

Lecture 3: Algorithms for SAT

Reminders

- Homework 1 due Monday, Sept 23, 11:59PM
- Office Hours will be held online through OHQ.io.
 - Cindy: Wednesday 6-7
 - Ishaan: Saturday 6-7

Grading

- Homework: 60%
- Final Project: 30%
- Attendance: 10%
- Final grades: don't worry too much about it.

Recap

Last week

- Using SAT solvers in Python (PycoSAT)
- Encode other problems (graph coloring, stable matching) as SAT

This week

• Build up an algorithm to solve SAT

SAT is Hard!

Naive Search for SAT

- Naive algorithm: try every possible assignment until we find a satisfying assignment or exhaust the search space
- Can interpret this as a DFS: (search tree)

Simplify the Search Space

Find a *minimal satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \land (\overline{x_2} \vee x_4) \land (\overline{x_1} \vee x_3 \vee x_5) \land (\overline{x_2} \vee \overline{x_1}) \land (\overline{x_2} \vee x_6 \vee x_7)$

Find a *minimal satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \land (\overline{x_2} \vee x_4) \land (\overline{x_1} \vee x_3 \vee x_5) \land (\overline{x_2} \vee \overline{x_1}) \land (\overline{x_2} \vee x_6 \vee x_7)$

$x_2 = \text{FALSE} \quad x_3 = \text{TRUE}$

Trimming the Search Space

• If a formula is satisfiable (has a satisfying assignment to variables), then in the assignment, each clause must individually evaluate to TRUE.

 $\varphi = C_1 \wedge C_2 \wedge \ldots \wedge C_n$

Trimming the Search Space

- When we set *x* = *T*, what happens to the clauses containing *x*?
- **Observation 1:** Any clause containing the positive literal *x* becomes satisfied, so we no longer need to consider those clauses
 - In logic: $(T \vee 1 \vee 2 \vee \cdots) = T$
 - Significance: we should remove all clauses containing *x*

Trimming the Search Space

- When we set x = T, what happens to the clauses containing \overline{x} ?
- **Observation 2:** Any clause containing the negative literal \overline{x} needs to be satisfied by a different literal, so we can ignore \overline{x} in that clause
 - In logic: $(F \vee 1 \vee 2 \vee \cdots) = (1 \vee 2 \vee \cdots)$
 - Significance: we should remove \overline{x} from all clauses containing it

The Splitting Rule

- The previous observations are called the **splitting rule**
- After repeatedly applying the splitting rule to formula φ :
 - If there are **no clauses left**, then all clauses have been satisfied, so φ is satisfied
 - $\varphi = \emptyset$ denotes that there are no clauses left
 - If φ ever contains an empty clause, then all literals in that clause are False, so we made a mistake
 - ϵ denotes the empty clause
 - $\epsilon \in \varphi$ denotes that φ contains an empty clause

The Splitting Rule

- The splitting rule allows us to create a smarter recursive backtracking algorithm
- Backtracking: repeatedly make a guess to explore partial solutions, and if we hit "dead end" (contradiction) then undo the last guess

Backtracking Notation

- For a CNF φ and a literal x, define φ|x ("φ given x") to be a new CNF produced by:
 - Removing all clauses containing *x*
 - Removing \overline{x} from all clauses containing it
- Conditioning is "commutative": $\varphi |x_1| x_2 = \varphi |x_2| x_1$

Backtracking (Pseudocode)

check if arphi is satisfiable

```
\texttt{backtrack}(\varphi):
```

if $\varphi = \emptyset$: return True

if $\epsilon \in \varphi$: return False

let $x = pick_variable(\varphi)$

return backtrack($\varphi \mid x$) OR backtrack($\varphi \mid \overline{x}$)

Efficient Splitting

- How do we compute $\varphi|x$?
- Goals:
 - Support fast searching for empty clauses
 - Support fast backtracking
 - Fast to actually compute $\varphi|x$

Naïve Idea 1

- Transform φ into φ | x by deleting satisfied clauses and False literals from φ
 - Deletion not too expensive if we use linked lists
 - Can quickly recognize an empty clause (linked list will be empty), but need to check all clauses
 - Big issue: how do we backtrack?

Naïve Idea 2

- Simple fix: instead of modifying φ directly, create a copy first and modify that
 - Easy backtracking just restore the old formula
 - Big issue: too expensive (time and memory) to copy formula every time we split
 - What if we have hundreds of thousands, even millions of clauses?

Towards a smarter scheme

- Don't modify or copy the formula!
- **Key observation:** We must only backtrack once a clause has become empty *after* the Splitting Rule has been applied!

1 Watched Literal Scheme

- **Observation:** a clause can only become empty if it has just one unassigned literal remaining
 - Ideally, only need to check these clauses
- Each clause "watches" one literal and maintains watching invariant: the watched literal is True or unassigned
 - If the watched literal becomes False, watch another
 - If there are no more True/unassigned literals to watch, then the clause must be empty

<u>Steps</u>

Steps

Find a *satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3) \land (x_4 \vee \overline{x_5} \vee \overline{x_7}) \land (x_3 \vee x_5 \vee x_6 \vee \overline{x_7}) \land (\overline{x_5} \vee \overline{x_6})$

Find a *satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \land (\overline{x_1} \vee \overline{x_3}) \land (x_3) \land (x_4 \vee \overline{x_5} \vee \overline{x_7}) \land (x_3 \vee x_5 \vee x_6 \vee \overline{x_7}) \land (\overline{x_5} \vee \overline{x_6})$

$x_1 = \text{FALSE}$ $x_2 = \text{FALSE}$ $x_3 = \text{TRUE}$ $x_4 = \text{TRUE}$ $x_5 = \text{FALSE}$ $x_6 = \text{TRUE}$ $x_7 = \text{TRUE}$

*

Unit Propagation (UP)

- A unit clause is a clause containing only one literal
- Unit propagation rule: for any unit clause $\{\ell\}$, we must set $\ell = T$
- Applying unit propagation can massively speed up the backtracking algorithm in practice
 - Combining with the splitting rule can lead to a "domino effect" of cascading unit propagation

The DPLL Algorithm

- Davis-Putnam-Logemann-Loveland (1962)
- Improved upon naive backtracking (search) with unit propagation (inference)
- Still the basic algorithm behind most state-of-the-art SAT solvers today!

DPLL (Pseudocode)

 $dpll(\varphi):$ if $\varphi = \emptyset$: return TRUE if $\epsilon \in \varphi$: return FALSE if φ contains unit clause $\{\ell\}$: return dpll($\varphi | \ell$) let $x = pick_variable(\varphi)$ return dpll($\varphi | x$) OR dpll($\varphi | \overline{x}$)

 $\left(\begin{array}{c}1 \lor \overline{2} \lor 3\\1 \lor 2 \lor \overline{4}\end{array}\right)$

Engineering Matters

- Since the main DPLL subroutine might run exponentially many times, every speedup counts
- DPLL spends by far the most time on UP
 - How can we speed this up?
- Although DPLL has a natural recursive formulation, recursion is slow lots of overhead
 - We can make DPLL **iterative** using a stack

2 Watched Literals (2WL)

- **Key observation:** a clause can only be unsatisfied or unit if it has at most one non-False literal
 - Optimize unit propagation: only visit those clauses
- Each clause "watches" two literals and maintains watching invariant: the watched literals are not False, unless the clause is satisfied
 - If a watched literal becomes False, watch another
- If can't maintain invariant, clause is unit (can propagate)

2 Watched Literals (2WL)

- Still use watchlists (list of all clauses watching each lit)
- Best part: since backtracking only unassigns variables, it can never break the 2WL invariant
 - Don't need to update watchlists

$$\left(\begin{array}{ccc} \mathbf{I} \lor \mathbf{2} \lor \mathbf{\overline{3}} \end{array} \right) \xrightarrow{\text{Set 1} = T} \left(\begin{array}{ccc} \mathbf{I} \lor \mathbf{2} \lor \mathbf{\overline{3}} \end{array} \right) \xrightarrow{\text{Set 2} = F} \left(\begin{array}{ccc} \mathbf{I} \lor \mathbf{2} \lor \mathbf{\overline{3}} \end{array} \right) \xrightarrow{\text{Set 2} = F} \left(\begin{array}{ccc} \mathbf{I} \lor \mathbf{2} \lor \mathbf{\overline{3}} \end{array} \right)$$

Iterative DPLL

- A **decision** refers to any time our algorithm *arbitrarily* assigns a variable (without being forced to do so)
 - Selecting a literal and assigning it True is a decision
 - Unit propagation & reassigning selected literal after backtracking are not decisions
- All assignments implied by the *ith* decision are said to be on the *ith* decision level
 - Can assignments ever be on the zeroth decision level?

Iterative DPLL

- Maintain an **assignment stack** with the assignments from each decision level
 - Whenever we make a new decision, copy the current assignment onto the top of the stack
- To backtrack: pop the current assignment off the stack, restoring the previous one
- Keep a propagation queue of literals that are set to False
 - Take literals from the queue and check if their watching clauses are empty/unit

Assignment Stack

Set 2 = T. Propagate 3 = F.

Set
$$1 = T$$

Iterative DPLL (Pseudocode)

```
dpll(\varphi):
```

```
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
    let x = pick variable()
    create new decision level
    set x = T
    while unit propagate() = CONFLICT:
        if decision level = 0: return UNSAT
        backtrack()
        set x = F
```

return SAT

How should we branch?

- Order of assigning variables greatly affects runtime
- Want to find a satisfying assignment quicker and find conflicts (rule out bad assignments) quicker
- **Ex:** $\{1\overline{2}34, \overline{12}3, 12\overline{3}5, 23\overline{5}, 3\overline{45}, \dots, 67, \overline{67}, \overline{67}, \overline{67}\}$

• If we assign 6 first, then we can find conflicts right away

Decision Heuristics

- **Static heuristics**: variable ordering fixed at the start
- **Dynamic heuristics:** variable ordering is updated as the solver runs
 - More effective, but also more expensive
- Basic examples of decision heuristics:
 - Random ordering
 - Most-frequent static ordering
 - Most-frequent dynamic ordering

"Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing."

References

A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

N. Eén and N. Sörensson, "An Extensible SAT-solver," *Theory and Applications of Satisfiability Testing Lecture Notes in Computer Science*, pp. 502–518, 2004.