
Lecture 8:
Intro to Constraint
Programming

CIS1921

Logistics
● Final project partners due today at 11:59pm
● Final project proposals due Monday 10/28
● Late Days NOT ALLOWED on final project
● Homework 3 due on Monday
● Homework 4 will be released this weekend

○ Due in two weeks (likely on 11/11)
■ Keep in mind that Project Checkpoint is on 11/21, so plan your

work accordingly

○ May not be able to finish part 2 until next week

2

Guest Lecture
● What are some things that you learned?
● What are some things that you found interesting?
● Anything you still have questions about?

Warm Up

What is Uber?

LP

LP ILP

MIP
LP ILP

MIP
LP ILP

?

Constraints
● Recall: many decision problems involve checking if

there is a solution that satisfies certain constraints
● A constraint is just a rule that limits which possible

solutions are acceptable
● Ex: CNF-SAT

● Solution: a truth assignment
● Constraints: in each clause, at least one variable is

assigned to True

9

Constraint Satisfaction
● A constraint satisfaction problem is defined by:

○ a set of variables, each with its own range of values
○ a set of constraints

● A candidate solution is any assignment of vars to values
● Candidate solutions that satisfy all constraints are feasible

10

Constraint Programming
● “Like IP, but with more complex constraints”
● OR-Tools has a new constraint programming

solver called CP-SAT
● Behind the scenes: turns constraints
 into clauses, then uses SAT solver!

○ vast oversimplification...

● Very successful! “State of the art”

11

Results of Minizinc CP Challenge 2021

CP-SAT Documentation
● For reference (variables, constraints):

https://developers.google.com/optimization/cp/cp_solver

12

https://developers.google.com/optimization/cp/cp_solver

Basic Variables in CP-SAT
● model.NewIntVar(lower_bnd, upper_bnd, name)

● model.NewBoolVar(name)
○ Equivalent to model.NewIntVar(0, 1, name)

● Returns newly created variable (just like MIP)
● CP-SAT only works over discrete, finite domains

○ No NumVars, integers only!
○ No infinite bounds

13

Linear Constraints in CP-SAT
● Adding/scalar multiplying vars gives a (linear) expression
● Linear expr. with an (in)equality gives a linear constraint

○ Unlike MIP, we can also use not equals (!=)

● Unlike MIP, coefficients must also be integers
○ If you have fractional coefficients, you need to scale them up to

integers or use MIP solver instead

● model.Add(linear_constraint)

14

Solving MIP with CP-SAT

15

Solving MIP with CP-SAT

16

CP-SAT won’t return

this, because we have

to define x1 and x2as

intvars

Solving MIP with CP-SAT

17

Basic Nonlinear Constraints

● model.AddMultiplicationEquality(target, [v1,v2, …, vn])
○ Adds constraint: target == v1 * v2 * ... * vn

● model.AddMaxEquality(target, var_arr)
○ Adds constraint: target == Max(var_arr)

18

The AllDifferent Constraints
● model.AddAllDifferent(var_arr)

● Forces all vars in the array to take on different values!
● Very common in practice

○ Esp. for assignment problems, scheduling, etc.

19

Classic Example:
Cryptarithms● In a cryptarithmetic puzzle, want to replace each letter

with a different digit to make the arithmetic valid
○ no leading zeros

20

 A B

 + A

 B C C

 9 1

 + 9

 1 0 0

Your Turn

Classic Example:
Cryptarithms● In a cryptarithmetic puzzle, want to replace each letter

with a different digit to make the arithmetic valid
○ no leading zeros

22

 S E N D

 + M O R E

 M O N E Y

 9 5 6 7

 + 1 0 8 5

 1 0 6 5 2

Classic Example:
Cryptarithms

23

 S E N D

 + M O R E

 M O N E Y

Cryptarithms in OR-Tools
● Initializing the model and declaring variables

24

 S E N D

 + M O R E

 M O N E Y

1

1

Cryptarithms in OR-Tools
● Add arithmetic and all different constraints (yes, that easy!)

25

 S E N D

 + M O R E

 M O N E Y

Cryptarithms in OR-Tools
● Solve and print the solution

● Output:

26

 S E N D

 + M O R E

 M O N E Y

Optimization with CP-SAT
● We can also maximize/minimize an expression, e.g.

27

The Element Constraint
● model.AddElement(index, var_arr, target)

● Adds constraint: target == var_arr[index]
● Useful because index can be a variable
● The var_arr can also contain constants!

28

The Inverse Constraint

29

x0

The Inverse Constraint
● model.AddInverse([x0,x1,x2,x3], [y0,y1,y2,y3])

30

x1

x2

x3

y0

y1

y2

y3

= 0

= 2

= 3

= 1

0 =

3 =

1 =

2 =

Ex: Taxi Assignment

31

What are the variables? What are the constraints?

Visualizing The Problem

32

Visualizing The Problem

33

12km

8km

11km

5km

Visualizing The Problem

34

Visualizing The Problem

35

Taxi 3

Taxi 2

Taxi 4

Taxi 1

Person 4

Person 2

Person 1

Person 3

Visualizing The Problem

36

Taxi 3

Taxi 2

Taxi 4

Taxi 1

Person 4

Person 2

Person 1

Person 3

● model.AddInverse([x0,x1,x2,x3], [y0,y1,y2,y3])

[3,2,4,1] [4,2,1,3]

Interval Variables
● CP-SAT has special variables that provide “syntactic sugar” for

representing time intervals
● model.NewIntervalVar(start, duration, end, name)

● Represents an interval, enforcing end - start == duration
○ start, end, duration can be constants or variables!

● Note: there is no way to access start, end, duration of an
interval by default
○ Recommended: directly add them as fields of the interval object

37

Interval Variables
● Note: there is no way to access start, end, duration of an

interval by default
○ Recommended: directly add them as fields of the interval, e.g.

interval.start = start

● model.AddNoOverlap(interval_arr)

● Powerful constraint: enforces that all intervals in the array do
not overlap with each other!
○ It’s OK to have shared start/endpoints

38

Job Shop Scheduling

39

Ex: Job Shop Scheduling
● 3 machines, numbered 0, 1, 2
● Tasks are pairs of (which machine, time required)
● 3 jobs:

40

Ex: Job Shop Scheduling
● Sample feasible (not optimal) solution

● What’s the makespan of this solution?
○ See code example (jobshop.py) for worked solution

41

