
Lecture 3:
Algorithms for SAT

CIS1921

Reminders
● Homework 0 was due on Monday
● Homework 1 due Monday, Feb 10, 11:59PM
● OH schedule:

○ Thomas: Sunday 3-4pm
○ Cindy: Tuesday 8-9pm
○ Ishaan: Wednesday 9:30-10:30pm
○ All OH held on OHQ

2

Grading
● Homework: 44%
● Final Project: 38%
● Quizzes: 10%
● Attendance: 8%

3

Academic Integrity
● Work on assignments individually (except final project)

○ Discussion encouraged, but work should be yours
● OK: high-level discussions

○ “Can you help me understand the DPLL algorithm?”

● OK: low-level discussions
○ “How do I time my program in OR-Tools?”

● Be careful: mid-level discussions
○ Not OK: “How exactly do I write this constraint?”

4

Health Logistics
● If you have a reasonable

suspicion that you have
Covid or sickness, don’t
come
○ Email me before class and

we’ll work something out

5

Recap
Last week
● Using SAT solvers in Python (PycoSAT)
● Encode other problems (graph coloring) as SAT

This week
● Build up an algorithm to solve SAT

6

Symmetry Breaking

7

● Solving UNSAT graph coloring problems takes
a very long time... why?

● Must rule out every symmetric coloring
● Ex: equivalent colorings

Symmetry Breaking

8

● Key idea: add constraints that rule out
equivalent symmetric colorings

● Basic way to do this: pick some vertices
(ideally a dense subgraph) and fix their colors

DEMO Part 2

Encoding Stable Matchings

10

Encoding Stable Matchings

11

m1, 1 m1, 2 m2, 1 m2, 2 w1, 1 w1, 2 w2, 1 w2, 2

T F T T T F T T

Encoding Stable Matchings

12

Encoding Stable Matchings

13

Encoding Stable Matchings

14

Encoding Stable Matchings

15

Why Stable Matchings?
● Gale-Shapley algorithm solves SM problem in

linear time. Why use SAT solvers?
● SMTI: stable matching problem where preference

lists may be incomplete and contain ties
● SM-C: stable matching problem with couples
● Our encoding easily generalizes to SMTI, SM-C
● Theorem: SMTI and SM-C are NP-complete.

16

SAT is Hard!

Naive Search for SAT
● Naive algorithm: try every possible assignment until we find

a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)

18

Overarching Class Themes
● Accept the fact that the problems we will look at are very hard and

“exponential runtime”
○ Take solace in the fact that for many inputs, the problem won’t

take exponential time
● Every speed-up counts

○ Take careful consideration of the balance between runtime and
complexity

● There will never be a “right answer”
○ Often, the best thing to do for a problem depends on the

problem itself and its data!

Simplify the
Search Space

Trimming the Search Space

23

● If a formula is satisfiable (has a satisfying assignment to
variables), then in the assignment, each clause must
individually evaluate to TRUE.

Trimming the Search Space

24

Trimming the Search Space

25

We are honing in on
whatever is left that is
unassigned and not yet
evaluated to TRUE .

26

The Splitting Rule

27

The Splitting Rule
● The splitting rule allows us to create a smarter recursive

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial

solutions, and if we hit “dead end” (contradiction) then
undo the last guess

28

Backtracking Notation

29

Backtracking (Pseudocode)

30

Example: Backtracking

31

Steps

1 2 3 4 5

Example: Backtracking

32

Steps

1 2 3 4 5

T

1
T

Example: Backtracking

33

Steps
Conflict!

1 2 3 4 5

T T

1

2
T

T

Example: Backtracking

34

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: Backtracking

35

Steps

Conflict!

1 2 3 4 5

T F T

1

2
T

3
FT

T

Example: Backtracking

36

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: Backtracking

37

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: Backtracking

38

Steps

Conflict!

1 2 3 4 5

T F F T T

1

2
T

3

4

5

F

F

T

T

T

T

Example: Backtracking

39

Steps

1 2 3 4 5

T F F T F

1

2
T

3

4

5

F

F

T

T

T

T F

Towards Implementation: Efficient Splitting

40

Naïve Idea 1

41

Naïve Idea 2

42

Towards a smarter scheme

43

● Don’t modify or copy the formula!

● Key observation: We must only backtrack once a clause has
become empty after the Splitting Rule has been applied!

1 Watched Literal Scheme
● Observation: a clause can only become empty if it has

just one unassigned literal remaining
○ Ideally, only need to check these clauses

44

● Each clause “watches” one literal and maintains watching
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to

watch, then the clause must be empty

Example: 1 Watched Literal

45

Steps

1 2 3 4 5

Example: 1 Watched Literal

46

Steps

1 2 3 4 5

T

1
T

Example: 1 Watched Literal

47

Steps

1 2 3 4 5

T

1
T

Example: 1 Watched Literal

48

Steps

1 2 3 4 5

T T

1

2
T

T

Example: 1 Watched Literal

49

Steps

1 2 3 4 5

T T

Conflict!

1

2
T

T

Example: 1 Watched Literal

50

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: 1 Watched Literal

51

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: 1 Watched Literal

52

Steps

1 2 3 4 5

T F T

1

2
T

3
FT

T

Example: 1 Watched Literal

53

Steps

1 2 3 4 5

T F T

Conflict!

1

2
T

3
FT

T

Example: 1 Watched Literal

54

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

55

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

56

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

57

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

58

Steps

1 2 3 4 5

T F F T T

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

59

Steps

1 2 3 4 5

T F F T T

Conflict!

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

60

Steps

1 2 3 4 5

T F F T F

1

2
T

3

4

5

F

F

T

T

T

T F

Unit Propagation (UP)

63

The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit

propagation (inference)
● Still the basic algorithm behind most state-of-the-art

SAT solvers today!

64

DPLL (Pseudocode)

65

Example: DPLL

66

Steps

1 2 3 4

Example: DPLL

67

Steps
Unit!

1 2 3 4

T

1
T

Example: DPLL

68

Steps

1 2 3 4

T F

1

2
T

F

Conflict!

Example: DPLL

69

Steps

1 2 3 4

F

1

2
T

F

F

Example: DPLL

70

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T

Example: DPLL

71

Steps

1 2 3 4

F T T

1

2
T

F

F

2

3
T

T

Engineering Matters
● Since the main DPLL subroutine might run

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation,

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack

72

2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or unit

if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains
watching invariant: the watched literals are not False,
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)

73

2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables,

it can never break the 2WL invariant
○ Don’t need to update watchlists

74

Unit!

How should we branch?

75

Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering

76

Stay Wise

77

“Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing.”

References
A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.
N. Eén and N. Sörensson, “An Extensible SAT-solver,” Theory and
Applications of Satisfiability Testing Lecture Notes in Computer Science, pp.
502–518, 2004.

78

