

Recap: DPLL (Pseudocode)

 $\begin{aligned} dpll(\varphi): \\ & \text{if } \varphi = \emptyset: \text{ return TRUE} \\ & \text{if } \epsilon \in \varphi: \text{ return FALSE} \\ & \text{if } \varphi \text{ contains unit clause } \{\ell\}: \\ & \text{ return dpll}(\varphi | \ell) \\ & \text{let } x = \text{pick}_{\text{variable}}(\varphi) \\ & \text{ return dpll}(\varphi | x) \text{ OR dpll}(\varphi | \overline{x}) \end{aligned}$

Recap: Iterative DPLL

```
dpll(\varphi):
 if unit propagate() = CONFLICT: return UNSAT
 while not all variables have been set:
     let x = pick variable()
     create new decision level
     set x = T
     while unit propagate() = CONFLICT:
         if decision level = 0: return UNSAT
         backtrack()
         set x = F
return SAT
```


- DPLL uses **chronological backtracking:** when we find a conflict, backtrack to the *previous* decision level
- **Issue:** might reach conflicts (contradictions) caused by the same underlying reason over and over again

 $\left(1 \vee \overline{2}\right)$ $\left(\overline{1} \lor 3 \lor 4 \right)$ $\left(\overline{\mathbf{1}} \lor \overline{\mathbf{3}} \lor \mathbf{4} \right)$ $\left(\overline{\mathbf{1}} \lor \mathbf{3} \lor \overline{\mathbf{4}} \right)$ $\left(\overline{\mathbf{1}} \vee \overline{\mathbf{3}} \vee \overline{\mathbf{4}} \right)$

1

Chronological Backtracking $\left(1 \vee \overline{2}\right)$ 1 $\left(1 \lor 3 \lor 4 \right)$ UNIT $\left(\mathbf{1} \lor \mathbf{3} \lor \mathbf{4} \right)$ $\left(\overline{1} \lor 3 \lor \overline{4}\right)$ $\left(\overline{1} \vee \overline{3} \vee \overline{4} \right)$

Backjumping

- Not every decision actually contributes to a conflict
- Idea: upon conflict, instead of backtracking one level to the last decision, **backjump** to an *important* decision
 - i.e., a decision that contributed to the conflict
- But how do we know what is an important decision?

Decision Levels

What are the different ways in which variables get assigned in DPLL?

Decision Levels

- A **decision** refers to any time our algorithm *arbitrarily* assigns a variable (without being forced to do so)
 - Selecting a literal and assigning it True is a decision
 - Unit propagation & reassigning selected literal after backtracking are not decisions
- All assignments implied by the *i*th decision are said to be on the *i*th **decision level**
 - Can assignments ever be on the zeroth decision level?

Decision Levels

When we backtrack, all assignments made at the current decision level get unassigned.

- An implication graph G is a DAG whose vertices are literal assignments at a particular decision level, as well as a time stamp of when the vertex was created
 - Ex: $\overline{x} @ 3$, t = 4: represents setting x to False at decision level 3, and the vertex was created at time = 4
 - Assignments can be decisions or due to unit propagation/backtracking
 - Start at t = 1, and every time a new vertex is added, increment t by 1.
- Can also contain special vertex \perp representing a conflict
- There is an edge $x @i \rightarrow y@j$ if the assignment x@i directly implied the assignment y@j
 - i.e., y@j was set by unit propagation from a clause containing \overline{x}

Implication Graphs

Implication Graphs $c_1: 2 \vee 3 \vee 4$ C_6 c_2 : $3 \vee 5 \vee 6$ t=5 t=1 C_2 t=9 t=6 $c_3: 4 \vee 6 \vee 7$ 9@4 6@4 t=7 C_5 t=10 t=3 $\overline{7} \vee \overline{8}$ *C*₄: 7@4 3@3 t=8 CA c_5 : $1 \vee 7 \vee 9$ 4@3 C_6 8@ $c_6: 1 \vee 8 \vee 9$ Conflict! C_1

Conflicts

- A **conflict set** of assignments (collectively) imply a conflict
- A **conflict cut** in an implication graph is a bipartition of the vertices *V* = *R* U *C* such that:
 - *Reason side R* contains all decisions (source nodes)
 - *Conflict side C* contains the conflict node (a sink)
 - No edges cross $C \to R$, only $R \to C$
- The set of vertices with an outgoing edge crossing a given conflict cut forms a conflict set

Note that a conflict set is a subset of our current assignments.

"Once we have found a conflict set (aka a subset of bad assignments), we never want to revisit this set of bad assignments in the future ."

Clause Learning

- **Observation:** Given a conflict set $\{x_1, \overline{x_2}, x_3, ..., x_k\}$, we know that in a plausible satisfying assignment, at least one "mismatch" must exit.
- Can derive the **conflict clause** $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor ... \lor \overline{x_k})$
- **Conflict-driven clause learning (CDCL):** add conflict clauses to the original CNF we're solving
 - Introduced by GRASP (1996); revolutionized SAT solving
 - Many solvers have aggressive deletion policy for long, "inactive,"
 "unhelpful" learned clauses avoid explosion in CNF size

 $c_1: 2 \vee 3 \vee 4$ $c_2: 3 \vee 5 \vee 6$ $c_3: 4 \vee 6 \vee 7$ *c*₄: **7** V **8** $c_5: 1 \vee 7 \vee 9$ $c_6: 1 \vee 8 \vee 9$ Conflict set: $\{1, \overline{4}, \overline{6}\}$

 $c_1: \overline{2} \vee \overline{3} \vee \overline{4}$ $c_2: \overline{3} \vee \overline{5} \vee \overline{6}$ $c_3: 4 \vee 6 \vee 7$ $c_4: \overline{7} \vee \overline{8}$ $c_5: \overline{1} \vee \overline{7} \vee \overline{9}$ $c_6: 1 \vee 8 \vee 9$ $c_7:(\overline{1}\vee 4\vee 6)$

Asserting Clauses

- Many conflict cuts how do we decide which to choose to build a conflict clause?
- **Goal:** after backjumping, be able to apply new knowledge from learned clause right away
 - Want learned clause to become a unit clause right after backjumping

Asserting Clauses

- A learned clause is **asserting** if it contains only one variable set on the same decision level as conflict
- **Observation:** iff a clause is asserting, it will become a unit clause after backtracking
- How far can we backjump and still have asserting clauses become unit clauses?
 - Backjump to *second-largest* (i.e., deepest) decision level in asserting clause (or zeroth level if asserting clause has size 1)
 - i.e., return to that decision level (don't undo the decision)
 - Called the asserting level

CDCL (Pseudocode)

```
\operatorname{cdcl}(\varphi):
    if unit propagate() = CONFLICT: return UNSAT
    while not all variables have been set:
         let x = pick variable()
         create new decision level; set x = T
         while unit propagate() = CONFLICT:
             if level = 0: return UNSAT
             let (conflict cls, assrt lvl) = analyze conflict()
             let \varphi = \varphi \cup \{ \text{ conflict cls } \}
             # discard all assignments after asserting level
             backjump(assrt lvl)
     return SAT
```


Decision Levels

When we **backjump** from level j to level i, all variables that got assigned *after* level i until and including level j get unassigned

Q1: What type of clause do we want to add to the formula?

A1: Asserting Clauses, because they will allow us to Unit Propagate immediately

Q2: How do we find the best asserting clause?

Unique Implication Points

- Unique implication point (UIP): a node in the implication graph that all paths from the most recent decision variable to the conflict must pass through
- Intuition: at the decision level of the conflict, the UIP is a literal that, by itself, implies a contradiction

The 1-UIP Scheme

- The "first" UIP is the closest UIP to the conflict node
 - i.e., the UIP with the highest timestamp
- When we reach a conflict, cut after the first UIP
 - One side has vertices with t <= t^{*}, other with t > t^{*}

1-UIP Backjump

1-UIP Backjump $c_1: \overline{2} \vee \overline{3} \vee \overline{4}$ **Backjump!** c_2 : $\overline{3} \vee \overline{5} \vee \overline{6}$ *c*₃: 4 ∨ 6 ∨ 7 c_4 : $\overline{7} \vee \overline{8}$ c_5 : $1 \vee \overline{7} \vee \overline{9}$ $c_6: 1 \vee 8 \vee 9$ *c*: 1 ∨ 7

Restarts

- Problem: if we make bad early guesses, can get stuck in fruitless areas of search tree
- Solution: periodically **restart** the search throw away the current partial assignment
 - Modern solvers favor aggressive restart policy
 - MiniSAT, PicoSAT: every ~100 conflicts
- **Key idea:** CDCL is deterministic, so why won't we end up back where we were?
 - Learned clauses remain in formula after restart

Incremental SAT Solving

CDCL solvers give us a new method in our toolkit!

add_clause(C): add clause C to the formula

- New clauses can only rule out previously satisfying assignments
- Can re-solve CNF with new clauses added
- Key: keep learned clauses generated during last call to solve()
- Simple use case: generating all satisfying assignments

Introducing: PennSAT

- HW2: PennSAT (due in a couple weeks)
- Features:
 - o DPLL-based
 - o Iterative
 - Maintains propagation queue
 - No Two-Watched Literals
 - Static most-frequent decision heuristic
- This assignment is tricky **start early!**
 - Requires solid understanding

Iterative DPLL

- A **decision** refers to any time our algorithm *arbitrarily* assigns a variable (without being forced to do so)
 - Selecting a literal and assigning it True is a decision
 - Unit propagation & reassigning selected literal after backtracking are not decisions
- All assignments implied by the *ith* decision are said to be on the *ith* decision level
 - Can assignments ever be on the zeroth decision level?

Iterative DPLL

- Maintain an **assignment stack** with the assignments from each decision level
 - Whenever we make a new decision, copy the current assignment onto the top of the stack
- To backtrack: pop the current assignment off the stack, restoring the previous one
- Keep a propagation queue of literals that are set to False
 - Take literals from the queue and check if their watching clauses are empty/unit

Assignment Stack

Set 2 = T. Propagate 3 = F.

Set
$$1 = T$$

Iterative DPLL (Pseudocode)

```
dpll(\varphi):
```

```
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
     let x = pick variable()
     create new decision level
     set x = T
    while unit propagate() = CONFLICT:
         if decision level = 0: return UNSAT
         backtrack()
         set x = F
return SAT
```


Testing a SAT Solver

- SAT solvers have tons of complicated logic... how to check for soundness bugs?
 - Hard and tedious to figure out all cases to unit test
- **Random testing:** generate random CNF formulas to test against reference solver
- If reference solver is not available, can at least check that satisfying assignments are valid

Debugging a SAT Solver

- Once we've found a bug, how do we find the mistake in the code?
- **Print debugging:** stick a bunch of print statements in relevant places and look at the console
- Easy, but not as effective for complex systems
 - Easy to forget to print something, or print in wrong place

Debugging a SAT Solver

• **Debugger:** allows us to stop program mid-execution, run code line-by-line, inspect values of local variables

45 🗸	<pre>definit(self, n: int, cnf: CNF, activity_he</pre>
46	# The number of variables
47	self.n = n
48	# The CNF as a list of clauses
n Breakpoir	self.cnf = preprocess(cnf)
50	# A stack of partial truth assignments: list
51	<pre>self.assignment_stack = [[None] * (n+1)]</pre>

Breakpoint: STOP at this line of code

• After breakpoints set: Run > Start Debugging (F5)

• Control flow:

- Continue (F5): run until next breakpoint hit
- Step Over (F10): run just one more line of code
- C
- Restart (Ctrl+Shift+F5): start over from beginning
- Stop (Shift+F5): quit the debugger

- Step Into (F11): enter code of first function called on the current line and resume debugging there
- Step Out (Shift+F11): run until the current function returns; resume debugging from parent function
- Can click to view different levels of the call stack
 - Useful for inspecting values of local vars in different scopes

\sim CALL STACK	PAUSED ON STEP	45	<pre>definit(self, n: int, cnf:</pre>
preprocess	PennSAT.py 19:1	46	# The number of variables
init	PennSAT.py 49:1	47	self.n = n
<module></module>	PennSAT ny 196-1	48	<pre># The CNF as a list of clau</pre>
	rennoznipy 150.1	9 49	<pre>self.cnf = preprocess(cnf)</pre>

	17	def	<pre>preprocess(cnf: CNF) -> CNF:</pre>
	18		"""Remove duplicate literals
2	19		<pre>cnf = [list(set(clause)) for</pre>
	20		cnf.sort()
	21		return list(clause for clause
	22		

45	<pre>definit(self, n: int, cnf</pre>
46	<pre># The number of variables</pre>
47	self.n = n
48	# The CNF as a list of cla
49	<pre>self.cnf = preprocess(cnf)</pre>
50	# A stack of partial truth
51	<pre>self.assignment_stack = [[]</pre>

self.n = n

47

48

49

def __init__(self, n: int, cnf;

The number of variables

The CNF as a list of clau

self.cnf = preprocess(cnf)

those who hustle" ~Abraham Lincoln

References

A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

E. Torlak, "A Modern SAT Solver," *CSE507: Computer-Aided Reasoning for Software Engineering.* [Online]. Available: https://courses.cs.washington.edu/courses/cse507/.

V. Ganesh, *On the Unreasonable Effectiveness of Boolean SAT Solvers*. Saarbrücken, Germany: Max Planck Institute, 2017. Available:

https://docs.google.com/a/gsd.uwaterloo.ca/viewer?a=v&pid=sites&srcid=Z3NkLnV3YXRlcmxvby5jYXxtYXBsZXNhdHxneDoz YzQ3NDJjYjk4YWE4YTA0

J. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki. "Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers." *Hardware and Software: Verification and Testing Lecture Notes in Computer Science*, 2015, 225–41. https://doi.org/10.1007/978-3-319-26287-1_14.

