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1 SAT Solvers

1.1 Compact SAT Representation

Last week, we started to explore the SAT problem. One fascinating observation about boolean formulas in
CNF is that the order of the clauses does not matter, and the order of the variables within the clause doesn’t
matter. That is to say, the following boolean formulas are all structurally equivalent:

φ1 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5)

φ2 = (x2 ∨ x3 ∨ x1) ∧ (x2 ∨ x4 ∨ x5)

φ3 = (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

Due to these observations, we can represent an instance of a formula using set notation, where elements
consist of a concatenation of literals. For example, the above three equations can be represented as:

φ1 = {x1x2x3, x2x4x5} = {123, 245}
φ2 = {x2x3x1, x2x4x5} = {231, 245}
φ3 = {x2x4x5, x1x2x3} = {245, 123}

1.2 MiniSAT

MiniSAT is a very important SAT solver that was created by two Swedish PhD students, Niklas Een and
Niklas Sorensson, in the early 2000s. It was very small – only consisting of around 600 lines of C++ code
– but it worked really well. At the 2005 SAT Competition (a yearly affair), MiniSAT won the silver medal.
The structure of MiniSAT inspired a lot of other SAT solvers, like the one we will buil together soon, as well
as the solver we will use, called PicoSAT.

1.3 PicoSAT

PicoSAT is a very simple to use, open source, SAT solver that we will use quite frequently. It was created
by Professor Armin Biere, who was one of the leading researchers on SAT, and published many papers and
books on the problem, including the Handbook of Satisfiability. PicoSAT won the 2007 SAT competition,
taking home the gold medal. The solver was written in C, but has bindings to Python and other languages,
making it useful for our purposes.

Solving with PicoSAT is easy. First, install it through pip via:

pip install pycosat

Or, depending on your setup, you may have to use pip3:

pip3 install pycosat



Now, we can represent a compact boolean equation as a list of lists, where each inner list consists of the
values that create the clause. A unique number represents a unique variable. A positive number represents a
positive literal, and a negative number represents a negative literal. The full transformation from CNF-SAT
to compact form to pycosat input can be seen here:

φ = x5 ∧ (x4 ∨ x1) ∧ (x4 ∨ x2) ∧ (x4 ∨ x1 ∨ x2) ∧ (x5 ∨ x4 ∨ x3) ∧ (x5 ∨ x4) ∧ (x5 ∨ x3)

→ {5, 41, 42, 412, 543, 54, 53} (Compact)

→ [[5], [−4, 1], [−4, 2], [4,−1,−2], [−5, 4, 3], [5,−4], [5,−3]] (as input)

To solve the equation, we simply use the method

pycosat.solve()

as seen here:

Our solver returned [1, 2,−3, 4, 5] which corresponds to the following assignment:

x1 = TRUE, x2 = TRUE, x3 = FALSE, x4 = TRUE, x5 = TRUE

Note that PicoSAT is deterministic, so it will always give the same assignment. So even if there are
multiple satisfying assignments, it will return the same one. We must also note that often, if a formula has
one satisfying assignment, then it likely has many.

Tricky Question

Suppose we don’t like the assignment that we got above and wanted to obtain a different one. How
could we change the formula to allow this to happen?

SOLUTION: We can add a new clause to our formula that constrains the solver to never return the
assignment that we got. In the example above, we can add the following clause to the formula:

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5)

We see that now, satisfying everything but this new clause is the same as before, but with the
assignment [1, 2,−3, 4, 5], this last clause will get evaluated to FALSE, making the entire formula
equivalent to FALSE. Thus, our solver would have to return a new assignment. And note that this
“new assignment” would still be applicable to the formula before adding the new clause.
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But of course, we may want to see all possible satisfying assignments at once. This can be done using
the following method:

pycosat.itersolve()

as seen here:

2 Encodings

So what’s the big deal with SAT? Why do we care so much about it? SAT is great because of its easy-to-
understand structure, which allows it to be the go-to problem for reductions. Reductions are a mathematical
procedure of describing one problem as an instance of another problem. We won’t take the time to explain
the full theory, but the idea is that we can use a reduction to show that two problems are equivalent, by
encoding one problem as an instance of the other. Before we start exploring some other problems, we need
to broaden our logical vernacular...
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Warmup

Convert the following expressions to compact CNF:

1. x =⇒ y

2. x ⇐⇒ y

3. x⊕ y

4. if x then y else z

SOLUTION:

(a) x =⇒ y ≡ ¬x ∨ y = {xy}
(b) x ⇐⇒ y ≡ (x =⇒ y) ∧ (y =⇒ x) ≡ (¬x ∨ y) ∧ (¬y ∨ x) ≡ {xy, yx}
(c)

x⊕ y = (x ∧ y) ∨ (x ∧ y)

= (x ∨ x) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ y)

= TRUE ∧ (x ∨ y) ∧ (x ∨ y) ∧ TRUE

= (x ∨ y) ∧ (x ∨ y)

= {xy, xy}

(d)

if x then y else z ≡ (x =⇒ y) ∧ (x =⇒ z)

≡ (x ∨ y) ∧ (x ∨ z)

= {xy, xz}
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Warmup Part 2

Convert the following expressions to compact CNF:

1. All(x1, ..., xn)

2. AtLeastOne(x1, ..., xn) aka ALO(x1, ..., xn)

3. AtMostOne(x1, ..., xn) aka AMO(x1, ..., xn)

4. ExactlyOne(x1, ..., xn)

SOLUTION:

(a) Given that “All” returns true if and only if all variables are true, then we have:

All(x1, .., xn) = x1 ∧ x2 ∧ ... ∧ xn

= {x1, x2, ..., xn}

That is, each variable is its own clause.

(b) For “At Least One”, we will leverage the OR operator:

ALO(x1, ..., xn) = x1 ∨ x2 ∨ ... ∨ xn

= {x1x2...xn}

That is, we have a singular clause consisting of the disjunction of all the variables.

(c) This is a difficult one, and there are many correct, natural ways of representing it. One
way is as follows: if at most one variable is true, then for every pair of variables, it must
be the case that we cannot have both of them being true. We can encode this constraint
for a single pair of variables xi, xj as (xi ∨ xj). Thus, putting it all together, we have:

AMO(x1, ..., xn) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ ... ∧ (xn−1 ∨ xn)

= {xixj | 0 ≤ i < j ≤ n}

We can see from the compact form that the formula will be evaluated to FALSE if and only
if at least one clause evaluates to FALSE. Suppose xi ∨ xj is the clause that evaluates to
FALSE. The only way this is possible is if xi = TRUE and xj = TRUE, which implies that we
indeed do not have “at most one”, as desired.

(d) Leveraging 2. and 3., we get:

ExactlyOne(x1, ..., xn) = ALO(x1, ..., xn) ∧AMO(x1, ..., xn)

2.1 Binary AMO Encoding

As mentioned above, there are many ways of encoding AMO. What is the complexity of the solution provided.
In other words, how many clauses is the encoding? Well, it is just the number of pairs of variables, which is(
n
2

)
or O(n2). Is there an encoding that uses fewer clauses? Yes, but it may introduct some extra variables.
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Binary AMO Encoding

AMO(x1, ..., xn) :

• Retain the original variables x1, ..., xn

• Let m = ⌈lg n⌉, and introduce new variables b1, ..., bm. Each bi represents that ith bit of T ,
where xT is the (≤) one TRUE variable

• Our clauses will be described as:{(
xi =⇒

{
bj if the jth bit of i is 1

bi if the jth bit of i is 0

)
| ∀xi, bj

}

Don’t worry too much if you don’t understand why this encoding works. What matters here is that we
have introduced lg n extra variables, and in total, we have n lg n clauses – a significant improvement
from before.

2.2 Does the Size of the Formula Matter?

Interesting, the size of the formula doesn’t really correlate with how difficult the formula is to solve. But
the performance of a SAT solver can vary depending on the encoding itself. Different encodings work better
in different cases. So there is no “universal best encoding”.

3 The Graph Coloring Problem

PROBLEM: Given a graph G(V,E) (a set of vertices and a set of edges, where an edge connects exactly
two vertices), and given k colors, is it possible to color the vertices of G with ≤ k colors such that each
vertex has a color, and no two vertices that share an edge are the same color?

As an example, given the following graph:

v1 v2

v3

v4

and given k = 3, we would return YES, because the graph can be colored in ≤ 3 colors as follows:

v1 v2

v3

v4

However, if we had k = 2, we would return “NO”, because it is not possible to color the graph with ≤ 2
colors so as to have adjacent vertices be different colors.
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3.1 Encoding Graph Coloring as CNF-SAT

We’d now like to transform an instance of the Graph Coloring problem as an instance of CNF-SAT. To do
this, we must consider what our variables should be/represent, as well as consider what constraints we have
in the Graph Coloring problem, and ensure that they are represented in the SAT formula we construct.

Let us be very clear in what we desire. We want a general procedure of converting a graph, G, into
an instance, φ, of CNF-SAT such that if the graph G is k-colorable, then φ is satisfiable. And if G is not
k-colorable, then φ is not satisfiable.

Another way of thinking about it is that once we have our graph coloring, we should be able to look at
the coloring and immediately know what the satisfying assignment for φ is. Conversely, once we have φ and
find its satisfying assignment, we should be able to immediately know what the coloring for G is.

With this in mind, let us consider how we can define the variables for φ. A natural idea is to have
a variable for each vertex-color pair. That is, suppose our vertices are v1, v2, ..., vn, and our colors are
c1, c2, ..., ck, then, we will have variables xv1,c1 , xv1,c2 , ..., xvn,ck . Ideally, if xvi,cj = TRUE in the satisfying
assignment, then we will intend to say that “vertex i is colored with color j”.

With these vertices in mind, we now will attempt to encode the constraints of the graph problem, and
that will develop our CNF formula.

Constraint 1: Every vertex must be colored with exactly one color.

This is true, but remember when we were looking at the encoding for “Exactly one” (section 2, warmup
part 2, question 4)? We leveraged the encoding for AMO and ALO, and we also said that AMO is difficult
to encode and adds a lot of overhead. Let’s amend our constraint slightly to:

Constraint 1

Constraint 1: Every vertex must be colored with at least one color.

Let’s think about why this is actually a valid constraint. Suppose we find that vertex vi can be colored
with BLUE or with GREEN, and in either case, we would have a valid coloring. Well, this still tells us
that we have a valid coloring, and we just have additional information. So let us accept this additional
information for the sake of simplicity.

Encoding Constraint 1

Let us consider how we would encode constraint the first constraint. Recall that our variables are of
the form xvi,cj , where if xvi,cj = TRUE, then vertex vi will be colored with color cj .

And we are aiming to ensure that for each vertex, it has at least one color. Then, consider an arbitrary
vertex va, and consider all of its associated variables: xva,c1 , xva,c2 , ..., xva,ck . We want at least one
of these to be true. Turning to the encoding rule we discussed in section two, we have:

ALO(xva,c1 , xva,c2 , ..., xva,ck) = xva,c1 ∨ xva,c2 ∨ ... ∨ xva,ck

= {xva,c1xva,c2xva,ck} (compact form)

But of course, we need this clause for all vertices, not just for one vertex ai, so we say that our
compact form for t his constraint is:

{xvi,c1 , xvi,c2 , ..., xvi,ck | ∀vi ∈ V }

Before moving to the next constraint(s), let us work with the example graph and encode the first con-
straint:
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Encoding Constraint 1 on Example Graph

Recall our example graph:
v1 v2

v3

v4

We will assume that k = 3. That is, we want to see if G is colorable using ≤ k or equivalently, ≤ 3
colors.

Our vertices are {v1, v2, v3, v4}, and we will say our colors are {c1, c2, c3}. Thus, the variables that
we will use will be:

xv1,c1 , xv1,c2 , xv1,c3

xv2,c1 , xv2,c2 , xv2,c3

xv3,c1 , xv3,c2 , xv3,c3

xv4,c1 , xv4,c2 , xv4,c3

To ensure that each vertex will be colored with at least one color, we will have:

φ = (xv1,c1 ∨ xv1,c2 ∨ xv1,c3)

∧ (xv2,c1 ∨ xv2,c2 ∨ xv2,c3)

∧ (xv3,c1 ∨ xv3,c2 ∨ xv3,c3)

∧ (xv4,c1 ∨ xv4,c2 ∨ xv4,c3)

NOTE: This is NOT the encoding of the entire problem, as we still have some constraint(s) to add.
Those constraint(s) will make our formula grow. However, at this point in time, if φ were to evalue
to TRUE, then we would see that each clause must have at least one literal evaluating to TRUE, which
is equivalent to saying that each vertex has at least one color, as desired.

The most important part of the graph coloring problem is that adjacent vertices must be of different
colors. Let us now aim to encode this constraint:

Constraint 2

Constraint 2: If (u, v) ∈ E, then u and v have different colors.
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Encoding Constraint 2

With our variables already defined, this should be relatively straightforward. Each edge in our graph
adds a new constraint. Consider vertices vi, vj that are connected by an edge. If vi is colored with
color c1, then vertex vj CANNOT be colored with color c1. If vi is colored with c2, then vertex vj
CANNOT be colored with color c2. And of course, this must be true for all possible colors, and in
the opposite direction as well.

Take a close look at the phrasing: “IF vi is colored with c1, THEN v2 is NOT colored with c1”. The
“IF...THEN” suggests that we have an implication relation. And the whole “vertex colored with a
color” is exactly what our variables represent.

So literally translating the above, we have

xvi,c1 =⇒ xvj ,c1 ≡ xvi,c1 ∨ xvj ,c1 = {xvi,c1xvj ,c1}

However, this is just for one color. We need to enumerate over all colors and enforce this constraint.
Moreover, this constraint must be applied to every edge in the graph, not just one.

In the general form, the entirety of constraint 2 can be written as:

{xvi,ccxvj ,cc | ∀(vi, vj) ∈ E,∀c ∈ [1..k]}

In words, this reads as: For every edge in the graph, we will enumerate over all colors, and ensure
that if one endpoint is colored with that color, then the other vertex is not colored with that color.

Note that if we have m edges, then the number of clauses we are adding is m · k, where each clause
is of size 2.
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Encoding Constraint 2 on Example Graph

Recall our example graph:
v1 v2

v3

v4

We’ll now look to encode the second constraint. Consider the edge (v1, v2). If v1 is colored with c,
then v2 must not be colored with c. That is, xv1,c =⇒ xv2,c ≡ xv1,c ∨ xv2,c. However, since the
actual color of v1 is unknown to us, we must add this constraint over all colors c1, c2, c3.
That is, to φ, we would add:

(xv1,c1 ∨ xv2,c1) ∧ (xv1,c2 ∨ xv2,c2) ∧ (xv1,c3 ∨ xv2,c3)

But of course, we must do this for all edges in the graph. Upon doing so, and combining it with the
φ we had when considering Constraint 1, we get:

φ = (xv1,c1 ∨ xv1,c2 ∨ xv1,c3)

∧ (xv2,c1 ∨ xv2,c2 ∨ xv2,c3)

∧ (xv3,c1 ∨ xv3,c2 ∨ xv3,c3)

∧ (xv4,c1 ∨ xv4,c2 ∨ xv4,c3)

∧ (xv1,c1 ∨ xv2,c1) ∧ (xv1,c2 ∨ xv2,c2) ∧ (xv1,c3 ∨ xv2,c3)

∧ (xv1,c1 ∨ xv3,c1) ∧ (xv1,c2 ∨ xv3,c2) ∧ (xv1,c3 ∨ xv3,c3)

∧ (xv2,c1 ∨ xv3,c1) ∧ (xv2,c2 ∨ xv3,c2) ∧ (xv2,c3 ∨ xv3,c3)

∧ (xv3,c1 ∨ xv4,c1) ∧ (xv3,c2 ∨ xv4,c2) ∧ (xv3,c3 ∨ xv4,c3)

Putting our formula φ into a SAT solver, we get the following assignment:

xv1,c1 = FALSE xv1,c2 = FALSE xv1,c3 = TRUE

xv2,c1 = FALSE xv2,c2 = TRUE xv2,c3 = FALSE

xv3,c1 = TRUE xv3,c2 = FALSE xv3,c3 = FALSE

xv4,c1 = FALSE xv4,c2 = FALSE xv4,c3 = TRUE

With c1 = GREEN, c2 = BLUE and c3 = RED, we see that the satisfying assignment gives us the
coloring of the graph we saw at the start of section 3.

3.2 Finding the Min-Coloring

What happens if we want to find the minimum coloring of G? Notice that this is a shift from a DECISION
problem to an OPTIMIZATION problem. Before, we were given a graph G, and a value k, and we simply
returned YES/NO indicating if the graph could be colored. This new problem asks us to find a value k that
is as small as possible such that G is still k−colorable. This is the problem of finding the chromatic number
of G, notated χ(G). Let us call the original problem “GRAPH-COLORING”, and this new optimization
problem “MIN-COLORING”.

One naive approach is to use our solution for “GRAPH-COLORING”, by testing k = 1, then k = 2, and
so on and so forth until our solver finds a solution. The runtime of this is O(χ(G)).
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A different approach is to binary search. First, check if G can be colored with 1, 2, 4, 8, 16... colors. Stop
at the smallest value 2k such that G is 2k−colorable. Then, binary search for the tru value of χ(G) in the
range [2k−1, 2k]. The runtime of this is O(lgχ(G))

3.3 UNSAT

Let’s consider another variant of the problem. Given a graph G, and an integer k, we need to decide if there
is NO valid k-coloring. That is, if every assignment of the k colors to vertices is invalid, we would return
YES. We’ll call this problem UNSAT.

In terms of solving time, UNSAT can be way harder than SAT. This is because, with SAT, we only need
to find one satisfying assignment. Once we find it, we are done. With UNSAT, we need to consider every
assignment, and show that none of them are valid. This is a massive search space.

In practice, on a triangle-free graph, checking UNSAT for k = 5 can take upwards of 10 minutes with
the implementation we have now.

3.4 Solving Time

It turns out that the amount of time to solve the GRAPH-COLORING problem peaks once we approach
the chromatic number. In fact, for most instances, setting k = χ(G)− 1 will take the longest time to solve.

4 Symmetry Breaking

UNSAT takes a very long time to solve. Why? The idea is that our SAT solver is oblivious to the fact that
we are working with a graph. It treats it as just a typical boolean formula. Because of this, there is a special
property about graph coloring that we haven’t yet incorporated in our formula: symmetric colorings.

Consider the following two attempted colorings of a graph:

v1 v2

v3

v4

v1 v2

v3

v4

These two colorings are essentially identical. We can form equivalence classes of vertices that are colored
the same color, and they would be the same classes for both colorings. The only difference is the actual
colors of the classes. So visually, we can tell that these two attempted colorings are identical, but our sat
solver does not know this. Because in the first coloring, the variable xv1,BLUE = TRUE, but in the second
coloring, xv1,BLUE = FALSE, because v1 is not colored blue.

This is what we call a symmetric coloring. We can greatly reduce the search space by telling our SAT
solver “hey, these two colorings are identical.”

But how do we do this? It turns out the solution is very simple. We will pick a few vertices, and fix
their colors at the start. For example, if we choose to fix v1 = BLUE, or equivalently, xv1,BLUE = TRUE, then
the second coloring would never be explored in our search space. This can be done by adding xv1,BLUE as a
standalone clause in φ. Upon doing this, our runtime improves drastically.

5 Stable Matchings

Problem: We have n men and n women. Each man ranks the n women in order of preference. Each
woman ranks the n men in order of preference. The goal of this problem is to find a one-to-one matching of
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men to women.
A man and a woman who both prefer each other to their matched partners are called a blocking pair.

A matching is stable if it has not blocking pairs.

5.1 Encoding Stable Matching

We will use an unintuitive variable definition for our encoding. Let mip be a variable that is TRUE if man i
is matched to the pth woman or later on his preference list. Similarly, let wip be a variable that is TRUE if
woman i is matched to the pth woman or later on her preference list.

For example, suppose we have the following two men and two women with given preference lists:

M1 : W1 > W2

M2 : W1 > W2

W1 : M1 > M2

W2 : M1 > M2

Further, suppose M1 is matched with W1 and M2 is matched with W2, then, our variables and their
evaluations are given by:

m1,1 = TRUE m1,2 = FALSE m2,1 = TRUE m2,2 = TRUE

w1,1 = TRUE w1,2 = FALSE w2,1 = TRUE w2,2 = TRUE

Constraint 1

Constraint 1: Every man is matched to some partner.

That means, we must have, for arbitrary man mi, at least one of mi,1,mi,2, ...,mi,p evaluating to
true. However, even simpler, we can just look at mi,1. If this variable evaluates to TRUE, then by
definition, it means that man i is matched to the women ranked first or later on the list, and the list
contains all women. So, for each man, we need mi,1 = TRUE.

This can be represented in CNF form by:

φ = m1,1 ∧m2,1 ∧ ... ∧mn,1 = {mi,1 | 1 ≤ i ≤ n} (in compact form)

Constraint 2

Constraint 2: If a man gets his pth or later choice, it is also his (p− 1)th or later choice.

This makes sense from our definition of our variables. That is, if mi,p = TRUE, meaning that the ith
man is matched to his pth or later woman, then clearly, mi,p−1 must also be true. But remember,
our formula φ does not know that yet. We know that because of how our variables are defined, but
we need to encode this. This can be done as follows:

{mi,p =⇒ mi,p−1 | 1 ≤ i ≤ n, 2 ≤ p ≤ n}
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Constraint 3

Constraint 3: If man i is matched to woman j, then she is matched to him.

Hopefully the need for this constraint is obvious. How we encode this is slightly difficult. How do
we know what woman a man is matched to just by the variables we have defined. Well, if man i is
matched with woman p, then it must be the case that mi,p = TRUE, but also, mi,p+1 = FALSE. So,
this will be our condition. We can encode the constraint as:

{mi,p ∧mi,p+1 =⇒ wj,q ∧ wj,q+1 | 1 ≤ i, j ≤ n}

where p is the position of woman j in man i’s list, and q is the position of man i in woman j’s list.

Constraint 4

Constraint 4: If man i is matched to someone worse than woman j, then her match must be better
than him with respect to her preference list.

The wording of this is a little bit wonky, but it is essentially ensuring that we do not have any blocking
pairs. That is, if woman j is highly ranked for man i, but they are not matched, the only way that
they will not form a blocking pair is for woman j to be matched with man k who she ranked higher
than man i.

In terms of encoding, we have:

{mi,p+1 =⇒ wj,q | 1 ≤ i, j ≤ n}

And those are all of the constraints. By putting the constraints together into a single boolean formula,
we can feed it into a SAT solver, and get our matchings.

5.2 But What about Gale-Shapley?

Some of you might remember a fun algorithm from CIS1210 called Gale-Shapley. We won’t go into the details
of that algorithm in this class, but all you need to know is that this algorithm is a linear time algorithm that
solves the matching problem in linear time.

So why did we waste all of that time converting Stable Matching to SAT? Why couldn’t we have just
used Gale-Shapley? Well, we could have.

The major downfall of Gale-Shapley is its inability to solve mutations of the stable matchings problem.

For example, a common deviant of this problem is SMTI: the stable matching problem where preference
lists may be incomplete and contain ties. For SMTI, we can alter our formula φ, by mainly changing the
clauses developed by constraint 4, and then shove our formula in a SAT solver. But Gale-Shapley cannot
solve SMTI.

Another variant is SM-C: the stable matching problem with couples. You can imagine the setting as
follows: There is a group of couples, all of them are applying to residency. Together, the couples construct
a preference list of pairs of hospitals, instead of creating lists for the individual. Then, we find the optimal
matching given these pair preferences. Gale-Shapley cannot handle this, but our SAT solver could be adapted
to handle it.

The short reason why Gale-Shapley doesn’t work for SMTI and SM-C is because these problems are
NP-Complete.
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