
Lecture 4:
Modern
Techniques in SAT
Solving

CIS1921

Recap: DPLL (Pseudocode)

2

Recap: Iterative DPLL

3

Chronological Backtracking
● DPLL uses chronological backtracking: when we find a

conflict, backtrack to the previous decision level

● Issue: might reach conflicts (contradictions) caused by the
same underlying reason over and over again

4

Chronological Backtracking

5

Chronological Backtracking

6

1
T

Chronological Backtracking

7

1
T

3T

Chronological Backtracking

8

1
T

3T
UNIT

Chronological Backtracking

9

1
T

3T

4T

Chronological Backtracking

10

1
T

3T

4T

BACKTRACK

Chronological Backtracking

11

1
T

3T

4T

F

Chronological Backtracking

12

1
T

3T

4T

F

UNIT

Chronological Backtracking

13

1
T

3T

4T

F

4
T

Chronological Backtracking

14

1
T

3T

4T

F

4
TBACKTRACK

Chronological Backtracking

15

1
T

3T

4T

F

4
T

F

Chronological Backtracking

16

UNSAT subformula
1

T

Chronological Backtracking

17

UNSAT subformula
1

T

Backjumping
● Not every decision actually contributes to a conflict

● Idea: upon conflict, instead of backtracking one level to
the last decision, backjump to an important decision

○ i.e., a decision that contributed to the conflict

● But how do we know what is an important decision?

18

Decision Levels

What are the different ways in which
variables get assigned in DPLL?

19

Decision Levels
● A decision refers to any time our algorithm arbitrarily

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking

are not decisions

● All assignments implied by the ith decision are said to
be on the ith decision level

○ Can assignments ever be on the zeroth decision level?

20

Decision Levels

When we backtrack, all assignments made at the current
decision level get unassigned.

21

Example: DPLL

22

Steps
Unit!

1 2 3 4

T

1
T

Example: DPLL

23

Steps

1 2 3 4

T F

1

2
T

F

Conflict!

Example: DPLL

24

Steps

1 2 3 4

F

1

2
T

F

F

Example: DPLL

25

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T

Example: DPLL

26

Steps

1 2 3 4

F T T

1

2
T

F

F

2

3
T

T

27

Implication Graphs

28

Implication Graphs

29

t=1

Implication Graphs

30

t=1

t=2

Implication Graphs

31

t=1

t=2

t=3

Implication Graphs

32

t=1

t=2

t=3

t=4

Implication Graphs

33

t=1

t=2

t=3

t=4

t=5

Implication Graphs

34

t=1

t=2

t=3

t=4

t=5

t=6

Implication Graphs

35

t=1

t=2

t=3

t=4

t=5

t=6

t=7

Implication Graphs

36

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

Implication Graphs

37

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

Implication Graphs

38

Conflict!

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

Conflicts
● A conflict set of assignments (collectively) imply a conflict
● A conflict cut in an implication graph is a bipartition of the

vertices V = R ∪ C such that:
○ Reason side R contains all decisions (source nodes)
○ Conflict side C contains the conflict node (a sink)
○ No edges cross C → R, only R → C

● The set of vertices with an outgoing edge crossing a given
conflict cut forms a conflict set

39

Ex: Conflict Cuts

40

CONFLICT SIDE

And more...

REASON SIDE

Ex: Conflict Cuts

41

CONFLICT SIDE

And more...

REASON SIDE

Note that a conflict set is a subset of our
current assignments.

“Once we have found a conflict set (aka a
subset of bad assignments), we never want
to revisit this set of bad assignments in the
future .”

Note that a conflict set is a subset of our
current assignments.

Clause Learning

44

● Observation: Given a conflict set , we know that in
a plausible satisfying assignment, at least one “mismatch” must exit.

Asserting Clauses
● Many conflict cuts – how do we decide which to

choose to build a conflict clause?
● Goal: after backjumping, be able to apply new

knowledge from learned clause right away
○ Want learned clause to become a unit clause right

after backjumping

46

Asserting Clauses
● A learned clause is asserting if it contains only one

variable set on the same decision level as conflict
● Observation: iff a clause is asserting, it will become a

unit clause after backtracking
● How far can we backjump and still have asserting

clauses become unit clauses?
○ Backjump to second-largest (i.e., deepest) decision level in

asserting clause (or zeroth level if asserting clause has size 1)

■ i.e., return to that decision level (don’t undo the decision)

○ Called the asserting level

47

CDCL (Pseudocode)

48

Asserting Level Backjump

49

Conflict!

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

Asserting Level Backjump

50

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

Decision Levels

When we backjump from level j to level i, all variables that got
assigned after level i until and including level j get unassigned

51

Asserting Level Backjump

52

Backjump!

Asserting Level Backjump

53

Unit!

Asserting Level Backjump

54

Unit!

Wait a second... same outcome as
backtracking with DPLL.

Q1: What type of clause do we want to add to the formula?

A1: Asserting Clauses, because they will allow us to Unit Propagate
immediately

Q2: How do we find the best asserting clause?

Unique Implication Points
● Unique implication point (UIP): a node in the

implication graph that all paths from the most recent
decision variable to the conflict must pass through

● Intuition: at the decision level of the conflict, the UIP
is a literal that, by itself, implies a contradiction

56

UIPs

The 1-UIP Scheme
● The “first” UIP is the closest UIP to the conflict node

○ i.e., the UIP with the highest timestamp
● When we reach a conflict, cut after the first UIP

○ One side has vertices with t <= t*, other with t > t*

57
First UIP

1-UIP Backjump

58

Conflict!

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

1-UIP Backjump

59

Asserting? Yes!
Level? 1

Conflict!

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

1-UIP Backjump

60

Backjump!

1-UIP Backjump

61

Unit!

Restarts
● Problem: if we make bad early guesses, can get stuck in

fruitless areas of search tree
● Solution: periodically restart the search – throw away the

current partial assignment
○ Modern solvers favor aggressive restart policy

■ MiniSAT, PicoSAT: every ~100 conflicts
● Key idea: CDCL is deterministic, so why won’t we end up

back where we were?
○ Learned clauses remain in formula after restart

62

Incremental SAT Solving

63

Introducing: PennSAT
● HW2: PennSAT (due in a couple weeks)
● Features:

○ DPLL-based
○ Iterative
○ Maintains propagation queue
○ No Two-Watched Literals
○ Static most-frequent decision heuristic

● This assignment is tricky – start early!
○ Requires solid understanding

64

Iterative DPLL
● A decision refers to any time our algorithm arbitrarily

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking

are not decisions

● All assignments implied by the ith decision are said to
be on the ith decision level

○ Can assignments ever be on the zeroth decision level?

65

Iterative DPLL
● Maintain an assignment stack with the assignments from

each decision level
○ Whenever we make a new decision, copy the current

assignment onto the top of the stack
● To backtrack: pop the current assignment off the stack,

restoring the previous one
● Keep a propagation queue of literals that are set to False

○ Take literals from the queue and check if their
watching clauses are empty/unit

66

Assignment Stack

67

T T F T T

T T F

T

1 2 3 4 5

Assignment Stack

68

T T F

T

1 2 3 4 5

T T F T T Backtrack!Pop!

Iterative DPLL (Pseudocode)

69

Testing a SAT Solver
● SAT solvers have tons of complicated logic... how to check for

soundness bugs?
○ Hard and tedious to figure out all cases to unit test

● Random testing: generate random CNF formulas to test
against reference solver

● If reference solver is not available, can at least check that
satisfying assignments are valid

70

Debugging a SAT Solver
● Once we’ve found a bug, how do we find the

mistake in the code?
● Print debugging: stick a bunch of print statements

in relevant places and look at the console
● Easy, but not as effective for complex systems

○ Easy to forget to print something, or print in wrong place

71

Debugging a SAT Solver

72

Debugging in VS Code
● Debugger: allows us to stop program mid-execution,

run code line-by-line, inspect values of local variables

● Breakpoint: STOP at this line of code

73

Debugging in VS Code
● After breakpoints set: Run > Start Debugging (F5)

74

View or modify current variables & values

Stopped right before line 49!

Hover over variables to inspect values

Debugging in VS Code
● Control flow:

● Continue (F5): run until next breakpoint hit
● Step Over (F10): run just one more line of code
● Restart (Ctrl+Shift+F5): start over from beginning
● Stop (Shift+F5): quit the debugger

75

Debugging in VS Code
● Step Into (F11): enter code of first function called

on the current line and resume debugging there
● Step Out (Shift+F11): run until the current function

returns; resume debugging from parent function
● Can click to view different levels of the call stack

○ Useful for inspecting values of local vars in different scopes

76

Debugging in VS Code

77

+

Stay Diligent

78

“Things may come to those who wait, but only the things left by
those who hustle” ~Abraham Lincoln

References

79

A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

E. Torlak, “A Modern SAT Solver,” CSE507: Computer-Aided Reasoning for Software Engineering. [Online]. Available:
https://courses.cs.washington.edu/courses/cse507/.

V. Ganesh, On the Unreasonable Effectiveness of Boolean SAT Solvers. Saarbrücken, Germany: Max Planck Institute, 2017.
Available:
https://docs.google.com/a/gsd.uwaterloo.ca/viewer?a=v&pid=sites&srcid=Z3NkLnV3YXRlcmxvby5jYXxtYXBsZXNhdHxneDoz
YzQ3NDJjYjk4YWE4YTA0

J. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki. “Understanding VSIDS Branching Heuristics in Conflict-Driven
Clause-Learning SAT Solvers.” Hardware and Software: Verification and Testing Lecture Notes in Computer Science, 2015, 225–41.
https://doi.org/10.1007/978-3-319-26287-1_14.

