Lecture 10:
TSP Techniques

aaaaaaaaa

mailto:ilal@seas.upenn.edu

Traveling Salesman Problem

e Problem: in weighted complete
graph, find a tour of minimum total
cost that visits every vertex exactly
once and returns to starting vertex

o Graph can be directed or undirected
e Applications in routing, logistics, etc.
e NP-complete!

...

Preliminary Notation

We'll look at complete directed graphs (parallel

edges, but no self-loops) with n nodes, m edges
Undirected graphs are often a special case

Directed edge (i,j) =i = j has weight w(i, j)

We'll denote a tour as a permutation vy, v, ..., v,, Of
the vertices, which representsv; - v, = - > v, = 14

® For simplicity, examples will
generally be drawn undirected

® Imagine each edge (i,j) is really
two parallel edges with same cost

® Optimal tour cost:
10 + 25 + 30 + 15 = 80

Attempt: Solving TSP with
?

"~ Define 0/1 variables x;; indicating if edge (i,j) isin
the TSP tour

Each vertex s visited exactly once:

inj=2xji=1, Vi<i<n

JE! J#I

Want to minimize total cost:

C:ZW(i,j)-xij

An issue

This CP formulation allows “subtours” rather than
forcing one contiguous tour!

S-city problem Tour solution Subtour solution
(X12=XB=X$"’X.3='X3| = 1) (XrB'X32"X'5’X54=X,“ = l.)

FIGURE 9.11
A 5-city TSP example with a tour and subtour solutions of the associated assignment model

How to fix this?

Disallowing subtours

For each possible subtour of vertices S, make sure
that we take less than |S| edges between them

As a constraint:
z xl-]-<|S|, VSCV,|S|>1

I JES
Problem: there are exponentially many subtours!

Ways to fix this or add constraints lazily...
But in general CP is not state-of-the-art for TSP

Traveling Salesman Problem

Observation: TSP is an approximation-friendly problem
In practice, "good enough” usually is good enough!

Goal: design efficient heuristics that give an empirically
cheap tour (possibly not quite cheapest)

Today: constructive heuristics
Start from nothing and iteratively build up partial solution

Nearest-Neighbor (NN)

Start at any vertex u. Pick nearest unseen out-neighbor v
of u and add it to end of tour, then repeat starting from v.
Continue until all vertices added.

Pros:
Simple, intuitive, and relatively efficient
Empirically OK, esp. on Euclidean TSP
Cons:
Greedy: can easily miss shortcut paths

Nearest-Neighbor (NN)

Current tour:

1

Current cost:
O

Nearest-Neighbor (NN)

Current tour:

1.4

Current cost:
20 + 20 = 40

Nearest-Neighbor (NN)

Current tour:

1,4 2

Current cost:

20 +10 + 25 = K55

Nearest-Neighbor (NN)

Current tour:

1.4,2 3

Current cost:

20+10+ 35+ 30 =95

Nearest-Neighbor (NN)

e NN yields a path that is on average 25% longer than the true

shortest path

e NN does not guarantee that the solution it comes up with will
be good - there are instances of TSP where NN would return

the worst path
e Solution changes depending on
starting point

100

80

60m

40t

20

0

0

20

40

60

80

100

From NN to NI

e NN commits early - this might leave us with the situation that
later cities are far apart.

Current tour:

1,4 2

Current cost:

20 +10 + 25 = 55

e |[DEA: 'Optimally” insert the nearest city.

Nearest-Insertion (NI)

Start the tour T at any vertex

Pick the nearest unseen out-neighbor v of any vertex in
the tour

Insert it into the tour T = ¢4, ..., t;, SO that the total tour
distance is minimized

e, findist w(t;,v) +w,t;;1) —w(t;, ti+1) IS minimized
Repeat until all vertices added to tour

Intuition: still greedy, but not as greedy as NN - allow the
partial tour to be modified

Nearest-Insertion (NI)

Current tour:

1

Current cost:
O

Nearest-Insertion (NI)

Current tour:
1

Current cost:
O

Next vertex: 4

Only one place to insert (up to rotation)

Nearest-Insertion (NI)

Current tour:

1.4

Current cost:
20 + 20 = 40

Nearest-Insertion (NI)

Current tour:

1.4

Current cost:
20 + 20 = 40

Next vertex: 2
After 1. w(1, 2) + w(2, 4) — w(1,4) = 25 + 10 - 20 = 15
After 4. w4, 2) + w2, 1) - w(1,4) = 10 + 25 — 20 = 15

Nearest-Insertion (NI)

Current tour:

1,24

Current cost:

25+ 10 + 20 = 55

Nearest-Insertion (NI)

Current tour:

1,24

Current cost:

25+ 10 + 20 = 55

Next vertex: 3
After 1. w(1, 3) + w(3, 2) = w(1, 2) = 30 + 35 — 25 = 40
After 2: w(2, 3) + w(3, 4) - w(2, 4) = 35 + 15 — 10 = 40
After 4: w4, 3) + w(3, 1) — w4, 1) = 15 + 30 - 20 = 25

Nearest-Insertion (NI)

Current tour:

1,2, 4 3

Current cost:

25+10 +15+ 30 = 80

Nearest-Insertion (NI)

Worst Case Behavior:

length of nearest inserfion_four

<2
length of opfimal four

Number of Computations:

The nearest insertion algorithm is algorithm is 0(,32)

http://www.youtube.com/watch?v=tUAdRcT3ejY

Farthest-Insertion (Fl)

Start the tour T at any vertex

Pick the rearest farthest unseen out-neighbor v of any
vertex in the tour

Insert it into the tour T = ¢4, ..., t; SO that the total tour
distance is minimized

e, findist w(t;,v) +w(,ti; 1) —w(t;, tiy1) is minimized
Repeat until all vertices added to tour

Intuition: Start with the "difficult” vertices first to avoid getting
into bad situations down the line,

Farthest-Insertion (FI)

where nearest insertion has a min. The intuitive appeal is that the method
establishes the general outline of the approximate tour at the outset and then fills
in the details. The early establishment of a general outline is appealing because we
expect better performance when the number of nodes is small. Inserting nearby
points late in the approximation is appealing because the short edges used late in
the procedure are less likely to be accidentally deleted by some still later insertion.

(Rosenkrantz, Stearns, Lewis Il, 1977)

Farthest-Insertion (Fl)

Current tour:

1

Current cost:
O

Farthest-Insertion (Fl)

Current tour:
1

Current cost:
O

Next vertex: 3

Only one place to insert (up to rotation)

Farthest-Insertion (Fl)

Current tour:

1.3

Current cost:
30 + 30 = 00

Farthest-Insertion (Fl)

Current tour:

1.3

Current cost:
30 + 30 = 00

Next vertex: 2
After 1. w(1, 2) + w(2, 3) —= w(1, 3) = 25 + 35 — 30 = 30
After 3: w(3, 2) + w(2, 1) - w(1, 3) = 35 + 25 — 30 = 30

Farthest-Insertion (Fl)

Current tour:

1,2 3

Current cost:

25 +35+30=90

Farthest-Insertion (Fl)

Current tour:

1,2 3

Current cost:

25 +35+30=90

Next vertex: 4
After 1. w(1, 4) + w(4, 2) = w(1,2) =20 +10 - 25 = §
After 2: w(2, 4) + wl4, 2) - w(2, 3) = 10 + 15 — 35 = -10
After 3: w(3, 4) + w4, 1) —w(3,1) =15+20 - 30 =5

Farthest-Insertion (Fl)

Current tour:

1,2, 4 3

Current cost:

25+10 +15+ 30 = 80

Farthest-Insertion (NI)

Worst Case Behavior:

length _of _farthest inserfion_four
< 21n(n) + 016

length_of opfimal_four
Number of Computations:

The farthest insertion algorithm is O(n2)

Insertion Heuristics

Aims to be less naively greedy than NN
Unlike NN, can modify partial tour

Somewhat more expensive than NN heuristic

FI works pretty well in practice...

..but NI not so much.

Farthest-Insertion (NI)

and the nearest neighbor. For example, when tried on problems obtained by
placing 50 nodes randomly on a unit square, nearest insertion was from 7 to 22%
worse than farthest insertion, nearest neighbor was from 0 to 38% worse, and
cheapest insertion ranged from 7% better to 12% worse. The usual ranking was

thus farthest insertion first, cheapest insertion second, nearest insertion third, and
nearest neighbor last.

Savings Heuristic

® Pick any vertex x to be the “central vertex"

e Startwithn —1 subtours:x »v-xforallveV —x

e Foreach edge (i,j) where i,j € V — x, compute its savings s(i, j)
s(@,j) =w(,x) +w(x,j) —w(,))

e Sort edges in decreasing order of savings

® Repeat until only one tour remains:

e Let (i,)) be the next edge in sorted order

e |If edges (i,x) and (x,j) are in our subtours, and i, j are not already
in the same tour: replace (i,x) and (x,j) by (i,))

Savings Heuristic

Current cost:
25+25+30+30+20 +20 =150

Savings Heuristic

(i,j) Savingss(i,j)

(2,3) w(2,1)+w(1,3) —w(2,3)
=254+30-35=20

3,2) wi3,1)+w(,2) —w(3,2)
=30+25-35=20

2,4) w(2,1)+w(1,4)—w(24)
=25+20—10 = 35

4,2) w1 +w(,2)—w42)
=20+ 25— 10 = 35

w(3,1) +w(1,4) —w(3,4)
=30+20—-15=35

4,3) w(4,1)+w(,3) —w(4,3)
=204+30-15=35

Current cost: (3,4)
25+25+30+30+20 +20 =150

Savings Heuristic

(i,j) Savingss(i,j)

(2,3) w(2,1)+w(1,3) —w(2,3)
=25+4+30-35=20

(3,2) wi3,1)+w(,2) —w(3,2)

=30+25-35=20

(2,4) w(2,1)+w(1,4) —w(2,4)

=254+20-10=35

(4,2) w4,1)+w(l,2) —w(4,2)

=20+25-10=35

=30+20-15=35

+ + + + + -

°5Te5 1303020 0 00 @ wa D w3 -we3)

=20+30—-15=35

Current cost;

Savings Heuristic

2,3) w(2,1) +w(1,3) —w(2,3)
=254+30-35=20
3,2) wG1)+w2)-w(3,?2)
=30+4+25-35=20

2,49 w2 D+w@4)-w(24)
=25+20—-10 =35

4,2) w4,1)+w(,2) —w(4,2)
=20+425-10= 35

Current cost: #(3: 4 w@B1D+w(1,4)-w(349)

=30+20—-15=35
+ + ¥ * =
25 +25+20+15 + 30 =115 43) w41 +w(1,3) - w(4,3)

=20+30-15=35

Savings Heuristic

(i,j) Savings s(i,j)

(2,3) w(2,1) +w(1,3) —w(2,3)
=254+30-35=20

3,2 wB1)+w1,2)-w@?2)
=30 + 25 — 35 = 20

2,4 w21 +w,4)-w4)
=25+20—10 = 35

-|4, 2) w41 +w(l,2) —w4,2)
=204+25-10=35

(3,4) w(3,1) +w(1,4) —w(3,4)

Current cost:
=30+20-15= 35

25+25+20 +15+ 30 =115 4,3) w41 +w(1,3)-w3)

=20+30-15=35

Savings Heuristic

2,3) w@1)+w(d,3) -w2,3)
=25+ 30— 35 =20

=30+25-35=20

2,4 w21 +w(1,4)—w4)
=25+20— 10 = 35
4,2) w41 +w(1,2)—w42)
=20+ 25— 10 = 35

(3,4) w(3,1)+w(1,4) —w(3,4)
=304+20—-15=35

4,3) w41 +w(d,3)—w43)
=20+30—15=135

Current cost:
25 +25+20 +15 + 30 = 115

Savings Heuristic

Current cost:
25+10+ 15+ 30 =80

(i,j) Savingss(i,j)

2,3 w21 +w3)-w3)
=254+30-35=20
(3.2) w(3,1)+w(1,2) —w(3,2)
=30+4+25-35=20
2,4) w(2,1)+w(1,4)—w(24)
=25+4+20-10=35
4,2) w4,1)+w(,2) —w(4,2)
=20+4+25-10=35
(3,4) w(3,1) +w(1,4) —w(3,4)
=30+20-15=35
(4,3) w(4,1) +w(1,3) —w(4,3)
=20+30—-15=35

PERCENT EXCESS OVER THE HELD-KARP BOUND

35

25

20

15

10

10,000-City Random Uniform Euclidean Instances

| spacefil

worse solution

Strip

NI

NN worse runtime

CHCI :

Greedy
3]
Savings CCA
AppCliristo
Christo
GENI-10
2opt
3opt
LK
T
MUK oIk Helsgaun -
I 1 I 1 1 1
0.1 1.0 10.0 100.0 1,000.0 10,000.0

NORMALIZED RUNNING TIME IN SECONDS

https./pubsonline.informs.org/doi/abs/10.1287/ij0c.4.4.387

NI

NN

CHCI

Greedy

Fi

Savings
AppCliristo

http./www.atgc-montpellierfr/permutmatrix/manual/Seriatio

NnPPLhtm

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.4.4.387
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm
http://www.atgc-montpellier.fr/permutmatrix/manual/SeriationPPI.htm

Vehicle Routing Problem

Actually, the Savings heuristic was created to solve a
generalization of the TSP

The Vehicle Routing Problem (VRP) also takes place in a
weighted, complete graph

Instead of one salesman, we have a fleet of vehicles
which are all parked at a central vertex (the depot)

May or may not be a limit on the number of vehicles

Goal: find routes starting and ending at the depot for each
vehicle with minimum total weight so that each vertex is
visited once by some vehicle

Constrained VRP

In real life: why use a fleet of vehicles when you could
have one vehicle that travels all the routes?

There may be additional constraints for vehicles, e.g.
Maximum distance a vehicle can travel

Carrying capacity of a vehicle, where each node has
some volume to be delivered

Savings Heuristic for VRP

Let x denote the depot

Start withn — 1 subtours: x » v > xforallveV —x

For each edge (i,j), where i,j € V — x, compute its savings s(i, j)
s(@j) =w(i,x) +w(x,j) —w(ij)

Sort edges in decreasing order of savings

Repeat until only one tour remains or we reach negative savings:

Let (i,) be the next edge in sorted order

If edges (i, x) and (x, j) are in our subtours, and i, j are not already
in the same tour: replace (i, x) and (x,j) by (i, j)..
.unless it would violate our constraints

Solving TSP with OR-Tools

OR-Tools comes with a routing solver that can solve the TSP and
VRP with much more complex constraints!

Pickups and drop-offs, time windows, penalties..

The guide is pretty good:
https://developers.google.com/optimization/routing

Comes with many heuristics including NN, Savings, etc...

By default, solver automatically chooses a heuristic to use based on
the problem at hand
Note: the routing solver is optimized for getting a "good enough’
solution to constrained problems, not exact solving huge TSPs

https://developers.google.com/optimization/routing

Scaling and Shifting

e Warning: the OR-Tools routing solver may not work
correctly with fractional/negative edge weights

Even worse, it might not throw an error!

o Can fix negative weights by shifting:
Add large constant K to all weights to make them positive
Preserves TSP structure since all tours increase by K - n
May not necessarily preserve VRP structure _(*J)_/"

o Canfix fractional weights by scaling:

Multiply all weights by a large constant M to make them integers (or
minimize rounding error)

If no rounding, preserves TSP and VRP structure

The OR-Tools TSP Solver
always produce an optimal

solution.
How well does it do ?
Let's test it on instances from the ,a set of

real-world instances -ranging.in size from 29 to 71,000+ nodes.

Benchmarking the TSP

Country # Cities Output Cost OptimalCost PercentError *Runtime (s)

W.Sahara 29 27749 27603 0.53% 0.0320
Djibouti 38 7078 6656 6.3% 0.0657
Qatar 104 10064 9352 7.6% 2.61
Uruguay 734 83476 79114 5.5% 37.9
Zimbabwe 929 101100 95345 6.0% 914
Oman 1979 92250 868901 6.2% 668

‘Running on a Dell XPS laptop with 16GB of RAM, in a Jupyter notebook.

