

Lecture 3: Algorithms for SAT

Reminders

- Homework 1 due Monday, Sept 23, 11:59PM
- Office Hours will be held online through OHQ.io.
	- o Cindy: Wednesday 6-7
	- o Ishaan: Saturday 6-7

Grading

- **●** Homework: 60%
- **●** Final Project: 30%
- **●** Attendance: 10%
- **●** Final grades: don't worry too much about it.

Recap

Last week

- Using SAT solvers in Python (PycoSAT)
- Encode other problems (graph coloring, stable matching) as SAT

This week

● Build up an algorithm to solve SAT

SAT is Hard!

Naive Search for SAT

- Naive algorithm: try every possible assignment until we find a satisfying assignment or exhaust the search space
- Can interpret this as a DFS: (search tree)

Simplify the Search Space

Find a *minimal satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee x_5) \wedge (\overline{x_2} \vee \overline{x_1}) \wedge (\overline{x_2} \vee x_6 \vee x_7)$

Find a *minimal satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee x_5) \wedge (\overline{x_2} \vee \overline{x_1}) \wedge (\overline{x_2} \vee x_6 \vee x_7)$

$x_2 =$ FALSE $x_3 =$ TRUE

Trimming the Search Space

● If a formula is satisfiable (has a satisfying assignment to variables), then in the assignment, each clause must individually evaluate to TRUE.

 $\varphi = C_1 \wedge C_2 \wedge ... \wedge C_n$

Trimming the Search Space

- When we set $x = T$, what happens to the clauses $\mathcal{L}_{\mathcal{D}}$ containing x ?
- Observation 1: Any clause containing the positive literal x becomes satisfied, so we no longer need to consider those clauses
	- In logic: $(T \vee 1 \vee 2 \vee \cdots) = T$
	- Significance: we should remove all clauses containing x

Trimming the Search Space

- When we set $x = T$, what happens to the clauses containing \overline{x} ?
- Observation 2: Any clause containing the negative literal \bar{x} needs to be satisfied by a different literal, so we can ignore \overline{x} in that clause
	- In logic: $(F \vee 1 \vee 2 \vee \cdots) = (1 \vee 2 \vee \cdots)$
	- o Significance: we should remove \bar{x} from all clauses containing it

The Splitting Rule

- The previous observations are called the **splitting rule**
- After repeatedly applying the splitting rule to formula φ :
	- If there are **no clauses left**, then all clauses have been satisfied, so φ is satisfied
		- $\varphi = \varnothing$ denotes that there are no clauses left
	- o If φ ever contains an **empty clause**, then all literals in that clause are False, so we made a mistake
		- ϵ denotes the empty clause
		- $\epsilon \in \varphi$ denotes that φ contains an empty clause

The Splitting Rule

- The splitting rule allows us to create a smarter recursive **backtracking** algorithm
- **●** Backtracking: repeatedly make a guess to explore partial solutions, and if we hit "dead end" (contradiction) then undo the last guess

Backtracking Notation

- For a CNF φ and a literal x, define φ |x (" φ given x") to be a new CNF produced by:
	- Removing all clauses containing x \circ
	- Removing \bar{x} from all clauses containing it
- Conditioning is "commutative": $\varphi |x_1|x_2 = \varphi |x_2|x_1$

Backtracking (Pseudocode)

check if φ is satisfiable

backtrack (φ) :

if $\varphi = \varnothing$: return True

if $\epsilon \in \varphi$: return False

let $x = pick variable(\varphi)$

return backtrack($\varphi | x$) OR backtrack($\varphi | \overline{x}$)

Efficient Splitting

- How do we compute $\varphi | x$? \bullet
- Goals:
	- Support fast searching for empty clauses \circ
	- o Support fast backtracking
	- Fast to actually compute $\varphi | x$

Naïve Idea 1

- Transform φ into φ |x by deleting satisfied clauses and False literals from φ
	- Deletion not too expensive if we use linked lists \circ
	- Can quickly recognize an empty clause (linked list) \circ will be empty), but need to check all clauses
	- Big issue: how do we backtrack?

Naïve Idea 2

- Simple fix: instead of modifying φ directly, create a $\mathcal{L}_{\mathcal{D}}$ copy first and modify that
	- Easy backtracking just restore the old formula
	- Big issue: too expensive (time and memory) to copy formula every time we split
		- What if we have hundreds of thousands, even millions of clauses?

Towards a smarter scheme

- Don't modify or copy the formula!
- **Key observation:** We must only backtrack once a clause has become empty *after* the Splitting Rule has been applied!

1 Watched Literal Scheme

- **Observation:** a clause can only become empty if it has just one unassigned literal remaining
	- Ideally, only need to check these clauses
- Each clause "watches" one literal and maintains watching invariant: the watched literal is True or unassigned
	- If the watched literal becomes False, watch another
	- If there are no more True/unassigned literals to watch, then the clause must be empty

Example: 1 Watched Literal

Example: 1 Watched Literal

Steps

Find a satisfying assignment for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3) \wedge (x_4 \vee \overline{x_5} \vee \overline{x_7}) \wedge (x_3 \vee x_5 \vee x_6 \vee \overline{x_7}) \wedge (\overline{x_5} \vee \overline{x_6})$

Find a *satisfying assignment* for the following formula:

 $\varphi = (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_3) \wedge (x_4 \vee \overline{x_5} \vee \overline{x_7}) \wedge (x_3 \vee x_5 \vee x_6 \vee \overline{x_7}) \wedge (\overline{x_5} \vee \overline{x_6})$

$x_1 =$ FALSE $x_2 =$ FALSE $x_3 =$ TRUE x_4 = TRUE x_5 = FALSE x_6 = TRUE x_7 = TRUE

Unit Propagation (UP)

- A unit clause is a clause containing only one literal
- **Unit propagation rule:** for any unit clause $\{\ell\}$, we \bullet must set $\ell = T$
- Applying unit propagation can massively speed up the backtracking algorithm in practice
	- o Combining with the splitting rule can lead to a "domino effect" of cascading unit propagation

The DPLL Algorithm

- Davis-Putnam-Logemann-Loveland (1962)
- Improved upon naive backtracking (search) with unit propagation (inference)
- Still the basic algorithm behind most state-of-the-art SAT solvers today!

DPLL (Pseudocode)

 $dpl1(\varphi)$: if $\varphi = \varnothing$: return TRUE if $\epsilon \in \varphi$: return FALSE if φ contains unit clause $\{\ell\}$: return dpll $(\varphi | \ell)$ let $x = pick variable(\varphi)$ return dpll $(\varphi | x)$ OR dpll $(\varphi | \overline{x})$

Engineering Matters

- Since the main DPLL subroutine might run exponentially many times, every speedup counts
- DPLL spends by far the most time on UP
	- How can we speed this up?
- Although DPLL has a natural recursive formulation, recursion is slow — lots of overhead
	- We can make DPLL **iterative** using a stack

2 Watched Literals (2WL)

- **Key observation:** a clause can only be unsatisfied or unit if it has at most one non-False literal
	- Optimize unit propagation: only visit those clauses
- \bullet Fach clause "watches" two literals and maintains watching **invariant:** the watched literals are not False, unless the clause is satisfied
	- If a watched literal becomes False, watch another
- **•** If can't maintain invariant, clause is unit (can propagate)

2 Watched Literals (2WL)

- Still use watchlists (list of all clauses watching each lit)
- Best part: since backtracking only unassigns variables, it can never break the 2WL invariant
	- Don't need to update watchlists

$$
\left(\frac{1}{1}\vee 2\vee \overline{3}\right) \xrightarrow{\text{Set } 1 = T} \left(\frac{1}{1}\vee 2\vee \overline{3}\right) \xrightarrow{\text{Set } 2 = F} \left(\frac{1}{1}\vee 2\vee \overline{3}\right)
$$

Iterative DPLL

- A **decision** refers to any time our algorithm *arbitrarily* assigns a variable (without being forced to do so)
	- Selecting a literal and assigning it True is a decision
	- Unit propagation & reassigning selected literal after backtracking are not decisions
- All assignments implied by the *i th* decision are said to be on the *i th* **decision level**
	- Can assignments ever be on the zeroth decision level?

Iterative DPLL

- Maintain an **assignment stack** with the assignments from each decision level
	- Whenever we make a new decision, copy the current assignment onto the top of the stack
- To backtrack: pop the current assignment off the stack, restoring the previous one
- Keep a **propagation queue** of literals that are set to False
	- Take literals from the queue and check if their watching clauses are empty/unit

Assignment Stack

N.S

Iterative DPLL (Pseudocode)

```
dpl1(\varphi):
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
    let x = pick variable()create new decision level
    set x = Twhile unit propagate () = CONFLICT:
        if decision level = 0: return UNSAT
        backtrack()
        set x = F
```
return SAT

65

How should we branch?

- Order of assigning variables greatly affects runtime \bullet
- Want to find a satisfying assignment quicker and find conflicts (rule out bad assignments) quicker
- Ex: $\{1\overline{2}34,\overline{12}3,12\overline{3}5,23\overline{5},3\overline{45},\ldots,67,\overline{67},\overline{67},\overline{67}\}$
	- If we assign 6 first, then we can find conflicts right away

Decision Heuristics

- **Static heuristics:** variable ordering fixed at the start
- **Dynamic heuristics:** variable ordering is updated as the solver runs
	- More effective, but also more expensive
- Basic examples of decision heuristics:
	- Random ordering
	- Most-frequent static ordering
	- Most-frequent dynamic ordering

"Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing."

References

A. Biere, *Handbook of satisfiability*. Amsterdam: IOS Press, 2009. N. Eén and N. Sörensson, "An Extensible SAT-solver," *Theory and Applications of Satisfiability Testing Lecture Notes in Computer Science*, pp. 502–518, 2004.