
Lecture 6:
More
Mixed-Integer
Programming

CIS1921

Logistics
● Homework 3: Kidney Exchange Program

○ Will be released soon
○ Use MIP to build a model that saves lives IRL!

● Cindy’s OH to be changed...

2

Recap: LP and MIP
● Linear programming: maximize/minimize linear

objective subject to linear (in)equalities
● Mixed-integer programming: same as linear

programming, but some variables can take on integer
values only
○ NP-complete!

3

Modeling Fixed Costs

4

A First Attempt

5

Fails when n = 0

A Piecewise Definition

6

Some Observations
● This is NOT a MIP because Objective Function is not

linear in the domain. There is a discontinuity at n=0.
● Idea 1: Add a constraint of n > 0

○ What is wrong with this?

7

● Idea 2: Add a constraint of n > 0, and later compare the
objective value to it when we set n = 0.
○ What is not great about this?

Indicators for Constraints

8

Indicators for Constraints

9

Modeling Piecewise Linear

10

Modeling Piecewise Linear

11

What does the objective function look like?

Modeling Piecewise Linear

12

What does the objective function look like?

$5

$2

$3

Modeling Piecewise Linear

13

$5

$2

$3

Modeling Piecewise Linear

14

$5

$2

$3

Modeling Piecewise Linear

15

n = 300

300 0 0

$5

$2

$3

Modeling Piecewise Linear

16

n = 500

400 100 0

$5

$2

$3

Modeling Piecewise Linear

17

n = 800

400 200 200

$5

$2

$3

Modeling Piecewise Linear

18

$5

$2

$3

Modeling Piecewise Linear

19

$5

$2

$3 {
These constraints
are not enough!
What is missing?

Adding Constraints

20

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

Adding Constraints

21

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

Adding Constraints

22

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i1 = 0, then 0 <= δ1 <= 400

● If i1 = 1, then 400 <= δ1 <= 400

Adding Constraints

23

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i1 = 0, then 0 <= δ1 <= 400

● If i1 = 1, then 400 <= δ1 <= 400 }

Adding Constraints

24

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i2 = 0, then 0 <= δ2 <= 200

● If i2 = 1, then 200 <= δ1 <= 200

Adding Constraints

25

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i2 = 0, then 0 <= δ2 <= 200

● If i2 = 1, then 200 <= δ1 <= 200 }

Adding Constraints

26

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i2 = 0, then 0 <= δ2 <= 200

● If i2 = 1, then 200 <= δ1 <= 200 }
BUT WAIT! i2 = 1 only if i1 = 1

Adding Constraints

27

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i2 = 0, then 0 <= δ2 <= 200

● If i2 = 1, then 200 <= δ1 <= 200 }
BUT WAIT! i2 = 1 only if i1 = 1

Moreover, if i1 = 0, then δ2 = 0

Adding Constraints

28

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● If i2 = 0, then 0 <= δ2 <= 200

● If i2 = 1, then 200 <= δ1 <= 200 }
BUT WAIT! i2 = 1 only if i1 = 1

Moreover, if i1 = 0, then δ2 = 0

Adding Constraints

29

● δ2 can only be >= 0 if δ1 is at its maximum.
● Similarly, δ3 can only be >= 0 if δ2 is at its maximum.

● Introduce indicator i1 which equals 1 if δ1 is at its maximum
● Introduce indicator i2 which equals 1 if δ2 is at its maximum

● δ3 must be 0 if i2 = 0. Otherwise, it can be any value in its range

Full MIP

30

Towards Continuity

31

● What if we choose to move away from a linear objective
function altogether?
○ What do we do if our objective function is a curve?

Towards Continuity

32

Approximate it as a piecewise

linear function!

Indicators for Constraints
●

33

Modeling Fixed Costs
●

34

Debugging Integer Programs
● Your model is INFEASIBLE when it

shouldn’t be… what to do?

● Want to find which buggy constraint(s)
cannot be satisfied

35

Debugging Integer Programs
● Typical model has thousands, even millions of constraints

● Insight: bugs usually happen at the level of groups of
constraints, not individual constraints

36

group

group

Debugging Integer Programs
● If we get rid of all buggy constraint groups, the model should

become feasible

● Strategy: remove groups one-by-one until model is feasible,
then add them back to find minimal set of buggy groups
○ Even better: use a “binary search” strategy (remove half the

constraint groups at a time)

37

Debugging Integer Programs
● What if the model is feasible, but the solution is wrong?

● If it’s easy to see that a constraint is violated, check that one

● Otherwise, just add constraints enforcing a known “right”
solution, and then model will become infeasible
○ If you don’t have a known solution, enforce whatever property is violated

in the wrong solution (e.g. objective <= 300)

38

How do MIP solvers work?

39

Naive Branching

40

Naive Branching
(Pseudocode)

41

How bad is Naive Branching?
● Does naive branching even terminate?

○ Only for pure integer programs!

● Which assignments does the algorithm discard or visit?
○ Need to evaluate both branches -- visits all feasible solutions!

● Basically the same as brute force
● Runtime scales with size of search space

42

Recall: LP Relaxation

43

Adding Inference

44

Pruning Fruitless Nodes
● Idea: discard partial solutions that will never yield a better objective

value than one we’ve already found

45

- If we’ve seen a MIP solution with a better
objective value than LP(P), discard P since
any integer solution can only be worse

Branch & Bound
● First version developed by Ailsa Land and Alison Harcourt in 1960

● Combines branching of solution space with bounds-based pruning

● B&B is an algorithm paradigm: a “meta-algorithm” that can be used to
design algorithms for many different optimization algorithms

46

Branch & Bound
(Pseudocode)

47

Example: Branch & Bound

48

Example: Branch & Bound

49

Example: Branch & Bound

50

Example: Branch & Bound

51

Example: Branch & Bound

52

Example: Branch & Bound

53

Example: Branch & Bound

54

Example: Branch & Bound

55

Example: Branch & Bound

56

Example: Branch & Bound

57

Iterative Branch & Bound

58

Tuning Branch & Bound
● What choices can we make when implementing branch and bound?

● Which subproblem to visit next?

○ Visit first-added subproblem (BFS)

○ Visit last-added subproblem (DFS)

○ Visit subproblem with best LP objective (“best-first search”)

● Which variable to branch on?

○ Most constrained variable (smallest domain, e.g. booleans)

○ Largest/smallest coefficient in objective function

○ Closest/farthest to halfway between integers (e.g. value of 0.5)

● Most solvers allow user to tune these based on knowledge of problem 59

Improving B&B with Cuts

60

Branch & Cut
● If we can find cuts of MIP, then add them and recurse on new MIP!

○ How to find cuts? Out of scope – method based on simplex algorithm

● Otherwise, branch to create subproblems as before

● Proposed by Manfred Padberg and Giovanni Rinaldi in 1989

61

The Knapsack Problem

62

0.5 oz., $500

Fractional Knapsack
● What if items are subdivisible? Want to decide how much of

each item to take (as a fraction from 0 to 1).

● Intuitively, do we want to prioritize... most valuable items?
Lightest items? Something else?

● Greedy algorithm: Sort items by value-to-weight ratio. Take as
much of each item as possible, in order, until knapsack is full.

63

0.5 oz., $500

Max Weight: 300 oz.

0/1 Knapsack
● In the 0/1 knapsack problem, we either select an item or we don’t.
● Does greedy algorithm still work?

○ No: 0/1 knapsack is NP-complete!

64

MIP for 0/1 Knapsack

65

B&B for Knapsack
● How can we use branch and bound as an algorithm paradigm

for the 0/1 knapsack problem (without using MIP)?

66

Stay Vigilant

67

“Do not set yourself on fire just to keep the others around you warm.”

