Lecture 3:
~ Algorithms for SAT

Reminders

e Homework 0 was due on Monday
e Homework 1 due Monday, Feb 10, 11:59PM

e OH schedule:
o Thomas: Sunday 3-4pm
o Cindy: Tuesday 8-gpm
o Ishaan: Wednesday 9:30-10:30pm
o AllOH held on OHQ

..

Grading

Homework: 449
Final Project: 38%
Quizzes: 10%

Attendance; 8%

Academic Integrity

Work on assignments individually (except final project)
Discussion encouraged, but work should be yours

OK: high-level discussions
"Can you help me understand the DPLL algorithm?”

OK: low-level discussions
"How do | time my program in OR-Tools?"

Be careful: mid-level discussions
Not OK: "How exactly do | write this constraint?”

Health Logistics

If you have a reasonable
suspicion that you have
Covid or sickness, dont
come

Email me before class and
we'll work something out

Last week
o Using SAT solvers in Python (PycoSAT)
e Encode other problems (graph coloring) as SAT

This week
o Build up an algorithm to solve SAT

.
...

Symmetry Breaking

Solving UNSAT graph coloring problems takes
a very long time... why?

Must rule out every symmetric coloring

Ex: equivalent colorings

Symmetry Breaking

Key idea: add constraints that rule out
equivalent symmetric colorings

Basic way to do this: pick some vertices
(ideally a dense subgraph) and fix their colors

DEMO Part 2

Encoding Stable Matchings

We have n men and n women. Each man and woman
submits a preference list ranking everyone of the
opposite sex (descending).

Goal: find a matching of men to women.

A man and woman who both prefer each other to their
matched partnhers are a blocking pair.

A matching is stable if it has no blocking pairs.

Encoding Stable Matchings

my,: if man i is matched to pt woman or later on his list
wip: if woman i is matched to pt" man or later on her list

[wy > W,| M, Wy [My > M;]
Wy > W,] M, W, [M; > M,]

T F T T T F T T

Encoding Stable Matchings

m;,: if man i is matched to pth woman or later on his list
wip,: if woman i is matched to pt" man or later on her list

C1: every man is matched
{mil | 1<i< n}

(plus symmetric constraints for women for this and the following constraints)

Encoding Stable Matchings

m;,: if man i is matched to pth woman or later on his list
wip,: if woman i is matched to pt" man or later on her list

C2: if a man gets his pt" or later choice, it's also
his (p — 1)t" or later choice

{mip:"mi(p_l)‘1SiSn,ZSpSn}

Encoding Stable Matchings

m;,: if man i is matched to pth woman or later on his list
wip: if woman i is matched to pt" man or later on her list

C3:if man i is matched to woman j, then she is
matched to him also

{mip AMip+1) = Wig AW+ |1 =L)< n}

p = position of woman j in man i's list
q = position of man i in woman j's list

Encoding Stable Matchings

my,: if man i is matched to pt woman or later on his list
wip: if woman i is matched to pt" man or later on her list

C4: if man i is matched to someone worse than
woman j, her match must be better than him

{mi(p+1) = m 1<] < Tl}

p = position of woman j in man i's list
q = position of man i in woman j's list

Why Stable Matchings?

Gale-Shapley algorithm solves SM problem in
linear time. Why use SAT solvers?

SMTI: stable matching problem where preference
lists may be incomplete and contain ties

SM-C.: stable matching problem with couples
Our encoding easily generalizes to SMTI, SM-C
Theorem: SMTIl and SM-C are NP-complete.

SAT is Hard!

Naive Search for SAT

Naive algorithm: try every possible assignment until we find
a satisfying assignment or exhaust the search space

Can interpret this as a DFS:

(search tree)

Overarching Class Themes

Accept the fact that the problems we will look at are very hard and
‘exponential runtime’
Take solace in the fact that for many inputs, the problem won't
take exponential time

Every speed-up counts
Take careful consideration of the balance between runtime and
complexity

There will never be a "right answer’
Often, the best thing to do for a problem depends on the
problem itself and its data!

Simplify the
Search Space

Find a minimal satisfying assignment for the following formula:

o=(@1VZ2VI3) A (@2 Vxa) N([@TTVI3Vas) AN(T2VTE) A T2V z6 V 27)

Find a minimal satisfying assignment for the following formula:

e=(@x1VZ2VI3) A(ZT2Vza) N(T1Vz3Vzs) AN(T2VTIL) A (T2 V 26 V 7)

To = FALSE x5 = TRUE

Trimming the Search Space

If a formula is satisfiable (has a satisfying assignment to
variables), then in the assignment, each clause must
individually evaluate to TRUE.

po=C1 NCy AN..NCy

Trimming the Search Space

When we set x = T, what happens to the clauses
containing x?

Observation1: Any clause containing the positive
literal x becomes satisfied, so we no longer need to
consider those clauses

Inlogic:(Tvliv2v:.)=T

Significance: we should remove all clauses
containing «

Trimming the Search Space

When we set x = T, what happens to the clauses
containing x?

Observation 2: Any clause containing the negative
literal x needs to be satisfied by a different literal, so
we can ignore x in that clause

Inlogic:(FV1v2Vv-)=(1V2V::)

Significance: we should remove x from all
clauses containing it

We are honing in on
whatever is left that is
unassigned and not yet
evaluated to TRUE.

The Splitting Rule

e The previous observations are called the splitting rule
o After repeatedly applying the splitting rule to formula ¢:

If there are no clauses left, then all clauses have
been satisfied, so ¢ is satisfied

m @ = @ denotes that there are no clauses left
If @ ever contains an empty clause, then all literals
in that clause are False, so we made a mistake

m € denotes the empty clause

m € € ¢ denotes that ¢ contains an empty clause

The Splitting Rule

The splitting rule allows us to create a smarter recursive
backtracking algorithm

Backtracking: repeatedly make a guess to explore partial
solutions, and if we hit "dead end” (contradiction) then

Undo the [aSt gU@SS seansz: ~/Desktop/cs106b

Searching...
HHHHHHHHHHH

HRHHARHHRRRHH

Backtracking Notation

Fora CNF ¢ and a literal x, define ¢|x ("¢ given x") to
be a new CNF produced by:

Removing all clauses containing x
Removing x from all clauses containing it
Conditioningis "commutative”. ¢|xq|x; = @|x,|xq

Backtracking (Pseudocode)

check if @ is satisfiable

backtrack (¢) :
if ¢ = 0: return True
if € € ¢: return False
let x = pick variable(¢)
return backtrack (¢|x) OR backtrack (¢|x)

Example: Backtracking
(Tv2) e
(1v2v3)
(3vEv5)
(3v4vs)

Example: Backtracking

(@v2) -
(Bv2v3) }
(3vavs)
(3v4vs)

T

Example: Backtracking

(lV l) Conflict! Steps
(1v2v3) .
(3v4avs) .

(3v4vs)

T T

Example: Backtracking

(TvZ) =ens

(ivlv§) T
(3vavs) 2 F
(3v4vs)

T F

Example: Backtracking

Steps

(Lv2)

(lVlV .) Conflict!
(3vavs)
(3v4vs)

T F T

Example: Backtracking

Steps

(Tv2)

(1v2v3)
(Blvavs)
(Blv4vs)

T F F

Example: Backtracking

Steps

(1v2)
(1v2v3)
(BlvEv5)

(3v4avs)

T F F T

Example: Backtracking

Steps

(1v2)
(1v2v3)
(lv .V .) Conflict!

(3v4avs)

T F F T T

Example: Backtracking

Steps

(Av2)

(1v2v3)
(3v4vs)
(3v4avs)

T F F T F

Towards Implementation: Efficient Splitting

How do we compute ¢|x?

Goals:
Support fast searching for empty clauses
Support fast backtracking
Fast to actually compute @|x

Naive Idea 1

e Transform ¢ into ¢|x by deleting satisfied clauses
and False literals from ¢

Deletion not too expensive if we use linked lists

o Can quickly recognize an empty clause (linked list
will be empty), but heed to check all clauses

Big issue: how do we backtrack?

Naive Idea 2

e Simple fix: instead of modifying ¢ directly, create a
copy first and modify that

Easy backtracking - just restore the old formula

o Bigissue: too expensive (time and memory) to
copy formula every time we split

m Whatif we have hundreds of thousands,
even millions of clauses?

Towards a smarter scheme

Don't modify or copy the formula!

Key observation: \W/e must only backtrack once a clause has
become empty after the Splitting Rule has been applied!

1 Watched Literal Scheme

Observation: a clause can only become empty if it has
just one unassigned literal remaining

Ideally, only need to check these clauses

Each clause "watches’ one literal and maintains watching
invariant: the watched literal is True or unassigned

If the watched literal becomes False, watch another

If there are no more True/unassigned literals to
watch, then the clause must be empty

Example: 1 Watched Literal
(Av2) e
(1v2v3)

(3vavs)

(Bvavs)

Example: 1 Watched Literal

(@v2) -
(@v2v3) @
(3vavs)
(3v4vs)

T

Example: 1 Watched Literal

(1v2) =ens

(1v2v3) *L/ﬁj
(3vavs)
(3v4vs)

T

Example: 1 Watched Literal

(1v@) o
(1v[2lv3) T
(3v4avs) @‘))
(3v4vs)

T T

Example: 1 Watched Literal

(1 V.) Conflict! Steps

(1v2v3)]
(3v4vs))
(3v4avs)

T T

Example: 1 Watched Literal

(1vE) -
(1v@v3) T
(3vavs) 2 F
(3v4avs)

T F

Example: 1 Watched Literal
(1vE) e
(1v2v3) T

(3vavs) < F

(3vavs)

T F

Example: 1 Watched Literal

Steps

(1v2)

(1v2vpl)
(3vavs)
(Bvavs)

T F T

Example: 1 Watched Literal

Steps

(1v2)

(I V2V l) Conflict!
(Bvavs)
(Bvavs)

T F T

Example: 1 Watched Literal

Steps

(1v2)

(1v2v3)
(Blv4vs)
(Blv4vs)

T F F

Example: 1 Watched Literal

Steps

(1v]2)

(1v2v3)
(3viavs)
(3viavs)

T F F

Example: 1 Watched Literal

Steps

(1v2)
(1v2v3)
(3v@vs)

(3vi4vs)

T F F T

Example: 1 Watched Literal

Steps

(1v2)

(1v2vy3)
(3v4vs)
(3vdvs)

T F F T

Example: 1 Watched Literal

Steps

(1v2)
(1v2v3)
(3vavg)

(3v4vs)

T F F T T

Example: 1 Watched Literal

Steps

(1v2)
(1v2vyd)
(3v4Vv[E) confict!
(3vi4vs)

T F F T T

Example: 1 Watched Literal

Steps

(1v2)

(1v2vd)
(3v4vs)
(3vialvs)

T F F T F

Find a satisfying assignment for the following formula:

o= (z1VIZVEZVZ) ATIVE) A (23) A(xa VESVT7) A (23 V 25 V 26 V T7) A (T5 V Tp)

Find a satisfying assignment for the following formula:

o= (z1VIZVEZVZ) ATIVE) A (23) A(xa VESVT7) A (23 V 25 V 26 V T7) A (T5 V Tp)

x1 = FALSE 1o = FALSE x3 = TRUE
x4 = TRUE Iy — FALSE L — TRUE Xy = TRUE

Unit Propagation (UP)

e Aunit clause is a clause containing only one literal

¢ Unit propagationrule: for any unit clause {£}, we
mustset =T

e Applying unit propagation can massively speed up
the backtracking algorithm in practice

Combining with the splitting rule can lead to a
‘domino effect” of cascading unit propagation

The DPLL Algorithm

Davis-Putnam-Logemann-Loveland (1962)
Improved upon naive backtracking (search) with unit
propagation (inference)

Still the basic algorithm behind most state-of-the-art
SAT solvers today!

DPLL (Pseudocode)

dpll (@) :
if ¢ = 0: return TRUE
if € € ¢: return FALSE
if ¢ contains unit clause {{}:
return dpll (¢ |?)
let x = pick variable(¢p)
return dpll (¢ |x) OR dpll(¢]|x)

Example: DPLL

Steps

Example: DPLL

(lv 2) Unit! =leps

Example: DPLL

() =leps

l v n Conflict! T

Example: DPLL

— Steps
(1vz)

(in) T
(B3 F

_ Unit!
(1v2v4)

F T

Example: DPLL
(va)

ivz)

Engineering Matters

Since the main DPLL subroutine might run
exponentially many times, every speedup counts

DPLL spends by far the most time on UP
How can we speed this up?

Although DPLL has a natural recursive formulation,
recursion is slow — lots of overhead

We can make DPLL iterative using a stack

2 Watched Literals (2WL)

Key observation: a clause can only be unsatisfied or unit
If it has at most one non-False literal

Optimize unit propagation: only visit those clauses

Each clause "watches’ two literals and maintains
watching invariant: the watched literals are not False,
unless the clause is satisfied

If a watched literal becomes False, watch another
If can't maintain invariant, clause is unit (can propagate)

2 Watched Literals (2WL)

Still use watchlists (list of all clauses watching each lit)

Best part: since backtracking only unassigns variables,
it can never break the 2\WL invariant

Don't need to update watchlists

Unit!
Set1=T Set2=F

(Tv2v§) (1v2v3) (1v@v3)

How should we branch?

Order of assigning variables greatly affects runtime

Want to find a satisfying assignment quicker and
find conflicts (rule out bad assignments) quicker

Ex: {1234,E3, 1235,235, 345, ... 67.67.67, ﬁ}

If we assign 6 first, then we can find conflicts right away

Decision Heuristics

Static heuristics: variable ordering fixed at the start

Dynamic heuristics: variable ordering is updated as
the solver runs

More effective, but also more expensive
Basic examples of decision heuristics:

Random ordering

Most-frequent static ordering

Most-frequent dynamic ordering

Stay Wise

“Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing.”

References

A. Biere, Handbook of satisfiability. Amsterdam: 10S Press, 2009.

N. Een and N. Sorensson, "An Extensible SAT-solver,” Theory and
Applications of Satisfiability Testing Lecture Notes in Computer Science, pp.
502-518, 2004,

