
LECTURE 3

Ishaan Lal

January 31, 2025

1 Symmetry Breaking

UNSAT takes a very long time to solve. Why? The idea is that our SAT solver is oblivious to the fact that
we are working with a graph. It treats it as just a typical boolean formula. Because of this, there is a special
property about graph coloring that we haven’t yet incorporated in our formula: symmetric colorings.

Consider the following two attempted colorings of a graph:

v1 v2

v3

v4

v1 v2

v3

v4

These two colorings are essentially identical. We can form equivalence classes of vertices that are colored
the same color, and they would be the same classes for both colorings. The only difference is the actual
colors of the classes. So visually, we can tell that these two attempted colorings are identical, but our SAT
solver does not know this. Because in the first coloring, the variable xv1,BLUE = TRUE, but in the second
coloring, xv1,BLUE = FALSE, because v1 is not colored blue.

This is what we call a symmetric coloring. We can greatly reduce the search space by telling our SAT
solver “hey, these two colorings are identical.”

But how do we do this? It turns out the solution is very simple. We will pick a few vertices, and fix
their colors at the start. For example, if we choose to fix v1 = BLUE, or equivalently, xv1,BLUE = TRUE, then
the second coloring would never be explored in our search space. This can be done by adding xv1,BLUE as a
standalone clause in φ. Upon doing this, our runtime improves drastically.

2 Stable Matchings

Problem: We have n men and n women. Each man ranks the n women in order of preference. Each
woman ranks the n men in order of preference. The goal of this problem is to find a one-to-one matching of
men to women.

A man and a woman who both prefer each other to their matched partners are called a blocking pair.
A matching is stable if it has not blocking pairs.

2.1 Encoding Stable Matching

We will use an unintuitive variable definition for our encoding. Let mip be a variable that is TRUE if man i
is matched to the pth woman or later on his preference list. Similarly, let wip be a variable that is TRUE if
woman i is matched to the pth man or later on her preference list.

For example, suppose we have the following two men and two women with given preference lists:

M1 : W1 > W2

M2 : W1 > W2

W1 : M1 > M2

W2 : M1 > M2

Further, suppose M1 is matched with W1 and M2 is matched with W2, then, our variables and their
evaluations are given by:

m1,1 = TRUE m1,2 = FALSE m2,1 = TRUE m2,2 = TRUE

w1,1 = TRUE w1,2 = FALSE w2,1 = TRUE w2,2 = TRUE

Constraint 1

Constraint 1: Every man is matched to some partner.

That means, we must have, for arbitrary man mi, at least one of mi,1,mi,2, ...,mi,p evaluating to
true. However, even simpler, we can just look at mi,1. If this variable evaluates to TRUE, then by
definition, it means that man i is matched to the women ranked first or later on the list, and the list
contains all women. So, for each man, we need mi,1 = TRUE.

This can be represented in CNF form by:

φ = m1,1 ∧m2,1 ∧ ... ∧mn,1 = {mi,1 | 1 ≤ i ≤ n} (in compact form)

Constraint 2

Constraint 2: If a man gets his pth or later choice, it is also his (p− 1)th or later choice.

This makes sense from our definition of our variables. That is, if mi,p = TRUE, meaning that the ith
man is matched to his pth or later woman, then clearly, mi,p−1 must also be true. But remember,
our formula φ does not know that yet. We know that because of how our variables are defined, but
we need to encode this. This can be done as follows:

{mi,p =⇒ mi,p−1 | 1 ≤ i ≤ n, 2 ≤ p ≤ n}

Constraint 3

Constraint 3: If man i is matched to woman j, then she is matched to him.

Hopefully the need for this constraint is obvious. How we encode this is slightly difficult. How do
we know what woman a man is matched to just by the variables we have defined. Well, if man i is
matched with woman p, then it must be the case that mi,p = TRUE, but also, mi,p+1 = FALSE. So,
this will be our condition. We can encode the constraint as:

{mi,p ∧mi,p+1 =⇒ wj,q ∧ wj,q+1 | 1 ≤ i, j ≤ n}

where p is the position of woman j in man i’s list, and q is the position of man i in woman j’s list.

2

Constraint 4

Constraint 4: If man i is matched to someone worse than woman j, then her match must be better
than him with respect to her preference list.

The wording of this is a little bit wonky, but it is essentially ensuring that we do not have any blocking
pairs. That is, if woman j is highly ranked for man i, but they are not matched, the only way that
they will not form a blocking pair is for woman j to be matched with man k who she ranked higher
than man i.

In terms of encoding, we have:

{mi,p+1 =⇒ wj,q | 1 ≤ i, j ≤ n}

And those are all of the constraints. By putting the constraints together into a single boolean formula,
we can feed it into a SAT solver, and get our matchings.

2.2 But What about Gale-Shapley?

Some of you might remember a fun algorithm from CIS1210 called Gale-Shapley. We won’t go into the details
of that algorithm in this class, but all you need to know is that this algorithm is a linear time algorithm that
solves the matching problem in linear time.

So why did we waste all of that time converting Stable Matching to SAT? Why couldn’t we have just
used Gale-Shapley? Well, we could have.

The major downfall of Gale-Shapley is its inability to solve mutations of the stable matchings problem.

For example, a common deviant of this problem is SMTI: the stable matching problem where preference
lists may be incomplete and contain ties. For SMTI, we can alter our formula φ, by mainly changing the
clauses developed by constraint 4, and then shove our formula in a SAT solver. But Gale-Shapley cannot
solve SMTI.

Another variant is SM-C: the stable matching problem with couples. You can imagine the setting as
follows: There is a group of couples, all of them are applying to residency. Together, the couples construct
a preference list of pairs of hospitals, instead of creating lists for the individual. Then, we find the optimal
matching given these pair preferences. Gale-Shapley cannot handle this, but our SAT solver could be adapted
to handle it.

The short reason why Gale-Shapley doesn’t work for SMTI and SM-C is because these problems are
NP-Complete.

3 Introduction to SAT Algorithms

Hopefully by now, we can all recognize that solving SAT is a difficult problem. Today we will explore the
algorithms that go into solving SAT.

A naive approach is to simply try every possible assignment until we find a satisfying assignment or
exhaust the search space. One can interpret this as conducting DFS on a search tree, where each branch
represents the assignment of a variable. Leaves of this search tree represent the assignment of all variables.

The clearest issue with this approach is the time. The search space is exponential – each variable has
two possible assignments, so for n variables, there are 2n assignments we would have to check.

3

4 Simplifying the Search Space

Unfortunately, there is no easy way to circumvent exploring the exponential number of assignments by
reducing it to a more manageable search space (why? if the search space was smaller than exponential, it
would likely be polynomial!).

Therefore, we will have to accept the fact that there may be an exponentially sized search space at worst,
but we will still work to reduce the search space by skipping over unnecessary variable assignments that we
know will not work.

How we do this is simply implementing observations of the SAT problem.

Critical SAT Facts

Let φ = C1 ∧ C2 ∧ ... ∧ Cn be a CNF formula, where Ci is a clause of the form (xi1 ∨ xi2 ∨ ... ∨ xik)

1. If φ is satisfiable, then C∀i ≡ TRUE. That is, every clause must be evaluated to TRUE. Or
equivalently, no clause is evaluated to FALSE.

2. If a literal in a clause is satisified, then the entire clause is evaluated to TRUE, regardless of the
other variables in the clause. That is, if we have clause Ci = xi1 ∨ xi2 ∨ ... ∨ xik , and we find
that xi1 = TRUE, then immediately, Ci = TRUE, regardless of xi2 , ..., xik

Fact 2 can be critical in developing a useful SAT solver! In that example, we can essentially ignore clause
Ci once we found that xi1 = TRUE, because the clause is satisfied, which, when considering Fact 1, puts us a
step closer in satisfying φ. Formally, we have:

Observation 1

When we set xi = TRUE, any clause containing the positive literal xi becomes satisfied, so we no
longer need to consider those clauses. We can thus remove all clauses containing xi, which greatly
reduces our search space.

A similar observation can be made for clauses containing a negative literal:

Observation 2

When we set xi = TRUE, any clause containing the negative literal xi needs to be satisfied by a
different literal, so we can ignore xi in that clause. Thus, we can remove xi from all clauses
containing it. In logic:

(F ∨ x1 ∨ x2 ∨ ...) ≡ (x1 ∨ x2 ∨ ...)

4.1 The Splitting Rule

These observations have given us something that we call The Splitting Rule. To formalize context, we can
think of finding a solution to SAT as a process of assigning variables, and then removing variables and/or
clauses from our formula if we are allowed to ignore them. Premission to ignore a variable/clause comes
from the observations above.

4

The Splitting Rule

1. When we set xi = TRUE, we can remove/ignore all clauses containing the positive literal xi (per
observation 1)

2. When we set xi = TRUE, we can remove/ignore all instances of the negative literal xi (per
observation 2)

After repeatedly applying the splitting rule to formula φ:

(a) If there are no clauses left, that is, φ = ∅, then all clauses have been satisfied (removed), thus
φ is satisfied.

(b) If φ ever contains an empty clause, then all literals in that clause are FALSE, so we have made
a mistake. Notationally, ϵ ∈ φ denotes that φ contains an empty clause.

In programming terms, the method of traversing our search tree and re-routing as we hit “bad leaves” is
called backtracking – a method of repeatedly making a guess to explore partial solutions, and if we hit a
“dead end” (contradiction), then undo the last guess. Many problems rely on backtracking, such as printing
all permutations of a set of numbers and the N queens problem.

For a bit of notation, for a CNF φ and a literal x, we will define φ | x (read as “φ given x”) to be a new
CNF produced by:

1. Removing all clauses containing x

2. Removing x from all clauses containing it.

Or, in simpler terms, φ | x yields a CNF which is equivalent to φ after the Splitting Rule is applied when
x = TRUE.

One helpful observation is that conditioning is commutative:

φ | x1 | x2 = φ | x2 | x1

Cool. We can now present the SAT solver we have come up with in terms of pseudocode:

Pseudocode v1

method to check if φ is satisfiable:

backtrack(φ):
if φ = ∅: return TRUE

if ϵ ∈ φ: return FALSE

let x = pick_variable(φ)
return backtrack(φ | x) OR backtrack(φ | x)

Let’s see an example:

5

Example

Consider
φ = (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2)

Let’s rewrite φ in compact form:
φ = {134, 23, 12}

We’ll now go about trying to find a satisfying assignment. For purposes of this example, we will
simply use trial and error, instead of a systematic traversal of a search tree.

First, we may notice the positive literal x1 in the first clause, so we may choose to set x1 = TRUE.
Substituting, we get:

φ = (T ∨ x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (F ∨ x2)

We can use the first part of The Splitting Rule on the first clause (i.e. ignore it), and the second part
of the Splitting Rule on the third clause, which yields:

φ′ = (x2 ∨ x3) ∧ (x2) ≡ {23, 2}

Suppose we now decided to set x2 = FALSE (yes, this may seem like a silly decision, but such decisions
may not seem silly when we have massive equations with hundreds or thousands of variables and
clauses).

Upon setting x2 = FALSE, we obtain:

φ′ = (T ∨ x3) ∧ (F)

Now, when we apply the splitting rule to the second clause, we would be left with an empty clause
(ϵ ∈ φ), because there are no variables that were in this clause originally that are left to assign. As
per (b) in the Splitting Rule, this means that we have made a mistake.

Once we hit a mistake, we can correct the mistake (backtrack). In this case, setting x2 = TRUE fixes
the mistake. As an exercise, you can complete tracing through the Splitting Rule on this example,
and find that the satisfying assignment is:

x1 = TRUE x2 = TRUE x3 = TRUE

A visual example is provided in the Lecture Slides. Please refer to that.

5 Improving our Solver

Okay cool. We’ve developed a procedure for solving SAT. But is it fast? Well, that depends on how we
implement it. In particular, we want:

1. to be able to compute φ | x quickly

2. to be able to detect empty clauses quickly

3. to be able to backtrack quickly

That’s a lot of desiderata. Let’s try coming up with some solutions:

6

Naive Idea 1

We can compute φ | x quickly by directly implementing the Splitting Rule – that is, delete satisfied
clauses and delete literals evaluated to FALSE from φ.

Deletion can be a quick, cheap task if we implement φ as a linked list of clauses, where clauses
themselves are a linked list of literals. Then, deletion is simply a reroute of pointers. This is better
than an array implementation, as it avoids the need for shifting data after a deletion.

To detect an empty clause, we can just check if the linked list representing a clause is empty, however,
we would need to check all clauses.

The biggest issue comes with backtracking. Once we make a mistake and need to backtrack, we need
to obtain a prior version of the formula. This is especially difficult to do with this implementation.

Naive Idea 2

We’ll improve Naive Idea 1, by instead of modifying φ directly, we will create a copy of φ first, and
modify that.

Now, the issue of backtracking is solved, because we can just restore the old formula.

However, we have introduced a new issue: it is way to expensive (with respect to time and memory)
to copy the formula every time we split. If we have thousands or millions of clauses, this is a lot of
memory we are using! Not to mention, we are still working with exponential time!

But we can be smart. In fact, we will try to devise a schema where we don’t modify or copy the formula!
A key observation to note is that we must only backtrack once a clause has become empty after
the Splitting Rule has been applied.

Key Observation!

A clause can only become empty if it has just one unassigned literal remaining.
In other words, if φ does not contain an empty clause, but φ | x does contain an empty clause, then
the clause x must have existed in φ, because once we apply the splitting rule, we would have removed
all instances of x, resulting in an empty clause.

5.1 1 Watched Literal Scheme

We have built our way to something called the 1 Watched Literal Scheme. The idea is for each clause to
“watch” one literal within the clause, and maintain a watching invariant: the watched literal is TRUE or
unassigned.

If the literal being watched becomes FALSE, then the clause must watch another literal.

If there are no more TRUE or unassigned literals to watch, then the clause must be empty.

Please refer to the lecture slides for a visual walkthrough of the 1 Watched Literal Schema.

5.2 Unit Propagation

Let’s use another observation to speed up our solver (that is, reduce the search space).

7

Unit Clause

AUnit Clause is a clause containing only one literal. For any unit clause {ℓ}, we MUST set ℓ = TRUE

for φ to potentially be TRUE.

This seems like a very obvious observation, and maybe it is. But it is critical to include, as it can greatly
speed up our solver.

You might ask: How? How can it speed up our solver? And this is a particularly good question when φ
doesn’t have any unit clauses. However, as we apply the Splitting Rule and continuously reduce our clauses,
we may face some unit clauses, whereby we can immediately set the assignment using the Unit Propagation
Rule.

5.3 The DPLL Algorithm

The Davis-Putnam-Logemann-Loveland Algorithm (DPLL) is an implementation of the Unit Propagation
algorithm. This is still the basic algorithm behind most state-of-the-art SAT solvers today!

DPLL Algorithm Pseudocode

dpll(φ):
if φ = ∅: return TRUE

if ϵ ∈ φ: return FALSE

if φ contains a unit clause {xℓ}:
return dpll(φ | xℓ = TRUE)

let x = pick_variable(φ)
return dpll(φ | x = TRUE) OR dpll(φ | x = FALSE)

Refer to the lecture slides for a visual walkthrough of the DPLL algorithm.

Notice that even with this algorithm, we may make the call to dpll() an exponential number of times,
so speeding up the algorithm however possible is desired.

In its current form, DPLL takes quite a bit of time on the Unit Propagation step, because it takes time
to determine if we have a unit clause. This smells similar to an earlier problem! How did we handle the
issue of determining if we had an empty clause? We used the 1-Watched Literal Schema. Now, we need to
detect if a clause has at most one literal (instead of zero). This gives us...

5.4 2 Watched Literal Schema

Motivating Observation

Each clause can watch two literals and maintains a watching invariant: the watched literals are not
False, unless the clause is satisfied. If a watched literal becomes False, then we watch another.

If we are unable to maintain the invariant, then the clause is unit. This is because we will break the
invariant once a literal becomes False and we would attempt to watch another literal, but we have
run out of literals to watch. But since we are watching 2 literals, there is still one left, meaning we
have a unit clause, and can propagate.

8

	Symmetry Breaking
	Stable Matchings
	Encoding Stable Matching
	But What about Gale-Shapley?

	Introduction to SAT Algorithms
	Simplifying the Search Space
	The Splitting Rule

	Improving our Solver
	1 Watched Literal Scheme
	Unit Propagation
	The DPLL Algorithm
	2 Watched Literal Schema

