
Lecture 3:
Algorithms for SAT

CIS1921

Reminders
● Homework 1 due Monday, Sept 23, 11:59PM
● Office Hours will be held online through OHQ.io.

○ Cindy: Wednesday 6-7
○ Ishaan: Saturday 6-7

2

Grading
● Homework: 60%
● Final Project: 30%
● Attendance: 10%

● Final grades:
don’t worry too much about it.

3

Recap
Last week
● Using SAT solvers in Python (PycoSAT)
● Encode other problems (graph coloring, stable

matching) as SAT

This week
● Build up an algorithm to solve SAT

4

SAT is Hard!

Naive Search for SAT
● Naive algorithm: try every possible assignment until we find

a satisfying assignment or exhaust the search space
● Can interpret this as a DFS:

(search tree)

6

Simplify the
Search Space

Trimming the Search Space

10

● If a formula is satisfiable (has a satisfying assignment to
variables), then in the assignment, each clause must
individually evaluate to TRUE.

Trimming the Search Space

11

Trimming the Search Space

12

The Splitting Rule

13

The Splitting Rule
● The splitting rule allows us to create a smarter recursive

backtracking algorithm
● Backtracking: repeatedly make a guess to explore partial

solutions, and if we hit “dead end” (contradiction) then
undo the last guess

14

Backtracking Notation

15

Backtracking (Pseudocode)

16

Example: Backtracking

17

Steps

1 2 3 4 5

Example: Backtracking

18

Steps

1 2 3 4 5

T

1
T

Example: Backtracking

19

Steps
Conflict!

1 2 3 4 5

T T

1

2
T

T

Example: Backtracking

20

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: Backtracking

21

Steps

Conflict!

1 2 3 4 5

T F T

1

2
T

3
FT

T

Example: Backtracking

22

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: Backtracking

23

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: Backtracking

24

Steps

Conflict!

1 2 3 4 5

T F F T T

1

2
T

3

4

5

F

F

T

T

T

T

Example: Backtracking

25

Steps

1 2 3 4 5

T F F T F

1

2
T

3

4

5

F

F

T

T

T

T F

Efficient Splitting

26

Naïve Idea 1

27

Naïve Idea 2

28

Towards a smarter scheme

29

● Don’t modify or copy the formula!

● Key observation: We must only backtrack once a clause has
become empty after the Splitting Rule has been applied!

1 Watched Literal Scheme
● Observation: a clause can only become empty if it has

just one unassigned literal remaining
○ Ideally, only need to check these clauses

30

● Each clause “watches” one literal and maintains watching
invariant: the watched literal is True or unassigned
○ If the watched literal becomes False, watch another
○ If there are no more True/unassigned literals to

watch, then the clause must be empty

Example: 1 Watched Literal

31

Steps

1 2 3 4 5

Example: 1 Watched Literal

32

Steps

1 2 3 4 5

T

1
T

Example: 1 Watched Literal

33

Steps

1 2 3 4 5

T

1
T

Example: 1 Watched Literal

34

Steps

1 2 3 4 5

T T

1

2
T

T

Example: 1 Watched Literal

35

Steps

1 2 3 4 5

T T

Conflict!

1

2
T

T

Example: 1 Watched Literal

36

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: 1 Watched Literal

37

Steps

1 2 3 4 5

T F

1

2
T

FT

Example: 1 Watched Literal

38

Steps

1 2 3 4 5

T F T

1

2
T

3
FT

T

Example: 1 Watched Literal

39

Steps

1 2 3 4 5

T F T

Conflict!

1

2
T

3
FT

T

Example: 1 Watched Literal

40

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

41

Steps

1 2 3 4 5

T F F

1

2
T

3
F

F

T

T

Example: 1 Watched Literal

42

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

43

Steps

1 2 3 4 5

T F F T

1

2
T

3

4

F

F

T

T

T

Example: 1 Watched Literal

44

Steps

1 2 3 4 5

T F F T T

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

45

Steps

1 2 3 4 5

T F F T T

Conflict!

1

2
T

3

4

5

F

F

T

T

T

T

Example: 1 Watched Literal

46

Steps

1 2 3 4 5

T F F T F

1

2
T

3

4

5

F

F

T

T

T

T F

Unit Propagation (UP)

49

The DPLL Algorithm
● Davis-Putnam-Logemann-Loveland (1962)
● Improved upon naive backtracking (search) with unit

propagation (inference)
● Still the basic algorithm behind most state-of-the-art

SAT solvers today!

50

DPLL (Pseudocode)

51

Example: DPLL

52

Steps

1 2 3 4

Example: DPLL

53

Steps
Unit!

1 2 3 4

T

1
T

Example: DPLL

54

Steps

1 2 3 4

T F

1

2
T

F

Conflict!

Example: DPLL

55

Steps

1 2 3 4

F

1

2
T

F

F

Example: DPLL

56

Steps

1 2 3 4

F T

1

2
T

F

F

2
Unit!

T

Example: DPLL

57

Steps

1 2 3 4

F T T

1

2
T

F

F

2

3
T

T

Engineering Matters
● Since the main DPLL subroutine might run

exponentially many times, every speedup counts
● DPLL spends by far the most time on UP

○ How can we speed this up?
● Although DPLL has a natural recursive formulation,

recursion is slow — lots of overhead
○ We can make DPLL iterative using a stack

58

2 Watched Literals (2WL)
● Key observation: a clause can only be unsatisfied or unit

if it has at most one non-False literal
○ Optimize unit propagation: only visit those clauses

● Each clause “watches” two literals and maintains
watching invariant: the watched literals are not False,
unless the clause is satisfied
○ If a watched literal becomes False, watch another

● If can’t maintain invariant, clause is unit (can propagate)

59

2 Watched Literals (2WL)
● Still use watchlists (list of all clauses watching each lit)
● Best part: since backtracking only unassigns variables,

it can never break the 2WL invariant
○ Don’t need to update watchlists

60

Unit!

Iterative DPLL
● A decision refers to any time our algorithm arbitrarily

assigns a variable (without being forced to do so)
○ Selecting a literal and assigning it True is a decision
○ Unit propagation & reassigning selected literal after backtracking

are not decisions

● All assignments implied by the ith decision are said to
be on the ith decision level

○ Can assignments ever be on the zeroth decision level?

61

Iterative DPLL
● Maintain an assignment stack with the assignments from

each decision level
○ Whenever we make a new decision, copy the current

assignment onto the top of the stack
● To backtrack: pop the current assignment off the stack,

restoring the previous one
● Keep a propagation queue of literals that are set to False

○ Take literals from the queue and check if their
watching clauses are empty/unit

62

Assignment Stack

63

T T F T T

T T F

T

1 2 3 4 5

Assignment Stack

64

T T F

T

1 2 3 4 5

T T F T T Backtrack!Pop!

Iterative DPLL (Pseudocode)

65

How should we branch?

66

Decision Heuristics
● Static heuristics: variable ordering fixed at the start
● Dynamic heuristics: variable ordering is updated as

the solver runs
○ More effective, but also more expensive

● Basic examples of decision heuristics:
○ Random ordering
○ Most-frequent static ordering
○ Most-frequent dynamic ordering

67

Stay Wise

68

“Intelligence is knowing it is a one-way street, wisdom is still looking both ways before crossing.”

References
A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.
N. Eén and N. Sörensson, “An Extensible SAT-solver,” Theory and
Applications of Satisfiability Testing Lecture Notes in Computer Science, pp.
502–518, 2004.

69

