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Logistics
● Final project partners due today at 11:59pm
● Final project proposals due Monday 10/28
● Late Days NOT ALLOWED on final project
● Homework 3 due on Monday
● Homework 4 will be released this weekend

○ Due in two weeks (likely on 11/11)
■ Keep in mind that Project Checkpoint is on 11/21, so plan your 

work accordingly

○ May not be able to finish part 2 until next week
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Guest Lecture
● What are some things that you learned?
● What are some things that you found interesting?
● Anything you still have questions about?



Warm Up

What is Uber?



LP



LP ILP



MIP
LP ILP



MIP
LP ILP

?



Constraints
● Recall: many decision problems involve checking if 

there is a solution that satisfies certain constraints
● A constraint is just a rule that limits which possible 

solutions are acceptable
● Ex: CNF-SAT

● Solution: a truth assignment
● Constraints: in each clause, at least one variable is 

assigned to True
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Constraint Satisfaction
● A constraint satisfaction problem is defined by:

○ a set of variables, each with its own range of values
○ a set of constraints

● A candidate solution is any assignment of vars to values
● Candidate solutions that satisfy all constraints are feasible
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Constraint Programming
● “Like IP, but with more complex constraints”
● OR-Tools has a new constraint programming 

solver called CP-SAT
● Behind the scenes: turns constraints
      into clauses, then uses SAT solver!

○ vast oversimplification...

● Very successful! “State of the art”
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Results of Minizinc CP Challenge 2021



CP-SAT Documentation
● For reference (variables, constraints):

https://developers.google.com/optimization/cp/cp_solver
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https://developers.google.com/optimization/cp/cp_solver


Basic Variables in CP-SAT
● model.NewIntVar(lower_bnd, upper_bnd, name)

● model.NewBoolVar(name)
○ Equivalent to model.NewIntVar(0, 1, name)

● Returns newly created variable (just like MIP)
● CP-SAT only works over discrete, finite domains

○ No NumVars, integers only!
○ No infinite bounds
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Linear Constraints in CP-SAT
● Adding/scalar multiplying vars gives a (linear) expression
● Linear expr. with an (in)equality gives a linear constraint

○ Unlike MIP, we can also use not equals (!=)

● Unlike MIP, coefficients must also be integers
○ If you have fractional coefficients, you need to scale them up to 

integers or use MIP solver instead

● model.Add(linear_constraint)
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Solving MIP with CP-SAT
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Solving MIP with CP-SAT
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CP-SAT won’t return 

this, because we have 

to define x1 and x2as 

intvars



Solving MIP with CP-SAT
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Basic Nonlinear Constraints

● model.AddMultiplicationEquality(target, [v1,v2, …, vn])
○ Adds constraint:  target == v1 * v2 * ... * vn

● model.AddMaxEquality(target, var_arr)
○ Adds constraint:  target == Max(var_arr)
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The AllDifferent Constraints
● model.AddAllDifferent(var_arr)

● Forces all vars in the array to take on different values!
● Very common in practice

○ Esp. for assignment problems, scheduling, etc.

19



Classic Example: 
Cryptarithms● In a cryptarithmetic puzzle, want to replace each letter 

with a different digit to make the arithmetic valid
○ no leading zeros

20

          A B

      +     A

   --------

        B C C

     9 1

      +     9

   --------

        1 0 0



Your Turn



Classic Example: 
Cryptarithms● In a cryptarithmetic puzzle, want to replace each letter 

with a different digit to make the arithmetic valid
○ no leading zeros
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      S E N D

 +    M O R E

 ------------

    M O N E Y

      9 5 6 7

 +    1 0 8 5

 ------------

    1 0 6 5 2



Classic Example: 
Cryptarithms
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      S E N D

 +    M O R E

 ------------

    M O N E Y



Cryptarithms in OR-Tools
● Initializing the model and declaring variables
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      S E N D

 +    M O R E

 ------------

    M O N E Y

1

1



Cryptarithms in OR-Tools
● Add arithmetic and all different constraints (yes, that easy!)
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      S E N D

 +    M O R E

 ------------

    M O N E Y



Cryptarithms in OR-Tools
● Solve and print the solution

● Output:
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      S E N D

 +    M O R E

 ------------

    M O N E Y



Optimization with CP-SAT
● We can also maximize/minimize an expression, e.g.
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The Element Constraint
● model.AddElement(index, var_arr, target)

● Adds constraint:  target == var_arr[index]
● Useful because index can be a variable
● The var_arr can also contain constants!
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The Inverse Constraint
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x0

The Inverse Constraint
● model.AddInverse([x0,x1,x2,x3], [y0,y1,y2,y3])
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y2

y3

= 0

= 2

= 3

= 1

0 =

3 =

1 =

2 =



Ex: Taxi Assignment
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What are the variables? What are the constraints?



Visualizing The Problem
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Visualizing The Problem
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12km

8km

11km

5km



Visualizing The Problem
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Visualizing The Problem
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Taxi 3

Taxi 2

Taxi 4

Taxi 1

Person 4

Person 2

Person 1

Person 3



Visualizing The Problem
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Taxi 3

Taxi 2

Taxi 4

Taxi 1

Person 4

Person 2

Person 1

Person 3

● model.AddInverse([x0,x1,x2,x3], [y0,y1,y2,y3])

[3,2,4,1] [4,2,1,3]



Interval Variables
● CP-SAT has special variables that provide “syntactic sugar” for 

representing time intervals
● model.NewIntervalVar(start, duration, end, name)

● Represents an interval, enforcing end - start == duration
○ start, end, duration can be constants or variables!

● Note: there is no way to access start, end, duration of an 
interval by default
○ Recommended: directly add them as fields of the interval object 
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Interval Variables
● Note: there is no way to access start, end, duration of an 

interval by default
○ Recommended: directly add them as fields of the interval, e.g.

interval.start = start

● model.AddNoOverlap(interval_arr)

● Powerful constraint: enforces that all intervals in the array do 
not overlap with each other!
○ It’s OK to have shared start/endpoints
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Job Shop Scheduling
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Ex: Job Shop Scheduling
● 3 machines, numbered 0, 1, 2
● Tasks are pairs of (which machine, time required)
● 3 jobs:
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Ex: Job Shop Scheduling
● Sample feasible (not optimal) solution

● What’s the makespan of this solution?
○ See code example (jobshop.py) for worked solution
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