
Lecture 7:
Concluding Mixed-Integer
Programming

CIS1921

Reminders
● HW3 release tonight or tomorrow depending on

how I’m feeling
● HW3 due March 18
● Next class
● Following week spring break
● Week after that – super special lecture.

2

CPU Job Assignment
Problem● There are n jobs that must be completed
● There are m CPUs available to do the jobs

○ Each CPU can do at most one job, hence m >= n

● There is a cost associated with running a particular
job on a particular CPU

● How to assign jobs to CPUs, minimizing total cost?

3

Variables

4

Constraint

5

● Each CPU gets at most 1 job

Constraint

6

● Each Job gets exactly one CPU

How do MIP solvers work?

7

Naive Branching

8

Naive Branching
(Pseudocode)

9

How bad is Naive Branching?
● Does naive branching even terminate?

○ Only for pure integer programs!

● Which assignments does the algorithm discard or visit?
○ Need to evaluate both branches -- visits all feasible solutions!

● Basically the same as brute force
● Runtime scales with size of search space

10

Recall: LP Relaxation

11

Adding Inference

12

Pruning Fruitless Nodes
● Idea: discard partial solutions that will never yield a better objective

value than one we’ve already found

13

- If we’ve seen a MIP solution with a better
objective value than LP(P), discard P since
any integer solution can only be worse

Branch & Bound
● First version developed by Ailsa Land and Alison Harcourt in 1960

● Combines branching of solution space with bounds-based pruning

● B&B is an algorithm paradigm: a “meta-algorithm” that can be used to
design algorithms for many different optimization algorithms

14

Branch & Bound
(Pseudocode)

15

Example: Branch & Bound

16

Example: Branch & Bound

17

Example: Branch & Bound

18

Example: Branch & Bound

19

Example: Branch & Bound

20

Example: Branch & Bound

21

Example: Branch & Bound

22

Example: Branch & Bound

23

Example: Branch & Bound

24

Example: Branch & Bound

25

Iterative Branch & Bound

26

Tuning Branch & Bound
● What choices can we make when implementing branch and bound?

● Which subproblem to visit next?

○ Visit first-added subproblem (BFS)

○ Visit last-added subproblem (DFS)

○ Visit subproblem with best LP objective (“best-first search”)

● Which variable to branch on?

○ Most constrained variable (smallest domain, e.g. booleans)

○ Largest/smallest coefficient in objective function

○ Closest/farthest to halfway between integers (e.g. value of 0.5)

● Most solvers allow user to tune these based on knowledge of problem 27

Improving B&B with Cuts

28

Branch & Cut
● If we can find cuts of MIP, then add them and recurse on new MIP!

○ How to find cuts? Out of scope – method based on simplex algorithm

● Otherwise, branch to create subproblems as before

● Proposed by Manfred Padberg and Giovanni Rinaldi in 1989

29

The Knapsack Problem

30

0.5 oz., $500

Fractional Knapsack
● What if items are subdivisible? Want to decide how much of

each item to take (as a fraction from 0 to 1).

● Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

● Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.

31

0.5 oz., $500

Max Weight: 300 oz.

0/1 Knapsack
● In the 0/1 knapsack problem, we either select an item or we don’t.
● Does greedy algorithm still work?

○ No: 0/1 knapsack is NP-complete!

32

MIP for 0/1 Knapsack

33

B&B for Knapsack
● How can we use branch and bound as an algorithm paradigm

for the 0/1 knapsack problem (without using MIP)?

34

