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Reminders
● Homework 0 was due on Monday
● Homework 1 due Monday, Feb 10, 11:59PM
● OH schedule:

○ Thomas: Sunday 3-4pm
○ Cindy: Tuesday 8-9pm
○ Ishaan: Wednesday 9:30-10:30pm
○ All OH held on OHQ
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Grading
● Homework: 44%
● Final Project: 38%
● Quizzes: 10%
● Attendance: 8%
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Academic Integrity
● Work on assignments individually (except final project)

○ Discussion encouraged, but work should be yours
● OK: high-level discussions

○ “Can you help me understand the DPLL algorithm?”

● OK: low-level discussions
○ “How do I time my program in OR-Tools?”

● Be careful: mid-level discussions
○ Not OK: “How exactly do I write this constraint?”
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Health Logistics
● If you have a reasonable 

suspicion that you have 
Covid or sickness, don’t 
come
○ Email me before class and 

we’ll work something out
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Recap
Last week
● Using SAT solvers in Python (PycoSAT)
● Encode other problems (graph coloring) as SAT

This week
● Build up an algorithm to solve SAT
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Symmetry Breaking
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● Solving UNSAT graph coloring problems takes 
a very long time... why?

● Must rule out every symmetric coloring
● Ex: equivalent colorings



Symmetry Breaking

8

● Key idea: add constraints that rule out 
equivalent symmetric colorings

● Basic way to do this: pick some vertices 
(ideally a dense subgraph) and fix their colors



DEMO Part 2



Encoding Stable Matchings
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Encoding Stable Matchings
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Encoding Stable Matchings
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Encoding Stable Matchings
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Why Stable Matchings?
● Gale-Shapley algorithm solves SM problem in 

linear time. Why use SAT solvers?
● SMTI: stable matching problem where preference 

lists may be incomplete and contain ties
● SM-C: stable matching problem with couples
● Our encoding easily generalizes to SMTI, SM-C
● Theorem: SMTI and SM-C are NP-complete.
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SAT is Hard!



Naive Search for SAT
● Naive algorithm: try every possible assignment until we find 

a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)
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Overarching Class Themes
● Accept the fact that the problems we will look at are very hard and 

“exponential runtime”
○ Take solace in the fact that for many inputs, the problem won’t 

take exponential time
● Every speed-up counts

○ Take careful consideration of the balance between runtime and 
complexity

● There will never be a “right answer”
○ Often, the best thing to do for a problem depends on the 

problem itself and its data!



Simplify the 
Search Space







Trimming the Search Space
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● If a formula is satisfiable (has a satisfying assignment to 
variables), then in the assignment, each clause must 
individually evaluate to TRUE.



Trimming the Search Space
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Trimming the Search Space
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We are honing in on 
whatever is left that is 
unassigned and not yet 
evaluated to TRUE .
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The Splitting Rule
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The Splitting Rule
● The splitting rule allows us to create a smarter recursive 

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial 

solutions, and if we hit “dead end” (contradiction) then 
undo the last guess
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Backtracking Notation
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Backtracking (Pseudocode)
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Example: Backtracking
 

31

Steps

1 2 3 4 5



Example: Backtracking
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Towards Implementation: Efficient Splitting
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Naïve Idea 1
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Naïve Idea 2
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Towards a smarter scheme
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● Don’t modify or copy the formula!

● Key observation: We must only backtrack once a clause has 
become empty after the Splitting Rule has been applied!



1 Watched Literal Scheme
● Observation: a clause can only become empty if it has 

just one unassigned literal remaining
○ Ideally, only need to check these clauses
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● Each clause “watches” one literal and maintains watching 
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to 

watch, then the clause must be empty



Example: 1 Watched Literal
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Example: 1 Watched Literal
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Unit Propagation (UP)
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The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit 

propagation (inference)
● Still the basic algorithm behind most state-of-the-art 

SAT solvers today!
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DPLL (Pseudocode)
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Example: DPLL

66

Steps

1 2 3 4



Example: DPLL

67

Steps
Unit!

1 2 3 4

T

1
T



Example: DPLL

68

Steps

1 2 3 4

T F

1

2
T

F

Conflict!



Example: DPLL

69

Steps

1 2 3 4

F

1

2
T

F

F



Example: DPLL

70

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T



Example: DPLL
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Engineering Matters
● Since the main DPLL subroutine might run 

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation, 

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack
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2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or unit 

if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains 
watching invariant: the watched literals are not False, 
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)
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2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables, 

it can never break the 2WL invariant
○ Don’t need to update watchlists
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Unit!
  



How should we branch?
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Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as 

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering
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Stay Wise
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“Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing.”
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