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Logistics
● Homework 3: Kidney Exchange Program

○ Will be released soon
○ Use MIP to build a model that saves lives IRL!

● Cindy’s OH to be changed...
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Recap: LP and MIP
● Linear programming: maximize/minimize linear 

objective subject to linear (in)equalities
● Mixed-integer programming: same as linear 

programming, but some variables can take on integer 
values only
○ NP-complete!
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Modeling Fixed Costs
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A First Attempt
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Fails when n = 0



A Piecewise Definition
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Some Observations
● This is NOT a MIP because Objective Function is not 

linear in the domain. There is a discontinuity at n=0.
● Idea 1: Add a constraint of n > 0

○ What is wrong with this?
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● Idea 2: Add a constraint of n > 0, and later compare the 
objective value to it when we set n = 0.
○ What is not great about this?



Indicators for Constraints
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Indicators for Constraints
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Modeling Piecewise Linear
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Modeling Piecewise Linear
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What does the objective function look like?



Modeling Piecewise Linear
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What does the objective function look like?
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Modeling Piecewise Linear
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Modeling Piecewise Linear
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n = 300

300 0 0
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Modeling Piecewise Linear
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n = 500

400 100 0
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Modeling Piecewise Linear
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n = 800

400 200 200
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Modeling Piecewise Linear
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Modeling Piecewise Linear
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These constraints 
are not enough! 
What is missing?



Adding Constraints

20

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.
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● δ2 can only be >= 0 if δ1 is at its maximum.
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● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum



Adding Constraints
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● If i1 = 1, then 400 <= δ1 <= 400



Adding Constraints
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Adding Constraints
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Adding Constraints
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Adding Constraints
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● δ2 can only be >= 0 if δ1 is at its maximum.
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Adding Constraints
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Adding Constraints

29

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● δ3 must be 0 if i2 = 0. Otherwise, it can be any value in its range



Full MIP
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Towards Continuity
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● What if we choose to move away from a linear objective 
function altogether?
○ What do we do if our objective function is a curve?



Towards Continuity
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Approximate it as a piecewise 

linear function!



Indicators for Constraints
●  
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Modeling Fixed Costs
●  
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Debugging Integer Programs
● Your model is INFEASIBLE when it 

shouldn’t be… what to do?

● Want to find which buggy constraint(s) 
cannot be satisfied
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Debugging Integer Programs
● Typical model has thousands, even millions of constraints

● Insight: bugs usually happen at the level of groups of 
constraints, not individual constraints
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group

group



Debugging Integer Programs
● If we get rid of all buggy constraint groups, the model should 

become feasible

● Strategy: remove groups one-by-one until model is feasible, 
then add them back to find minimal set of buggy groups
○ Even better: use a “binary search” strategy (remove half the 

constraint groups at a time)
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Debugging Integer Programs
● What if the model is feasible, but the solution is wrong?

● If it’s easy to see that a constraint is violated, check that one

● Otherwise, just add constraints enforcing a known “right” 
solution, and then model will become infeasible
○ If you don’t have a known solution, enforce whatever property is violated 

in the wrong solution (e.g.  objective <= 300 )
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How do MIP solvers work?
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Naive Branching
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Naive Branching 
(Pseudocode) 
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How bad is Naive Branching?
● Does naive branching even terminate?

○ Only for pure integer programs!

● Which assignments does the algorithm discard or visit?
○ Need to evaluate both branches -- visits all feasible solutions!

● Basically the same as brute force
● Runtime scales with size of search space
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Recall: LP Relaxation
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Adding Inference
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Pruning Fruitless Nodes 
● Idea: discard partial solutions that will never yield a better objective 

value than one we’ve already found
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- If we’ve seen a MIP solution with a better 
objective value than LP(P), discard P since 
any integer solution can only be worse



Branch & Bound
● First version developed by Ailsa Land and Alison Harcourt in 1960

● Combines branching of solution space with bounds-based pruning

● B&B is an algorithm paradigm: a “meta-algorithm” that can be used to 
design algorithms for many different optimization algorithms
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Branch & Bound 
(Pseudocode)
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Example: Branch & Bound
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Example: Branch & Bound
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Example: Branch & Bound
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Example: Branch & Bound
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Example: Branch & Bound
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Example: Branch & Bound
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Iterative Branch & Bound
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Tuning Branch & Bound
● What choices can we make when implementing branch and bound?

● Which subproblem to visit next?

○ Visit first-added subproblem (BFS)

○ Visit last-added subproblem (DFS)

○ Visit subproblem with best LP objective (“best-first search”)

● Which variable to branch on?

○ Most constrained variable (smallest domain, e.g. booleans)

○ Largest/smallest coefficient in objective function

○ Closest/farthest to halfway between integers (e.g. value of 0.5)

● Most solvers allow user to tune these based on knowledge of problem 59



Improving B&B with Cuts
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Branch & Cut
● If we can find cuts of MIP, then add them and recurse on new MIP!

○ How to find cuts? Out of scope – method based on simplex algorithm

● Otherwise, branch to create subproblems as before

● Proposed by Manfred Padberg and Giovanni Rinaldi in 1989
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The Knapsack Problem
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0.5 oz., $500



Fractional Knapsack
● What if items are subdivisible? Want to decide how much of 

each item to take (as a fraction from 0 to 1).

● Intuitively, do we want to prioritize... most valuable items? 
Lightest items? Something else?

● Greedy algorithm: Sort items by value-to-weight ratio. Take as 
much of each item as possible, in order, until knapsack is full.
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0.5 oz., $500

Max Weight: 300 oz.

0/1 Knapsack
● In the 0/1 knapsack problem, we either select an item or we don’t.
● Does greedy algorithm still work?

○ No: 0/1 knapsack is NP-complete!
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MIP for 0/1 Knapsack
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B&B for Knapsack
● How can we use branch and bound as an algorithm paradigm 

for the 0/1 knapsack problem (without using MIP)?
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Stay Vigilant
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“Do not set yourself on fire just to keep the others around you warm.”


