
Lecture 9:
More Constraint
Programming
Ishaan Lal ilal@seas.upenn.edu

CIS 1921

mailto:ilal@seas.upenn.edu

Logistics

● HW4 due Monday 11/11
● Project proposals due yesterday

○ Check gradescope for feedback when released

● Project checkpoint due 11/21
○ Aim for ~75% completion

2

Recap: Constraint Programs
● Find an assignment of variables to values, subject

to general constraints
● Discrete, finitely bounded domains (integers only)
● May or may not optimize an objective

3

Constraints for BoolVars
● Recall model.NewBoolVar(name)

○ Equivalent to model.NewIntVar(0, 1, name)

● boolvar.Not()

● model.AddBoolOr(boolvars_list)

● model.AddBoolAnd(boolvars_list)

● model.AddImplication(b1, b2)

4

Ex: Magic Sequence
●

5

 s0 s1 s2 s3 s4

? ? ? ? ?

Ex: Magic Sequence
●

6

 s0 s1 s2 s3 s4

2 1 2 0 0

Reification

7

● Allows us to express “if-then” relationships as constraints
○ Ex. “If x is equal to 5, then y must be greater than 7”

● Reification: the process of linking a logical condition to a
boolean variable

Reification

8

“If x is equal to 5, then y must be greater than 7”
● Step 1: Introduce a boolean variable which will indicate whether x = 5

● Step 2: Tie the boolean indicator with the condition x = 5

● Step 3: Add further constraints with respect to the indicator:

Reification in OR-Tools

9

⚠ Reification Warning
● constraint.OnlyEnforceIf only works for these constraints:

○ Add
○ AddBoolOr
○ AddBoolAnd
○ AddLinearExpressionInDomain (haven’t seen this one yet)

● This is usually all you need

10

Magic Sequence in OR-Tools

11

Magic Sequence in OR-Tools
●

12

Magic Sequence in OR-Tools
●

13

Magic Sequence in OR-Tools
● Solve and print the output

14

Queens Puzzle
● You are presented with an n x n

board, and must place n
“queens” in the board

Rules
● No two queens can be in the same row or column

Rules
● No two queens can touch diagonally

Rules
● No two queens can be in the same region

○ Equivalently, each region must have exactly one queen

Observation
● A single queen eliminates the following squares for other queens

Solving The Problem
● Step 1: Define your variables

Remember, the variables are the quantities that change, whose
values are determined by the solver, and should indicate the
solution to your problem.

Have a variable for the location of each queen. We’ll actually do
this by maintaining a “row” and “column” variable for each queen

Solving The Problem
● Step 2: Implement your Constraints

What are the “easiest” constraints in this problem?

● Each queen must be in a different row
● Each queen must be in a different column

Each of these takes just one line of code to implement. How?

Solving The Problem
● Step 2: Implement your Constraints

What other constraint is there?

● Queens cannot be one-step diagonally from one another

HACK: Consider the following equality. When is it satisfied?

Solving The Problem
● Step 2: Implement your Constraints

Satisfied under one of the following conditions:
● Rows are 2 apart, and columns are the same
● Columns are 2 apart, and rows are the same
● Rows are 1 apart and columns are 1 apart

Solving The Problem
● Step 2: Implement your Constraints

Satisfied under one of the following conditions:
● Rows are 2 apart, and columns are the same
● Columns are 2 apart, and rows are the same
● Rows are 1 apart and columns are 1 apart

Solving The Problem
● Step 2: Implement your Constraints

Satisfied under one of the following conditions:
● Rows are 2 apart, and columns are the same
● Columns are 2 apart, and rows are the same
● Rows are 1 apart and columns are 1 apart

Touching
diagonally!

Solving The Problem
● Step 2: Implement your Constraints

So we enforce the following:

Solving The Problem
● Step 2: Implement your Constraints

What other constraint is there?

● Queens cannot be in the same region

This is inherently different from ensuring the queens are in different
rows and columns

● Rows and Columns were easy, because our variables were
defined with respect to rows and columns

● Here, the regions are strange shapes, and isn’t as easy as
ensuring row[i] != row[j]

Solving The Problem
● Step 2: Implement your Constraints

● Queens cannot be in the same region

For each cell in a region, maintain an indicator, for if a queen is present
in that cell. Then, group all cells of a region together, and ensure that
the sum of the indicators for these cells is equal to... 1

Is reification necessary? YES!

A boolean variable on its own doesn’t tell our solver about the position of
our queen. We need to link this boolean variable to our queen variables.

Solving The Problem
● Step 2: Implement your Constraints

● Queens cannot be in the same region

1

Solution

Non-contiguous Domains
● cp_model.Domain.FromValues([0,2,4,6,8])

● cp_model.Domain.FromIntervals([0, 2],[6, 8])

● model.NewIntVarFromDomain(domain, name)

33

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Linear Expressions on
Domains● Enforce that result of a linear expression must fall into a domain
● cp_model.AddLinearExpressionInDomain(

 x + y,

 cp_model.Domain.FromValues([0,2,4])

)

34

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

Ex: Shipping Allotments

35

Tuning the CP-SAT Solver
● We can play around with CP-SAT internals to

possibly speed up the search
● There are tons of parameters that can be adjusted

○ Some are documented better than others...

○ https://github.com/google/or-tools/blob/stable/ortool
s/sat/sat_parameters.proto

● Warning: these things are generally far less
important than having a good encoding

36

https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto
https://github.com/google/or-tools/blob/stable/ortools/sat/sat_parameters.proto

Parallelization
● We can run solver computation in parallel across

multiple threads

○ By default, CP-SAT will try to use all available cores

37

Hinting
● We can give the model a hint to try setting a

variable to a specified value

38

Quick & Dirty Optimization
● Finding an optimal solution can take far longer than

finding a feasible solution
● Often in practice, we don’t really care about having the

true optimal value with total certainty
○ Just want it to be “close enough”

39

Quick & Dirty Optimization
Solution:
● Optimize objective and run solver for a reasonable amount of

time (depends on your patience)
● Interrupt early with Ctrl+C or max_time_in_seconds param

○ If interrupted, solver returns FEASIBLE instead of OPTIMAL

● Print the intermediate objective value and solution and
decide if it’s “good enough”
○ For tough problems, no guarantee that you are close to optimal!
○ best_bound in response stats gives best LB (when minimizing)

or UB (when maximizing) proved so far for optimal value

40

Quick & Dirty Optimization
● Helpful: set log_search_progress param to True

○ Prints every time a new best solution is found

● Sometimes helpful: custom solution callback
○ Called each time any new feasible solution is found

41

Approximating Feasibility
● What if non-optimization problem is too hard to solve?
● Can’t interrupt early for a “good enough” solution;

intermediate solution is feasible or it is not
● What if we were OK with a “not quite feasible” solution?

○ What could “not quite feasible” mean?

42

Soft Constraints
● Constraints like Add(...) are hard constraints

○ Must be satisfied

● Soft constraints: can be violated, but incurs a penalty
● Transform feasibility problem into optimization problem by

minimizing penalty
○ Allows interrupting early if you’re OK with some violated constraints
○ Can sometimes be faster than solving with hard constraints!

43

Ex: Soft Graph Coloring

44

Optimizing Pairs of
Objectives

45

Optimizing Pairs of
Objectives

46

Optimizing Pairs of
Objectives● Previous approach doesn’t scale well for >2 objectives
● What’s another way to do it using multiple calls to Solve?

47

General CP-SAT Modeling
Tips●

48

MIP vs CP-SAT

● Neither is clearly more performant in general

● Neither is an evolution of the other

49

MIP CP-SAT
• Supports infinite bounds
• Supports fractional variables and

coefficients
• Better handles LP-style problems

(with integers mixed in)
• Reification of constraints is possible,

but requires algebraic modeling trick

• Better handles combinatorial
problems, Booleans

• More sophisticated interface
• Lots of specialized modeling objects
• Modeling may be easier
• Models may be more extensible
• Reification is easier, more performant

● Happy Halloween!
● Happy Diwali!
● Don’t forget to vote!

