

Lecture 9: More Constraint

Programming

Ishaan Lal <u>ilal@seas.upenn.edu</u>

Logistics

- HW4 due Monday 11/11
- Project proposals due yesterday
 - Check gradescope for feedback when released
- Project checkpoint due 11/21
 - Aim for ~75% completion

Recap: Constraint Programs

- Find an assignment of variables to values, subject to general constraints
- Discrete, finitely bounded domains (integers only)
- May or may not optimize an objective

Constraints for BoolVars

- Recall model.NewBoolVar(name)
 - Equivalent to model.NewIntVar(0, 1, name)
- boolvar.Not()
- model.AddBoolOr(boolvars_list)
- model.AddBoolAnd(boolvars_list)
- model.AddImplication(b1, b2)

Ex: Magic Sequence

- A magic sequence is a sequence $s_0, s_1, ..., s_n$ where s_i = number of occurrences of i in the sequence
- Ex:

Ex: Magic Sequence

- A magic sequence is a sequence $s_0, s_1, ..., s_n$ where s_i = number of occurrences of i in the sequence
- Ex:

Reification

- Allows us to express "if-then" relationships as constraints
 - Ex. "If x is equal to 5, then y must be greater than 7"
- **Reification:** the process of linking a logical condition to a boolean variable

- Introduce a new boolean (0/1) variable b which is true if and only if constraint c holds ($b \Leftrightarrow c$)
 - Essentially, name truth value of *c* with variable *b*

Reification

"If x is equal to 5, then y must be greater than 7"

• Step 1: Introduce a boolean variable which will indicate whether x = 5

is_x_five = model.NewBoolVar("is_x_five")

```
Step 2: Tie the boolean indicator with the condition x = 5
```

 $x == 5 \iff \texttt{is_x_five} = 1$

model.Add(x == 5).OnlyEnforceIf(is_x_five)
model.Add(x != 5).OnlyEnforceIf(is_x_five.Not())

model.add(y > 7).OnlyEnforceIf(is_x_five)

Reification in OR-Tools

- OR-Tools API uses **half-reification**: instead of $b \Leftrightarrow c$, just supports $b \Rightarrow c$
 - Can fully reify by combining $b \Rightarrow c$ and $\overline{b} \Rightarrow \overline{c}$
- onstraint.OnlyEnforceIf(bool_var)
 - Means bool_var ⇒ constraint

Reification Warning

- constraint.OnlyEnforceIf only works for these constraints:
 - > Add
 - AddBoolOr
 - AddBoolAnd
 - AddLinearExpressionInDomain (haven't seen this one yet)
- This is usually all you need

• Initialize model and *s_i* variables

model = cp_model.CpModel()

```
# Create s_i variables
S = {}
for i in range(n+1):
    S[i] = model.NewIntVar(0, n+1, f's_{i}')
```


Reify constraints $s_i = j$ into new boolean variables

```
# Reified constraints: eq[i, j] <-> s_i == j
eq = {}
for i in range(n+1):
    for j in range(n+1):
        eq[i, j] = model.NewBoolVar(f's_{i} == {j}')
        model.Add(S[i] == j).OnlyEnforceIf(eq[i, j])
        model.Add(S[i] != j).OnlyEnforceIf(eq[i, j].Not())
```


• Make s_i equal to number of occurrences of i

```
# s_i = number of occurrences of i in sequence
for i in range(n+1):
    model.Add(
        S[i] == sum(eq[j, i] for j in range(n+1))
        )
```


• Solve and print the output

solver = cp_model.CpSolver()
if solver.Solve(model) == cp_model.FEASIBLE:
 print([f's_{i}={solver.Value(S[i])}' for i in range(n+1)])

Queens Puzzle

• You are presented with an n x n board, and must place n "queens" in the board

Rules

• No two queens can be in the same row or column

Rules

• No two queens can *touch* diagonally

Rules

- No two queens can be in the same region
 - Equivalently, each region must have *exactly* one queen

Observation

• A single queen eliminates the following squares for other queens

					×					
					×					
					×					
					×					
					×					
				×	×	×				
×	×	×	×	×	¥	×	×	×	×	×
				×	×	×				
					×					
					×					
					×					

• Step 1: Define your variables

Remember, the variables are the quantities that *change*, whose values are determined by the solver, and should indicate the solution to your problem.

Have a variable for the location of each queen. We'll actually do this by maintaining a "row" and "column" variable for each queen

rows = [model.NewIntVar(0, BOARD_SIZE - 1, f"row_{i}") for i in range(BOARD_SIZE)]
columns = [model.NewIntVar(0, BOARD_SIZE - 1, f"col_{i}") for i in range(BOARD_SIZE)]

• Step 2: Implement your Constraints

What are the "easiest" constraints in this problem?

- Each queen must be in a different row
- Each queen must be in a different column

Each of these takes just **one line of code** to implement. How?

model.AddAllDifferent(rows)
model.AddAllDifferent(columns)

• Step 2: Implement your Constraints

What other constraint is there?

• Queens cannot be one-step diagonally from one another

HACK: Consider the following equality. When is it satisfied?

$$\texttt{row}[i] - \texttt{row}[j]| + |\texttt{col}[i] - \texttt{col}[j]| = 2$$

• Step 2: Implement your Constraints

$$|\texttt{row}[i] - \texttt{row}[j]| + |\texttt{col}[i] - \texttt{col}[j]| = 2$$

Satisfied under one of the following conditions:

- Rows are 2 apart, and columns are the same
- Columns are 2 apart, and rows are the same
- Rows are 1 apart and columns are 1 apart

• Step 2: Implement your Constraints

$$|\texttt{row}[i] - \texttt{row}[j]| + |\texttt{col}[i] - \texttt{col}[j]| = 2$$

Satisfied under one of the following conditions:

- Rows are 2 apart, and columns are the same
- - Columns are 2 apart, and rows are the same-
- Rows are 1 apart and columns are 1 apart

• Step 2: Implement your Constraints

$$|\texttt{row}[i] - \texttt{row}[j]| + |\texttt{col}[i] - \texttt{col}[j]| = 2$$

Satisfied under one of the following conditions:

- Rows are 2 apart, and columns are the same
- Columns are 2 apart, and rows are the same
- Rows are 1 apart and columns are 1 apart

• Step 2: Implement your Constraints

So we enforce the following:

```
|\texttt{row}[i] - \texttt{row}[j]| + |\texttt{col}[i] - \texttt{col}[j]| \neq 2
```

```
for i in range(BOARD_SIZE):
    for j in range(i + 1, BOARD_SIZE):
        # Define variables for absolute differences
        abs_row_diff = model.NewIntVar(0, BOARD_SIZE - 1, f"abs_row_diff_{i}_{j}")
        abs_col_diff = model.NewIntVar(0, BOARD_SIZE - 1, f"abs_col_diff_{i}_{j}")
        # Set up absolute difference constraints
        model.AddAbsEquality(abs_row_diff, rows[i] - rows[j])
        model.AddAbsEquality(abs_col_diff, columns[i] - columns[j])
        # Ensure that the queens are not exactly one cell away diagonally
        model.Add(abs_row_diff + abs_col_diff != 2)
```

• Step 2: Implement your Constraints

What other constraint is there?

• Queens cannot be in the same region

This is inherently different from ensuring the queens are in different rows and columns

- Rows and Columns were easy, because our variables were defined with respect to rows and columns
- Here, the regions are strange shapes, and isn't as easy as ensuring row[i] != row[j]

- Step 2: Implement your Constraints
 - Queens cannot be in the same region

For each cell in a region, maintain an indicator, for if a queen is present in that cell. Then, group all cells of a region together, and ensure that **the sum** of the indicators for these cells is equal to... 1

Is reification necessary? **YES!**

A boolean variable on its own doesn't tell our solver about the position of our queen. We need to **link** this boolean variable to our queen variables.

- Step 2: Implement your Constraints
 - Queens cannot be in the same region

```
# Enforce region constraint: exactly one queen in each region
for region_number, region in enumerate(regions):
    in_region = []
    for (row, col) in region:
        cell_var = model.NewBoolVar(f"cell_{row}_{col}")
        in_region.append(cell_var)
        model.Add(rows[region_number] == row).OnlyEnforceIf(cell_var)
        model.Add(columns[region_number] == col).OnlyEnforceIf(cell_var)
        model.Add(sum(in_region) == 1)
```

Solution

×	×	×	×	¥	×	×	×	×	×	×
×	×	×	×	×	×	⊻	×	×	×	×
×	×	×	Ę.	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	¥	×
×	×	×	×	×	×	×	⊻	×	×	×
×	×	₩	×	×	×	×	×	×	×	×
×	×	×	×	×	₩	×	×	×	×	×
×	×	×	×	×	×	×	×	¥	×	×
4	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	₩
×	₩	×	×	×	×	×	×	×	×	

Non-contiguous Domains

cp_model.Domain.FromValues([0,2,4,6,8])

0	1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---	---

cp_model.Domain.FromIntervals([0, 2],[6, 8])

0	1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---	---

model.NewIntVarFromDomain(domain, name)

Linear Expressions on Domains esult of a linear expression must fall into a domain

cp_model.AddLinearExpressionInDomain(

x + y,

cp_model.Domain.FromValues([0,2,4])

0,0	1,0	2,0	3,0	4,0
0,1	1,1	2,1	3,1	4,1
0,2	1,2	2,2	3,2	4,2
0,3	1,3	2,3	3,3	4,3
0,4	1,4	2,4	3,4	4,4

Ex: Shipping Allotments

- Shipping company has n ships with capacity 100 each
- Want to load all shipments of varying sizes onto ships
- **Goal:** maximize number of ships which have at least 20 capacity unused (in case of emergency)
 - See worked solution in additional code (ships.py)

Tuning the CP-SAT Solver

- We can play around with CP-SAT internals to possibly speed up the search
- There are tons of parameters that can be adjusted
 - Some are documented better than others...
 - <u>https://github.com/google/or-tools/blob/stable/ortool</u> <u>s/sat/sat_parameters.proto</u>
- **Warning:** these things are generally far less important than having a good encoding

Parallelization

• We can run solver computation in parallel across multiple threads

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 4

• By default, CP-SAT will try to use all available cores

Hinting

• We can give the model a **hint** to try setting a variable to a specified value

try setting x = 5 first model.AddHint(x, 5)

Quick & Dirty Optimization

- Finding an optimal solution can take far longer than finding a feasible solution
- Often in practice, we don't *really* care about having the true optimal value with total certainty
 - Just want it to be "close enough"

Quick & Dirty Optimization

Solution:

- Optimize objective and run solver for a reasonable amount of time (depends on your patience)
- Interrupt early with Ctrl+C or max_time_in_seconds param
 - If interrupted, solver returns FEASIBLE instead of OPTIMAL
- Print the intermediate objective value and solution and decide if it's "good enough"
 - For tough problems, no guarantee that you are close to optimal!
 - best_bound in response stats gives best LB (when minimizing)
 or UB (when maximizing) proved so far for optimal value

Quick & Dirty Optimization

- Helpful: set log_search_progress param to True
 - Prints every time a new best solution is found
- Sometimes helpful: custom solution callback
 - Called each time any new feasible solution is found

```
class BestSolutionFinder(cp_model.CpSolverSolutionCallback):
    def __init__(self, minimizing=True):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.minimizing = minimizing
        self.best_value = (1 if minimizing else -1) * float('inf')
    def on_solution_callback(self):
        obj = self.ObjectiveValue()
        if (self.minimizing and obj < self.best_value) \
            or (not self.minimizing and obj > self.best value):
    };
}
```

```
self.best_value = self.ObjectiveValue()
print(f'New best value: {self.best_value}')
```

solver = cp_model.CpSolver()
solver.parameters.num_search_workers = 6
solver.parameters.log_search_progress = True
Our solution callback is redundant to logging
best = BestSolutionFinder()
solver.SolveWithSolutionCallback(model, best)

Approximating Feasibility

- What if non-optimization problem is too hard to solve?
- Can't interrupt early for a "good enough" solution; intermediate solution is feasible or it is not
- What if we were OK with a "not quite feasible" solution?
 - What could "not quite feasible" mean?

Soft Constraints

- Constraints like Add (. . .) are hard constraints
 - Must be satisfied
- **Soft constraints**: can be violated, but incurs a penalty
- Transform feasibility problem into optimization problem by minimizing penalty
 - Allows interrupting early if you're OK with some violated constraints
 - Can sometimes be faster than solving with hard constraints!

Ex: Soft Graph Coloring

• Hard constraint:

for every edge (u, v), $color(u) \neq color(v)$

• Soft constraint

penalty = num. edges (u, v) with color(u) = color(v)

• Can count number of violated constraints using reification

Øø

Optimizing Pairs of

- **Objectives** to add soft constraint with penalty *p* but problem already optimizes (say, minimizes) objective *o*?
 - Key idea: why not minimize both?
 - Attempt 1: minimize o + p
 - **Problem:** *o* and *p* may be interrelated
 - E.g., minimum possible value of o may be lower when p = 1 than when p = 0

Optimizing Pairs of

- **Objectives**oid interdependence by minimizing p first and using o to break ties
 - Aka, minimize (p, o) over the **lexicographic ordering**
 - How to make sure that *p* is minimized before *o*?
 - Attempt 2:

• minimize Mp + o, where $M = o_{max} - o_{min} + 1$

• Can generalize to maximization

Optimizing Pairs of

Opear wesch doesn't scale well for >2 objectives

• What's another way to do it using multiple calls to Solve?

model.Minimize(p)
solver.Solve(model)

```
# Hint (may speed up solving)
model.AddHint(p, solver.Value(p))
model.AddHint(o, solver.Value(o))
```

Minimize o (and constrain p based on previous optimal value)
model.Add(p == solver.Value(p)) # use >= or <= if not optimal
model.Minimize(o)</pre>

₽⇔

General CP-SAT Modeling

- The afraid to add new variables/constraints, but be aware of roughly how many you have $(O(n)? O(n^3)?)$
 - Try to restrict range of values for each variable
 - Use boolean variables/constraints when possible
 - Experiment with hard vs. soft constraints
 - If possible, split into subproblems, then combine solutions
 - Make it easy to toggle constraints on/off for debugging

MIP vs CP-SAT

	MIP		CP-SAT	
•	Supports infinite bounds	٠	Better handles combinatorial	
•	Supports fractional variables and		problems, Booleans	
	coefficients	•	More sophisticated interface	
•	Better handles LP-style problems	•	Lots of specialized modeling objects	
	(with integers mixed in)	•	Modeling may be easier	
•	Reification of constraints is possible,	•	Models may be more extensible	
	but requires algebraic modeling trick	•	Reification is easier, more performant	

- Neither is clearly more performant in general
- Neither is an evolution of the other

- Happy Halloween!
- Happy Diwali!
- Don't forget to vote!