
Lecture 3:
Algorithms for SAT
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Reminders
● Homework 1 due Monday, Sept 23, 11:59PM
● Office Hours will be held online through OHQ.io.

○ Cindy: Wednesday 6-7
○ Ishaan: Saturday 6-7
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Grading
● Homework: 60%
● Final Project: 30%
● Attendance: 10%

● Final grades: 
don’t worry too much about it.
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Recap
Last week
● Using SAT solvers in Python (PycoSAT)
● Encode other problems (graph coloring, stable 

matching) as SAT

This week
● Build up an algorithm to solve SAT
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SAT is Hard!



Naive Search for SAT
● Naive algorithm: try every possible assignment until we find 

a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)
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Simplify the 
Search Space







Trimming the Search Space
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● If a formula is satisfiable (has a satisfying assignment to 
variables), then in the assignment, each clause must 
individually evaluate to TRUE.



Trimming the Search Space
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Trimming the Search Space
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The Splitting Rule
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The Splitting Rule
● The splitting rule allows us to create a smarter recursive 

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial 

solutions, and if we hit “dead end” (contradiction) then 
undo the last guess
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Backtracking Notation
 

15



Backtracking (Pseudocode)
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Example: Backtracking
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Efficient Splitting
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Naïve Idea 1
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Naïve Idea 2
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Towards a smarter scheme
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● Don’t modify or copy the formula!

● Key observation: We must only backtrack once a clause has 
become empty after the Splitting Rule has been applied!



1 Watched Literal Scheme
● Observation: a clause can only become empty if it has 

just one unassigned literal remaining
○ Ideally, only need to check these clauses
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● Each clause “watches” one literal and maintains watching 
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to 

watch, then the clause must be empty



Example: 1 Watched Literal
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Example: 1 Watched Literal
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Unit Propagation (UP)
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The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit 

propagation (inference)
● Still the basic algorithm behind most state-of-the-art 

SAT solvers today!
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DPLL (Pseudocode)
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Example: DPLL

52

Steps

1 2 3 4



Example: DPLL

53

Steps
Unit!

1 2 3 4

T

1
T



Example: DPLL

54

Steps

1 2 3 4

T F

1

2
T

F

Conflict!



Example: DPLL

55

Steps

1 2 3 4

F

1

2
T

F

F



Example: DPLL

56

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T



Example: DPLL
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Engineering Matters
● Since the main DPLL subroutine might run 

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation, 

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack

58



2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or unit 

if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains 
watching invariant: the watched literals are not False, 
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)
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2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables, 

it can never break the 2WL invariant
○ Don’t need to update watchlists
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Iterative DPLL
● A decision refers to any time our algorithm arbitrarily 

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking 

are not decisions

● All assignments implied by the ith decision are said to 
be on the ith decision level

○ Can assignments ever be on the zeroth decision level?
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Iterative DPLL
● Maintain an assignment stack with the assignments from 

each decision level
○ Whenever we make a new decision, copy the current 

assignment onto the top of the stack
● To backtrack: pop the current assignment off the stack, 

restoring the previous one
● Keep a propagation queue of literals that are set to False

○ Take literals from the queue and check if their 
watching clauses are empty/unit
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Assignment Stack
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Iterative DPLL (Pseudocode)
 

65



How should we branch?
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Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as 

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering
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Stay Wise
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“Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing.”
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