
LECTURE 6

Ishaan Lal

October 12, 2024

1 Introduction

Last lecture, we introduced Linear Programming (LP), Integer Linear Programming (ILP) and Mixed-Integer
Programming (MIP). Today, we will dive deeper into MIP.

Recall:

• LP involved maximizing/minimizing linear objective functions subject to linear inequalities

• MIP is identical to LP, with the extra constraint that some variables must be integers.

LP is poly-time solvable. MIP is NP-Complete.

1.1 Disclaimer

Apologies in advance for the density of these notes. This week was especially difficult and I had to veer from
my normal method of creating notes.

1.2 Pointwise Discontinuity

We seem to have a good grasp of how to solve LP-related problems when the objective function is indeed
Linear. But we may choose to ask: What do we do when the objective is discontinuous and linear? or
perhaps What do we do when the objective is piecewise linear? These are both valid questions, and may
arise in many real world applications.

Consider the following setting:

Problem Setting

You are the proud owner of your business called Quackulus, where you specialize in creating novel
rubber ducks. Suppose it costs $10 to produce a single duck. There is also a fixed setup cost of $250
if you choose to produce any units. Additionally, you can only create a maximum of 1000 ducks.

You are aiming to minimize your cost of production subject to some unknown linear constraints.

Given the setting, naturally, our objective function would be formalized as:

minimize 250 + 10n

where n ∈ N represents the number of ducks we produce. However, when n = 0, our objective function
evaluates to 250, when it should be 0. Thus, our correct function is:{

0, n = 0

250 + 10n n > 0

This is NOT a MIP because our objective function is not linear in the domain. There is a discontinuity
at n = 0. MIP requires our objective function to be linear. How do we fix this?

• Idea 1: Add a constraint of n > 0. This doesn’t work, because we definitely would want to consider
the option of producing n = 0 ducks.

• Idea 2: Still add the constraint of n > 0, then solve the MIP, which would indicate the “best solution
given that we produce a duck”, and later compare that with producing 0 ducks, and choose the better
option.

This can work, but think about what happens if we have a more complex discontinuous linear function.
Things could become impractical. Also consider what would happen if the discontinuity was somewhere
in the middle of the domain (instead of at one of the bounds).

Solution

Notice that the number of ducks we can produce is at most 1000. So if we choose to produce ducks,
then n ≤ 1000, otherwise, n = 0. To formalize this, we will introduce an indicator variable z whereby:

z =

{
1 we make ducks

0 we do not make ducks

We can now reformulate our objective as a linear function:

minimize 250 · z + 10 · n
subject to n ≤ 1000 · z

n ≥ 0

z ∈ {0, 1}
other constraints

1.3 Piecewise Linear Functions

We now consider a different scenario, where our objective function is best described as a piecewise function.

Problem Setting

Quackulus has undergone some improvements where the cost of production has changed. Now, there
is no fixed set-up cost. However, the cost per unit depends on the number of units produced.

The first 400 ducks you produce will cost $5 each to produce. The next 200 ducks will cost only $2
each. And the next 400 ducks will cost only $3 each.

For example, if you choose to create 500 ducks, it will cost you:

400 · $5 + 100 · $2 = $2200

And if you choose to create 900 ducks, it will cost you:

400 · $5 + 200 · $2 + 300 · $3 = $3300

2

Under this setting, we can write the objective function as a piecewise linear function:
5 · n 0 ≤ n ≤ 400

5 · 400 + 2 · (n− 400) 401 ≤ n ≤ 600

5 · 400 + 2 · 200 + 3 · (n− 600) 601 ≤ n ≤ 1000

=


5n 0 ≤ n ≤ 400

2n+ 1200 401 ≤ n ≤ 600

3n+ 600 601 ≤ n ≤ 1000

Graphically, our objective function looks as follows, where the x-axis represents the number of hundreds
of ducks created, and the y-axis represents the cost in hundreds of dollars:

Similar to how we handled discontinuity, we’ll leverage the property of indicators. Here, indicators would
be helpful to indicate which segment of the curve we are on.

Consider variables δ1, δ2, δ3 where n = δ1 + δ2 + δ3 and where 0 ≤ δ1 ≤ 400, 0 ≤ δ2 ≤ 200, 0 ≤ δ3 ≤ 400.
δi represents how far into the ith piece (segment) of the piecewise function we are. For example if n = 500

ducks, then δ1 = 400, δ2 = 100, δ3 = 0, indicating that we have passed the first segment (since δ1 is at its
max) and are 100 units in to the second segment. With this formulation, it is easy to see that:

Cost = $5 · δ1 + $2 · δ2 + $3 · δ3
Our objective function is now linear, but we must codify this idea of the definition of δi into our con-

straints. We do this as follows: Note that δ2 is contingent on δ1, as δ2 > 0 only if δ1 = 400 (at its max).
Similar for δ3 being contingent on δ2.

Let i1 be an indicator that is 1 if δ1 has reached its upper limit. Let i2 be an indicator that is 1 if δ2 has
reached its upper limit.

Then, if i1 = 0 we must have 0 ≤ δ1 ≤ 400, but if i1 = 1, it must be that δ1 = 400, or equivalently,
400 ≤ δ1 ≤ 400. We can combine this into a single constraint as follows:

i1 · 400 ≤ δ1 ≤ 400

Similarly, if i2 = 0, then 0 ≤ δ2 ≤ 200, and if i2 = 1, then 200 ≤ δ2 ≤ 200. As a single constraint:

i2 · 200 ≤ δ2 ≤ 200

But recall that i2 = 1 only if i1 = 1. How do we incorporate this? One small change is needed:

i2 · 200 ≤ δ2 ≤ 200 · i1

As an exercise, take some time to convince yourself why this constraint enforces the implication we had.

3

Following the pattern from above, we can only have δ3 ≥ 0 if i2 = 1. Then, our last constraint is:

0 ≤ δ3 ≤ 400 · i2

Our fully formalized MIP is:

minimize 5δ1 + 2δ2 + 3δ3

subject to i1 · 400 ≤ δ1 ≤ 400

i2 · 200 ≤ δ2 ≤ i1 · 200
0 ≤ δ3 ≤ 400 · i2
i1, i2 ∈ {0, 1}

1.4 Towards Continuity

But of course, the most fascinating question is what happens when our objective function is continuous?
While we will not go very in-depth into this question, a simple idea is as follows: We can approach the optimal
solution by approximating the continuous curve of the objective function as a piecewise linear function (with
many, but finite, number of segments). From here, use the approach outlined in the previous section to get
an approximation of the solution.

2 How MIP Solvers Work

We’ll now take some time to try to develop an algorithm to solve MIP. Remember, MIP is an NP-complete
problem. MIP solvers use a technique called “Branch and Bound”, which we will get to shortly. First, we
need to build our way up.

For simplicity, we will assume that the variables involved in our MIP have an upper and lower bound:

lb(x) ≤ x ≤ ub(x)

Keep in mind, in most applications of MIP, some bound would be present (for example, it is almost
certain that I will create less than 1015 ducks).

Additionally, we will assume that we are solving a “maximization” problem. “Minimization” problems
work similarly, just some things will be mirrored.

As per usual, we can treat our search space as a tree, where from one node, we traverse down a branch
to a lower level when we assign a new variable. At the leaves, all variables have been assigned, and each leaf
corresponds to a different assignment.

2.1 Naive Branching

Let P represent the objective function of our MIP. A first approach to solving MIP would be as follows:

• Choose a variable and split its viable domain in half

• Generate subproblems on each “half”

• Solve the subproblems recursively

• Choose whichever subproblem has the higher (or lower, if minimizing) objective value, and discard
infeasible solutions.

4

In terms of code, our initial algorithm is given as the following. Note that “lb” represents “lower bound”
and “ub” represents “upper bound”.

naive(P):

if lb = ub for all vars:

if P violates a constraint:

return INFEASIBLE

return objective_value(P)

let x be a variable with lb(x) < ub(x)

let m = ⌊(lb(x) + ub(x))/2⌋
return max{naive(P | x ≤ m), naive(P | x ≥ m)}

With any algorithm, we tend to be curious about its runtime. What is the runtime of the above code? It
may be a bit difficult to compute. But a critical observation is that this algorithm will only terminate
for pure integer programs.

But here is an even more pressing issue: we essentially have to explore our entire search tree. That is,
in our recursion statement, we have to check both branches. This is noticeably different from our naive
backtracking algorithm for DPLL, because with that algorithm, we could stop immediately when we found
a solution (since it was a decision problem). Here, we explore everything. Another key difference is that
DPLL had inference.

2.2 Adding Inference

To add an element of inference to our solver, we recall LP relaxation. Consider the following idea: for a
MIP P , we get its LP relaxation LP (P) by allowing all variables to be fractional. Recall from last lecture
that after doing so, we cannot just round our solution to get the MIP solution – this does not always work.
Instead, we make the key observation:

Key Observation

The LP solution is always at least as good (aka equally good, if not better) as the MIP solution (with
respect to objective value)

Idea: Since LP is poly-time solvable, we will use an LP solver as an inference tool. Instead of recursing
until all variables have one value, solve LP (P) and check whether all integer variables have integer values.
We can branch on integer variable x whose value v is fractional in LP (P), and create subproblems of x ≤ ⌊v⌋
and x ≥ ⌈v⌉

While we are at it, we will also discuss pruning the search tree. Just as we did with DPLL, when we found
a decision that would yield a conflict, we stopped searching down that subtree. We want to do something
similar here.

Idea: discard partial solutions that will never yield a better objective value than one we’ve already found.
If we’ve seen a MIP solution with a better objective value than LP(P), discard P since any integer solution
can only be worse than LP(P).

2.3 Branch and Bound

This idea we have constructed of branching our solution space via LP and pruning is called the “Branch
and Bound” algorithm. The first version was developed by Alisa Land and Alison Harcourt in 1960.

Refer to the slides for the pseudocode of Branch and Bound, as well as a visual example.

5

2.4 Choices

What are the choices we, as the algorithm designer, can make when implementing branch and bound?

• Which subproblem should we visit?

– We could visit the oldest existing subproblem (a la BFS)

– We could visit the most recent subproblem (a la DFS)

– We could visit the subproblem with the best LP objective (“best-first search)

• Which variable should we branch on?

– The most constrained variable (smallest domain)

– The variable with the largest/smallest coefficient in the objective function

– The variable closest/farthest to halfway between integers

Each choice has their own benefits depending on the problem. Most solvers allow users to tune the solver
(make choices) based on knowledge of the problem.

2.5 Branch and Cut

Briefly, a cut for a MIP P is a new constraint that does not eliminate any feasible solutions for P , but does
for LP (P).

The Branch and Cut algorithm, proposed by Manfred Padberg and Giovanni Rinaldi in 1989, finds cuts
of MIP, then adds them, and recurses on the new MIP. The motivation is that tighter LP relaxation means
we converge faster to the MIP solution.

How to find cuts is beyond the scope of this class.
As a corollary: if all integer variables take integer values in the optimal solution to LP (P), then it is also

the optimal solution to MIP (P).
The intuition behind the observation is that a solution to MIP is also a solution to LP (MIP ⊂ LP , in

a way).

3 The Knapsack Problem

The Knapsack Problem is described as follows: Given n items with values v1, ..., vn and weights w1, ..., wn,
select the maximum-value subset of items to fit into a knapsack with capacity W .

For the sake of example, suppose we had the following items:

• A $500 bill weighing 0.5oz

• A gold bar, worth $4, 000 weighing 300oz

• A diamond ring, worth $5, 000, weighing 1oz

• An antique pot, worth $5, 000, weighing 200oz

• A gold coin, worth $2, 000, weighing 100oz

Suppose our backpack can carry a maximum weight of 400oz, and we want the contents to be of highest
value.

6

3.1 Fractional Knapsack

Suppose I could choose to take fractions of the items. For example, if I wanted to take 1
3 of the antique pot,

I could do that. Its valuation would then be 1
3 · 5000 but it would weight only 1

3 · 200oz.
How would we solve this problem? What do we want to prioritize? The most valuable items? The

lightest items? Something else?

It turns out that this problem is solved, and has a very simple solution. The solution is a greedy
algorithm that sorts the items by value-to-weight ratio, and takes as much of each item as possible, in
order, until the knapsack is full.

With our example, the bill has ratio 500/0.5 = 1000, the gold bar has ratio 40/3 ≈ 13.3, the diamond
ring has ratio 5000, the pot has ratio 25, and the coin has ratio 20.

Following the algorithm, we would choose to include the entire ring, as it has the highest ratio, leaving
us with 399oz in the bag. Then, we would choose the dollar bills, leaving us 398.5oz. Next would be the
pot, leaving 198.5oz. Then the coin, leaving 98.5oz. And finally, we would choose 98.5

300 of the bar.

This algorithm runs in O(n lg n) time, where n is the number of items.

3.2 0/1 Knapsack

Now consider the situation where we cannot choose fractional items. That is, for each item, we either include
the full thing, or we do not. Here, the greedy algorithm fails. The 0/1 Knapsack problem is NP-complete.

Luckily, we can solve 0/1 Knapsack by formulating it as an instance of MIP, and the formulation is quite
straightforward:

maximize

n∑
i=1

xivi

subject to

n∑
i=1

xiwi ≤ W

xi ∈ {0, 1} ∀i

Other solutions to 0/1 Knapsack exist. For example, there is a dynamic programming (DP) solution that
runs in O(nW) time. However, this is not polytime, because W could be exponential with respect to n.

There is also an approximation algorithm, which guarantees a solution that is at least 50 percent of the
optimal solution, and it runs in time O(n lg n). While the polynomial is nice, the approximation is quite
poor.

While MIP is not a poly-time algorithm, it like DP, can be useful depending on the parameters.
Further, we can use the Branch and Bound paradigm to solve Knapsack without even treating it as an

instance of MIP. See the slides for the pseudocode.

4 References

1. MIT Notes

7

https://web.mit.edu/15.053/www/AMP-Chapter-09.pdf

	Introduction
	Disclaimer
	Pointwise Discontinuity
	Piecewise Linear Functions
	Towards Continuity

	How MIP Solvers Work
	Naive Branching
	Adding Inference
	Branch and Bound
	Choices
	Branch and Cut

	The Knapsack Problem
	Fractional Knapsack
	0/1 Knapsack

	References

