
return best_ seen

Tuning Branch & Bound

What choices can we make when implementing branch and bound?

Which subproblem to visit next?
Visit first-added subproblem (BFS)
Visit last-added subproblem (DFS)

Visit subproblem with best LP objective (“best-first search”)

Which variable to branch on?
Most constrained variable (smallest domain, e.g. booleans)
Largest/smallest coefficient in objective function

Closest/farthest to halfway between integers (e.g. value of 0.5)

Most solvers allow user to tune these based on knowledge of problem

Improving B&B with Cuts

o Informally, a cut for a MIP Pis a new constraint (inequality) that doesn'’t
eliminate any feasible solutions for P, but does for L P(P)

o Tighter LP relaxation means we converge faster to MIP solution!

Branch & Cut

If we can find cuts of MIP, then add them and recurse on new MIP!
How to find cuts? Out of scope - method based on simplex algorithm

Otherwise, branch to create subproblems as before

Proposed by Manfred Padberg and Giovanni Rinaldi in 1089

The Knapsack Problem

Given n items with values vy, ..., v, and weights wy, ...w,,, select
maximum-value subset to fit into a knapsack with capacity W.

3

200 oz., $5,000

Fractional Knapsack

What if items are subdivisible? Want to decide how much of
each item to take (as a fraction from 0 to 1).

Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.

0/1 Knapsack

In the 0/1 knapsack problem, we either select an item or we dont.
Does greedy algorithm still work?
No: 0/1 knapsack is NP-complete!

MIP for 0/1 Knapsack

MIP formulationis very straightforward:
maximize Yt x;v;
subjectto Y, xw; < W

Why use MIP instead of..
0 (nW) dynamic programming algorithm
0(n lgn) approximation algorithm (at least 50% of optimal)

B&B for Knapsack

How can we use branch and bound as an algorithm paradigm
for the 0/1 knapsack problem (without using MIP)?

b&b knapsack (items, W, best seen):
let fractional soln = greedy fractional (items, W)
if value (fractional soln) =< best seen:
return -inf
if fractional soln has no fractionally-selected items:
return value(fractional soln)
let x be a fractionally-selected item in fractional soln
let objl = b&b knapsack (items - {x}, W, best seen)}
set best seen = max{objl, best seen}
let obj2 = v(x) + b&b_knapsack(items - {x}, W - w(x), best seen - v(x))

return mawi{aoh4a1. ah-21}

