~Mixed-Integer
- Programming

-------------------------------------------------------------------------------------------------------



Logistics

Homework 3: Kidney Exchange Program
Will be released soon

Use MIP to build a model that saves lives IRL!
Cindy's OH to be changed..



Recap: LP and MIP

Linear programming: maximize/minimize linear
objective subject to linear (in)equalities

Mixed-integer programming: same as linear
programming, but some variables can take on integer

values only
NP-complete!



Modeling Fixed Costs

You are the proud owner of your business called Quackulus, where you specialize in creating novel
rubber ducks. Suppose it costs $10 to produce a single duck. There is also a fixed setup cost of $250
if you choose to produce any units. Additionally, you can only create a maximum of 1000 ducks.

You are aiming to minimize your cost of production subject to some unknown linear constraints.




A First Attempt

You are the proud owner of your business called Quackulus, where you specialize in creating novel
rubber ducks. Suppose it costs $10 to produce a single duck. There is also a fixed setup cost of $250
if you choose to produce any units. Additionally, you can only create a maximum of 1000 ducks.

You are aiming to minimize your cost of production subject to some unknown linear constraints.

minimize 250+ 10n

Fails whenn=0



A Piecewise Definition

You are the proud owner of your business called Quackulus, where you specialize in creating novel
rubber ducks. Suppose it costs $10 to produce a single duck. There is also a fixed setup cost of $250
if you choose to produce any units. Additionally, you can only create a maximum of 1000 ducks.

You are aiming to minimize your cost of production subject to some unknown linear constraints.

0, =10
250+ 10n n>0



Some Observations

Thisis NOT a MIP because Objective Function is not
linear in the domain. There is a discontinuity at n=0.

Idea 1: Add a constraintofn>0
What is wrong with this?

Idea 2: Add a constraint of n > 0, and later compare the
objective value to it when we set n = 0.

What is not great about this?



Indicators for Constraints

Notice that the number of ducks we can produce is at most 1000. So if we choose to produce ducks,
then n < 1000, otherwise, n = 0. To formalize this, we will introduce an indicator variable z whereby:

{1 we make ducks
Z =

0 we do not make ducks




Indicators for Constraints

Notice that the number of ducks we can produce is at most 1000. So if we choose to produce ducks,
then n < 1000, otherwise, n = 0. To formalize this, we will introduce an indicator variable z whereby:

0 we do not make ducks

{1 we make ducks
A

minimize 250-2+10-n
subject to n < 1000 - z
n>0
z € {0,1}

other constraints



Modeling Piecewise Linear

Quackulus has undergone some improvements where the cost of production has changed. Now, there
is no fixed set-up cost. However, the cost per unit depends on the number of units produced.

The first 400 ducks you produce will cost $5 each to produce. The next 200 ducks will cost only $2
each. And the next 400 ducks will cost only $3 each.

For example, if you choose to create 500 ducks, it will cost you:
400 - $5 + 100 - $2 = $2200
And if you choose to create 900 ducks, it will cost you:

400 - $5 + 200 - $2 + 300 - $3 = $3300




Modeling Piecewise Linear

What does the objective function look like?

5-400 + 2 - (n — 400) 401 <n <600 =<{2n+1200 401 <n <600

d-M 0<n<400 on 0<n<400
5-400+2-200+3-(n—600) 601 <n <1000 3n+600 601 <n <1000



Modeling Piecewise Linear

What does the objective function look like?
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Modeling Piecewise Linear




Modeling Piecewise Linear

$5

L

n = 01+02+ 03
0 <0< 400
0 <0,< 200
0 <05<400



Modeling Piecewise Linear

53 n = 51 +09+ 53
e 0 < 4,< 400
H: ~ 0 <0,< 200
‘ 0 < 05< 400

Tt 03 N = 300



Modeling Piecewise Linear

53 n = 51 +09+ 53
e 0 < 4,< 400
H: ~ 0 <0,< 200
‘ 0 < 05< 400

51 03 N = 500



Modeling Piecewise Linear

53 n = 51 +09+ 53
e 0 < 4,< 400
H: ~ 0 <0,< 200
‘ 0 < 05< 400

51 53 N =800



Modeling Piecewise Linear
COST = 501 + 209 + 303

$5

L

0 <0,<400
0 <0,< 200
0 <05< 400



Modeling Piecewise Linear
COST = 501 + 209 + 303

n =01+02+03

/ { 0 <0< 400

—20 O S S 200
$5 | Q< 03< 400

[—— [— These constraints

are not enough!
01 03 \What is missing?




Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
e Similarly, 6, can only be >= 0 if 8, is at its maximum.
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e Introduce indicator i, which equals 1 if 8, is at its maximum
e Introduce indicator i, which equals 1 if 8, is at its maximum



Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
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o If =1, then 400 <= 61 <= 400
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Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
e Similarly, 6, can only be >= 0 if 8, is at its maximum.
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e 0§, canonlybe>=0if 8, is atits maximum.
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Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
e Similarly, 6, can only be >= 0 if 8, is at its maximum.

e Introduce indicator i, which equals 1 if 8, is at its maximum
e Introduce indicator i, which equals 1 if 8, is at its maximum

o If i,=0, then 0 <= 62 <=200
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o If i,=1, then 200 <= 61 <= 200

BUT WAIT!i, =1 onlyifi =1

Moreover, if i, =0,then 62 =0



Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
e Similarly, 6, can only be >= 0 if 8, is at its maximum.

e Introduce indicator i, which equals 1 if 8, is at its maximum
e Introduce indicator i, which equals 1 if 8, is at its maximum

o Ifi,=0,then 0 <=8, <=200 g - 200 20()
12 - ~ S

BUT WAIT!i, =1 onlyifi =1 ’l.2 - 200 S 52 S 200 - Z.l

Moreover, if i, =0,then 62 =0

o If i,=1, then 200 <= 61 <= 200



Adding Constraints

e 0§, canonlybe>=0if 8, is atits maximum.
e Similarly, 6, can only be >= 0 if 8, is at its maximum.

e Introduce indicator i, which equals 1 if 8, is at its maximum
e Introduce indicator i, which equals 1 if 8, is at its maximum

° 63 must be O if i, = 0. Otherwise, it can be any value in its range

0 <03 <400 - 19



Full MIP

minimize
subject to

531 + 205 + 393

11 - 400 < 6; <400

19 - 200 < 9 < 77 - 200
0 <43 <400 - 19

i1,12 € {0,1}



Towards Continuity

e \Xhat if we choose to move away from a linear objective
function altogether?
o What do we do if our objective function is a curve?

—200 /

/

el AT /
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Towards Continuity




Indicators for Constraints

More generally, can create indicator ¢ for constraint n > b if we
have boundsL <n—-b<U

Can replace n with any linear expression a;n, + a,n, + -+ + a;n;, but it
needs to be integer-valued

To enforce (c =1) = (n = b), add constraint:
n—b=>L(1-c)
To enforce (c =0) = (n <b—1), add constraint:
n—b<U+1)c—-1



Modeling Fixed Costs

So to make an indicator ¢ forn > 1, add:
n<U+1)c

If minimizing cost, dontneed to enforce(c=1)=> (n=>1)
Why? Equivalentto (n = 0) = (¢ = 0)

Since cost is 250c¢ + 10n, solver will set ¢ = 0 if possible when minimizing



Debugging Integer Programs

Your model is INFEASIBLE when it
shouldnt be.. what to do?

Want to find which buggy constraint(s)
cannot be satisfied




Debugging Integer Programs

Typical model has thousands, even millions of constraints

Insight: bugs usually happen at the level of groups of
constraints, not individual constraints

for j in range(num_jobs):
solver.Add(
sum(x[c, j] for c in range(num_cpus)) == 1

)

for cluster in élusters:
solver.Add(
sum(x[c, j] for c in cluster for j in range(num_jobs)) <= 2

)




Debugging Integer Programs

If we get rid of all buggy constraint groups, the model should
become feasible

Strategy: remove groups one-by-one until model is feasible,
then add them back to find minimal set of buggy groups

Even better: use a "binary search” strategy (remove half the
constraint groups at a time)



Debugging Integer Programs

What if the model is feasible, but the solution is wrong?
If it's easy to see that a constraint is violated, check that one

Otherwise, just add constraints enforcing a known “right’
solution, and then model will become infeasible

If you don't have a known solution, enforce whatever property is violated
in the wrong solution (e.g. objective <= 300)



How do MIP solvers work? ||||

e Most fundamental technique: branch and bound

Chess engines work using branch and bound too (“alpha-beta pruning”)

e Forsimplicity, let's assume that all integer
variables have lower and upper bounds

Ib(x) < x < ub(x)




Naive Branching illa

e Wantto solve MIP P where integer variables are bounded
e What's a first step for tree traversal of the search space?
o ldea: split the domain of a variable in half

Generates subproblems which can be solved recursively

e Pick whichever subproblem has the higher objective value,
and discard infeasible solutions



Naive Branching
(Pseudocode)

find the optimal objective value for P

naive (P) :

if 1b = ub for all vars:

if P violates a constraint:

return INFEASIBLE (-inf)

return objective value (P)
let x be a variable with 1lb(x) < ub(x)
let m = |(1b(x) + ub(x)) / 2]
return max{naive (P|x < m), naive(P|x = m)}



How bad is Naive Branching?

Does naive branching even terminate?

Only for pure integer programs!

Which assignments does the algorithm discard or visit?
Need to evaluate both branches -- visits all feasible solutions!

Basically the same as brute force

Runtime scales with size of search space



Recall: LP Relaxation ||||

e ForaMIP P, we get its LP relaxation LP(P) by allowing all
variables to be fractional

Can't just round LP solution

» Key observation: the LP solution \"w - max 5x + 8y
Is always at least as good as the
MIP solution (by objective value) \
—4 X
e Corollary:if all integer vars take R(2:25) 4 8(3.75) = 41.25
integer values in optimal solution | )
to LP(P), thenitis also optimal - i \\ |
solutionto P Y




Adding Inference s

e Idea: since LP is polytime-solvable, use LP solver as inference engine!

® Instead of recursing until all variables have one value, solve LP(P) and
check whether all integer variables have integer values

® Branch on integer variable x whose value v is fractional in LP(P)
Create subproblems x < |v] and x = [v]



Pruning Fruitless Nodes

Idea: discard partial solutions that will never yield a better objective
value than one we've already found

- Ifweve seen a MIP solution with a better
objective value than LP(P), discard P since
any integer solution can only be worse




Branch & Bound

First version developed by Ailsa Land and Alison Harcourt in 1960
Combines branching of solution space with bounds-based pruning

B&B is an algorithm paradigm: a "'meta-algorithm” that can be used to
design algorithms for many different optimization algorithms




Branch & Bound

# find the optimal objective value for P

# best seen is the best objective value so far

branch and bound (P, best _seen = -inf):

let LP_soln = solve LP(LP(P))

if LP_soln = INFEASIBLE: return INFEASIBLE

if objective value(LP_soln) < best_seen:

return -inf

let objl = branch_and bound(P|x < |v]|, best_seen)
set best_seen = max{objl, best_seen}

let obj2 = branch_and bound(P|x > [v], best_seen)
return max{objl, obj2}



Example: Branch & Bound

max
s.t.

f(x,y) = 5x + 8y
S5x +9y <45
1ix+12y <7
x,y € [0..100]

£(2.31,3.72)
= 41.28




Example: Branch & Bound alls

max  f(x,y) = 5x + 8y f(%sl,lsé?)
st. S5x + 9y <45 ‘V :
1.1x - 12y < 7 £(2,3.889)
x,y € [0..100] = 4till




Example: Branch & Bound

max  f(x,y) = 5x+ 8y f(igifézgz)
st. S5x + 9y < 45 ‘V :
1.1x + 12y <7 £(2,3.889)
x,y € [0..100] = 4till
y<3

f(2,3)
=34




Example: Branch & Bound

max  f(x,y) = 5x+ 8y f(igifézgz)
st. S5x + 9y < 45 ‘V :
1.1x + 12y <7 £(2,3.889)
= 41111
x,y € [0..100] < .

M £(2.3) £(18,4)

=34 = 41




Example: Branch & Bound

max  f(x,y) = 5x+ 8y f(%gzlt'fé?)
st 5x + 9y <45 ‘V
1.1x + 12y <7 £(2,3.889)
= 41111
x,y € [0..100] < .
h 1(2,3) £(184)
=34 = 41
f(1,4.444)
= 40.555




Example: Branch & Bound

max  f(x,y) = 5x + 8y f(§3£11,13é782)
st 5x + 9y <45 ‘V
1.1x + 12y < 7 (2, 3.889)
= 41111
x,y € [0..100] s .
£(2.3) £(1.8,4)
=34 = 41
(1, 4.444)
= 40.555
——
f(L,4)




Example: Branch & Bound

max f(x,y) = 5x+ 8y
s.t. S5x +9y <45
11x+12y <7

x,y € [0..100]

f(2.31,3.72)
= 41.28
f(2,3.889)
= 41.111
y<3 y=4
f(2,3) f(1.8,4)
=34 = 41
f(1,4.444)
= 40.555
f(1,4) £(0,5)
=37 =40




Example: Branch & Bound

max
st

f(x,y) = 5x +8y
5x + 9y <45
1lix+12y <7
x,y € [0..100]

£(2.31,3.72)
= 41.28

y

f(2,3.889)
= 41.111

y =4

£(1.8,4)
= 41

x<1 X =2

f(1,4.444)
= 40.555




Example: Branch & Bound

max  f(x,y) = 5x+ 8y f(%3z11'13é732)
st 5x + 9y < 45 x<2 x>3
1.ix+ 12y <7 £(2,3.889) £(3,3.083)
x,y € [0..100] = 41.111 = 39.666
' N y<3 y=4
£(2,3) f(18,4)
=34 = 41
x<1
£(1,4.444)
= 40.555
y\yzi
f(1,4) £(0,5)
=37 =40




Example: Branch & Bound

max  f(x,y) = 5x+ 8y f(%3z11'13é732)
st 5x + 9y < 45 x<2 x>3
1.ix+ 12y <7 £(2,3.889) £(3,3.083)
= 41.111 = 39.666
x,y € [0..100] e a4 .
f(2.3) £(18,4) %
=34 = 41
x<1
£(1,4.444)
= 40.555
y\yzi
f(1,4) £(0,5)
=37 =40




Iterative Branch & Bound

# find the optimal objective value for F,
branch_and bound(F)) :
let best _seen = -inf
let subproblems to visit = {Fj}
while to_visit is nonempty:
let P = subproblems to visit.pop()
let LP soln = solve LP(LP(P))
i B 4 LP;gbln = INFEASEﬁLE: continue
if objective value (LP_soln) < best seen: continue
if LP _soln satisfies integrality constraints for P:
set best seen = objective_value (LP_soln)
continue
let x be an int var with fractional value v in LP_soln

subproblems to_visit.add(branch and bound(P|x < |v]))
subproblems to_visit.add(branch _and bound(P|x > [v]))
return best_ seen



Tuning Branch & Bound

What choices can we make when implementing branch and bound?

Which subproblem to visit next?
Visit first-added subproblem (BFS)
Visit last-added subproblem (DFS)

Visit subproblem with best LP objective (“best-first search”)

Which variable to branch on?
Most constrained variable (smallest domain, e.g. booleans)
Largest/smallest coefficient in objective function

Closest/farthest to halfway between integers (e.g. value of 0.5)

Most solvers allow user to tune these based on knowledge of problem



Improving B&B with Cuts

o Informally, a cut for a MIP Pis a new constraint (inequality) that doesn'’t
eliminate any feasible solutions for P, but does for L P(P)

o Tighter LP relaxation means we converge faster to MIP solution!




Branch & Cut

If we can find cuts of MIP, then add them and recurse on new MIP!
How to find cuts? Out of scope - method based on simplex algorithm

Otherwise, branch to create subproblems as before

Proposed by Manfred Padberg and Giovanni Rinaldi in 1089




The Knapsack Problem

Given n items with values vy, ..., v, and weights wy, ...w,,, select
maximum-value subset to fit into a knapsack with capacity W.

3

200 oz., $5,000




Fractional Knapsack

What if items are subdivisible? Want to decide how much of
each item to take (as a fraction from 0 to 1).

Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.



0/1 Knapsack

In the 0/1 knapsack problem, we either select an item or we dont.
Does greedy algorithm still work?
No: 0/1 knapsack is NP-complete!




MIP for 0/1 Knapsack

MIP formulationis very straightforward:
maximize Yt x;v;
subjectto Y, xw; < W

Why use MIP instead of..
0 (nW) dynamic programming algorithm
0(n lgn) approximation algorithm (at least 50% of optimal)



B&B for Knapsack

How can we use branch and bound as an algorithm paradigm
for the 0/1 knapsack problem (without using MIP)?

b&b knapsack (items, W, best seen):
let fractional soln = greedy fractional (items, W)
if value (fractional soln) =< best seen:
return -inf
if fractional soln has no fractionally-selected items:
return value(fractional soln)
let x be a fractionally-selected item in fractional soln
let objl = b&b knapsack (items - {x}, W, best seen)}
set best seen = max{objl, best seen}
let obj2 = v(x) + b&b_knapsack(items - {x}, W - w(x), best seen - v(x))

return mawi{aoh4a1. ah-21}



‘Do not set yourself on fire just to Reep the others around you warm.”



