

Lecture 10: From CP to SAT

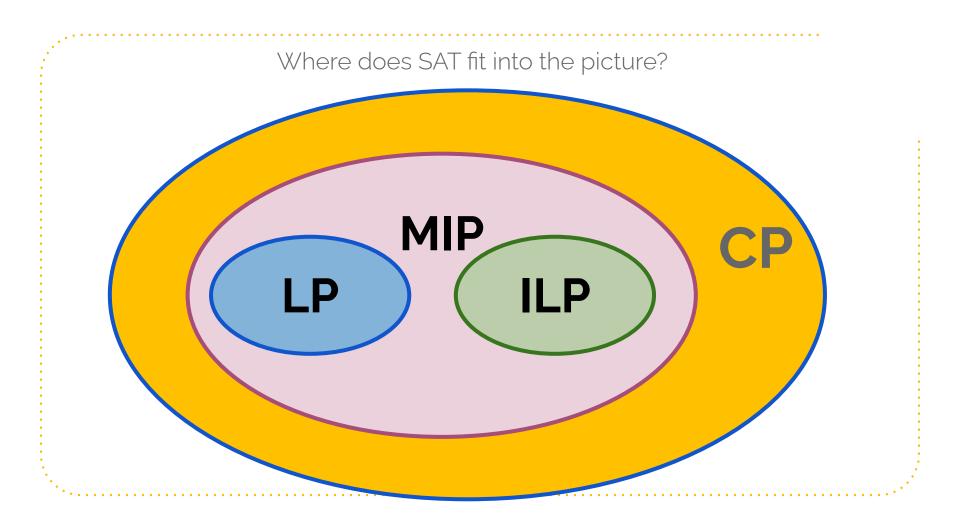
Ishaan Lal <u>ilal@seas.upenn.edu</u>

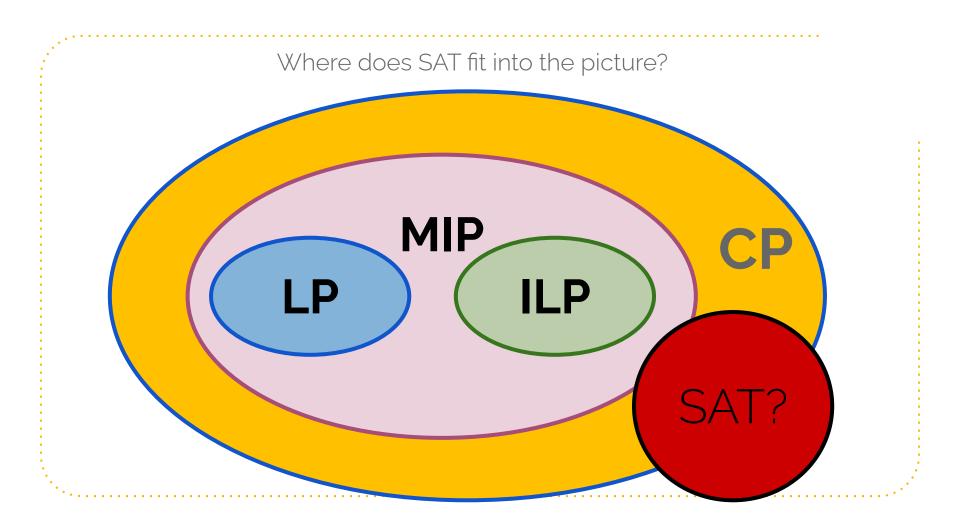
Logisitcs

- HW4 update...
- Project:
 - Feedback on proposal released on Gradescope
 - Checkpoint due 11/21 (~75% complete)
 - Please update us on any changes in vision to your project!

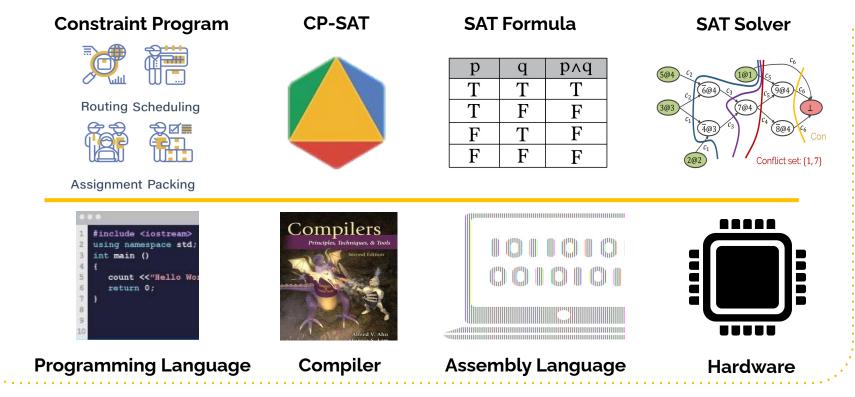
Today...

- Back to SAT!
- How does CP relate to SAT?





A loose analogy I've used



Today...

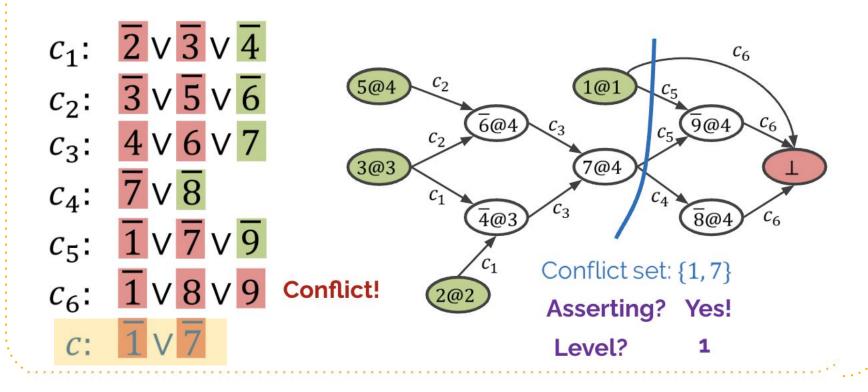
- How does CP-SAT "compile" constraint programs into CNF-SAT formulas?
- Actually, that analogy is **wrong**!
 - CP-SAT does not just turn constraints into clauses and hand it off to a SAT solver...
 - We'll see it's more like a "conversation" btwn CP-SAT & solver
- Disclaimer: this is active research
 - Many details are necessarily left out, and any errors are mine
 - Thanks to: P. Stuckey, O. Ohrimenko, M. Codish, T. Feydy

Conflict Driven Clause Learning

Who remembers?


```
\operatorname{cdcl}(\varphi):
    if unit propagate() = CONFLICT: return UNSAT
    while not all variables have been set:
         let x = pick variable()
         create new decision level; set x = T
         while unit propagate() = CONFLICT:
             if level = 0: return UNSAT
             let (conflict cls, assrt lvl) = analyze conflict()
             let \varphi = \varphi \cup \{ \text{ conflict cls } \}
             # discard all assignments after asserting level
             backjump(assrt lvl)
     return SAT
```


- Recall: CDCL = **Conflict Driven Clause Learning**
- Incrementality: CDCL solvers allow new clauses to be added during the search
- Conflict analysis
 - Build implication graph
 - Find set of literals that caused the conflict
 - Learn a new conflict clause



Background: CP Solvers

- We'll consider CP over discrete finite domains only (i.e., bounded integer vars)
- Need to understand a bit about how traditional finite domain solvers work first

Background: CP Solvers

- Maintain a domain *D* that tracks the possible values for each variable
 - Doesn't need to be contiguous (e.g., {1,3,5})
- Let $\min_{D}(x)$ and $\max_{D}(x)$ denote the min and max possible values for variable x in domain D
 - Initially D(x) = [lb(x)..ub(x)] for each variable x

Bounds Consistency

- We say a constraint *c* involving variables x₁, ..., x_n is
 bounds consistent with domain *D* if for each x_i:
 - it's possible to set $x_i = \min_{D}(x_i)$ and still satisfy c, and
 - it's possible to set $x_i = \max_{D}(x_i)$ and still satisfy c
- **Ex**: D(x) = [4..7], D(y) = [1..5], D(z) = [-1..2]subject to x = y + z
 - $\circ \quad x = 4 \rightarrow y = 4, \ z = 0 \quad \checkmark$
 - $\circ \quad x = 7 \rightarrow y = 5, \ z = 2 \checkmark$
 - $y = 1 \rightarrow x = 4$, $z = ? \times not$ bounds consistent!

In other words, "there exists a solution within the bounds when we set x_i = min and x_i= max"

Bounds Consistency

$$D(x) = [4..7], D(y) = [2..5], D(z) = [-1..2]$$
subject to $x = y + z$

$$x = 4 \rightarrow y = 4, \ z = 0 \quad \checkmark \qquad y = 5 \rightarrow x = 6, \ z = 1 \quad \checkmark$$

$$x = 7 \rightarrow y = 5, \ z = 2 \quad \checkmark \qquad z = -1 \rightarrow x = 4, \ y = 5 \quad \checkmark$$

$$y = 2 \rightarrow x = 4, \ z = 2 \quad \checkmark \qquad z = 2 \rightarrow x = 6, \ y = 4 \quad \checkmark$$

.....

.....

·····

Propagators

- A **propagator** for constraint *c* is an algorithm that accepts a domain *D*, and returns:
 - A new domain D' where c is bounds consistent with D'
 - Implications "explaining" the updated bounds in D'
- Different constraints have different propagation rules for finding *D*'

Propagator for x = y + z

How to ensure bounds consistency for x = y + z?
We can rewrite to isolate each variable:

x = y + z y = x - z z = x - y

Now we can derive a pair of inequalities for each:
 x ≥ min(y) + min(z) and x ≤ max(y) + max(z)
 y ≥ min(x) - max(z) and y ≤ max(x) - min(z)
 z ≥ min(x) - max(y) and z ≤ max(x) - min(y)

Propagator for x = y + z

- What are "explanations"?
- **Ex**: D(x) = [4..7], D(y) = [1..5], D(z) = [-1..2]
- Since $y \ge \min_D(x) \max_D(z) = 4 2 = 2$, we update the domain of y to D'(y) = [2..5]
- The explanation for this update is the implication:

 $(x \ge 4) \land (z \le 2) \Rightarrow y \ge 2$

Bounds Consistency

$$D(x) = [4..7], D(y) = [2..5], D(z) = [-1..2]$$
subject to $x = y + z$

$$x = 4 \rightarrow y = 4, \ z = 0 \quad \checkmark \qquad y = 5 \rightarrow x = 6, \ z = 1 \quad \checkmark$$

$$x = 7 \rightarrow y = 5, \ z = 2 \quad \checkmark \qquad z = -1 \rightarrow x = 4, \ y = 5 \quad \checkmark$$

$$y = 2 \rightarrow x = 4, \ z = 2 \quad \checkmark \qquad z = 2 \rightarrow x = 6, \ y = 4 \quad \checkmark$$

.....

.....

Many traditional CP solvers use finite domain propagation:

- Start with the initial domain D_0 specified by the user
- Try adding a new constraint c (e.g. assigning a variable)
- Repeatedly run all constraint propagators on *D* until:
 - A var has no possible values: BACKTRACK, add $\neg c!$
 - Nothing changes: add another constraint and repeat
- Does this sound familiar?

	<i>x</i> ₁ = 1
$D(x_1)$	{1}
$D(x_2)$	[14]
$D(x_3)$	[14]
$D(x_4)$	[14]
$D(x_5)$	[14]
	Domain I

	<i>x</i> ₁ = 1	AllDiff				
$D(x_1)$	{1}	{1}				
$D(x_2)$	[14]	[<mark>2</mark> 4]				
$D(x_3)$	[14]	[<mark>2</mark> 4]				
$D(x_4)$	[14]	[<mark>2</mark> 4]				
$D(x_5)$	[14]	[14]				
Domain D ₁						

 $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$

s.t. $x_2 \le x_5$, AllDifferent([x_1, x_2, x_3, x_4]), $x_1 + x_2 + x_3 + x_4 \le 9$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$
$D(x_1)$	{1}	{1}	{1}
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]

Domain D_1

$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	{2 }
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]
$D(x_1)$	{1}	{1}	{1}	{1}
	$x_1 = 1$	AllDiff	$x_2 \leq x_5$	$x_5 \leq 2$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$	$x_5 \leq 2$	$x_2 \leq x_5$
$D(x_1)$	{1}	{1}	{1}	{1}	{1}
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]	{2}
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	{2}	{2}
	Domain	Domain 2	D ₂		

- $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$
- s.t. $x_2 \le x_5$, AllDifferent($[x_1, x_2, x_3, x_4]$), $x_1 + x_2 + x_3 + x_4 \le 9$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$	$x_5 \leq 2$	$x_2 \leq x_5$	AllDiff
$D(x_1)$	{1}	{1}	{1}	{1}	{1}	{1}
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]	{2}	{2}
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	{2}	{2}	{2}
Domain D ₁				Domain	D_2	

- $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$
- s.t. $x_2 \le x_5$, AllDifferent([x_1, x_2, x_3, x_4]), $x_1 + x_2 + x_3 + x_4 \le 9$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$	$x_5 \leq 2$	$x_2 \leq x_5$	AllDiff	∑ ≤ 9
$D(x_1)$	{1}	{1}	{1}	{1}	{1}	{1}	{1}
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]	{2}	{2}	{2}
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]	{3}
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]	{3}
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	{2}	{2}	{2}	{2}
Domain D ₁			Domain D ₂				

 $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$

s.t. $x_2 \le x_5$, AllDifferent([x_1, x_2, x_3, x_4]), $x_1 + x_2 + x_3 + x_4 \le 9$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$	$x_5 \leq 2$	$x_2 \leq x_5$	AllDiff	∑ ≤ 9	AllDiff
$D(x_1)$	{1}	{1}	{1}	{1}	{1}	{1}	{1}	{1}
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]	{2}	{2}	{2}	{2}
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]	{3}	Ø
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]	[24]	[<mark>3</mark> 4]	{3}	ø
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	{2}	{2}	{2}	{2}	{2}
	Domain	D ₁		Domain <i>I</i>	D ₂			

 $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$

s.t. $x_2 \le x_5$, AllDifferent([x_1, x_2, x_3, x_4]), $x_1 + x_2 + x_3 + x_4 \le 9$

	<i>x</i> ₁ = 1	AllDiff	$x_2 \leq x_5$	$x_5 > 2$	etc	
$D(x_1)$	{1}	{1}	{1}	{1}		
$D(x_2)$	[14]	[<mark>2</mark> 4]	[24]	[24]		
$D(x_3)$	[14]	[<mark>2</mark> 4]	[24]	[24]		Backtrack!
$D(x_4)$	[14]	[<mark>2</mark> 4]	[24]	[24]		
$D(x_5)$	[14]	[14]	[<mark>2</mark> 4]	[<mark>3</mark> 4]		
	Domain D ₁				D ₂	

FD Propagation is Like DPLL

- Adding a constraint is like making a decision
- Running constraint propagators is like unit propagation
- Backtracking is like... backtracking
- So why don't we try to just do this all in SAT?

Representing CP as SAT?

- First question: what are the boolean variables?
- Attempt 1: for each CP var x, create boolean variables [x = i] for $lb(x) \le i \le ub(x)$
 - Number of variables is linear in size of domain
 - Issue: need very long clauses to represent inequalities (e.g. $x \le 10$)
 - Poor propagation strength
 - Attempt 2: logarithmic encoding (create a boolean variable for each bit of *x*)
 - Logarithmic in size of domain, but even worse propagation strength

Order Encoding

• For each CP var *x*, create boolean variables:

- $\circ \ [x = i]$ for $lb(x) \le i \le ub(x)$ $\circ \ [x \le i]$ for $lb(x) \le i \le ub(x)$
- Note that $(x \ge i) \equiv \neg [x \le i 1]$ and $(x \ne i) \equiv \neg [x = i]$

Need to add consistency clauses:

- $\begin{array}{ll} \circ & \llbracket x \leq i \rrbracket \Rightarrow \llbracket x \leq i+1 \rrbracket & \text{for } \operatorname{lb}(x) \leq i \leq \operatorname{ub}(x) 1 \\ \circ & \llbracket x = i \rrbracket \Leftrightarrow \llbracket x \leq i \rrbracket \land \neg \llbracket x \leq i-1 \rrbracket \\ \end{array}$
- Linear in size of domain; good propagation strength

Adding a CP constraint in SAT

- How can we write the constraint x = y + z with clauses?
- Need to enforce it for each possible value of x, y, z
- For each $lb \le i, j \le ub$, add clauses:

$$\circ \quad \llbracket y = i \rrbracket \land \llbracket z = j \rrbracket \Rightarrow \llbracket x = i + j \llbracket$$

$$\sum_{x = i} || \land ||_{z = j} || \Rightarrow ||_{y = i - j}$$

$$\circ \quad [x = i] \land [y = j] \Rightarrow [z = i - j]$$

How many clauses? $O(|ub - lb|^2)$

• What if we sum more variables? Exponential blowup!

Lazy Clause Generation

- **Key observation:** although it takes a lot of clauses to represent a CP constraint, most clauses are never used
- Lazy clause generation: rather than generate all these clauses before solving, just generate the ones we need, when we need them!
- OK, but how does that actually work...

Lazy Clause Generation

- Recall that FD propagators return an "explanation" for updating bounds, e.g. $(x \ge 4) \land (z \le 2) \Rightarrow y \ge 2$
- Easy to express these explanations as clauses
- Can run propagators during execution of CDCL solver, then add explanation clauses to formula
 - If we only introduce explanation clauses when the LHS of the implication is currently true, they will immediately become unit clauses!

· 🔶 ·

LCG Pseudocode

```
lazy clause generation(constraint program):
    let P = make propagators(constraint program)
    if lcg propagate() = CONFLICT: return INFEASIBLE
    while not all variables have been set:
        let x = pick variable()
        create new decision level; set x = T
        while lcg propagate (P, \varphi) = CONFLICT:
             if level = 0: return INFEASIBLE
             let (cls, lvl) = analyze conflict()
             let \varphi = \varphi \cup \{ cls \}
            backjump(lvl)
     return FEASIBLE
```

```
lcg_propagate(P, \varphi):
while True:
    if unit_prop() = CONFLICT:
        return CONFLICT
    for propagator p \in P:
        let expl_clauses = p(\varphi)
        let \varphi = \varphi \cup expl_clauses
    if \varphi did not change:
        return SUCCESS
```

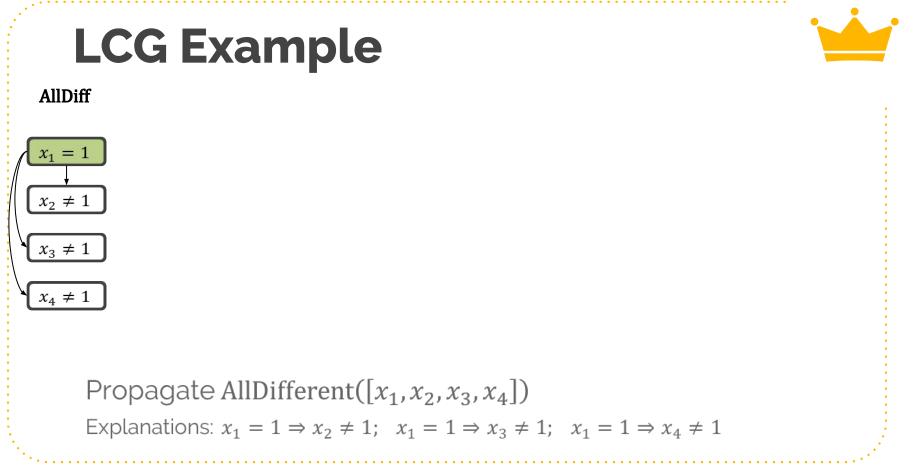

 $D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$

s.t. $x_2 \le x_5$, AllDifferent($[x_1, x_2, x_3, x_4]$), $x_1 + x_2 + x_3 + x_4 \le 9$

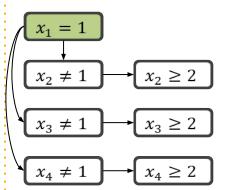
 $x_1 = 1$

Decision: $\llbracket x_1 = 1 \rrbracket$

(Note: For simplicity, some clauses are ignored in this example, and decision levels are left out; don't take it too seriously.)

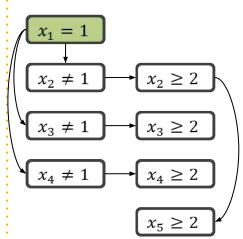


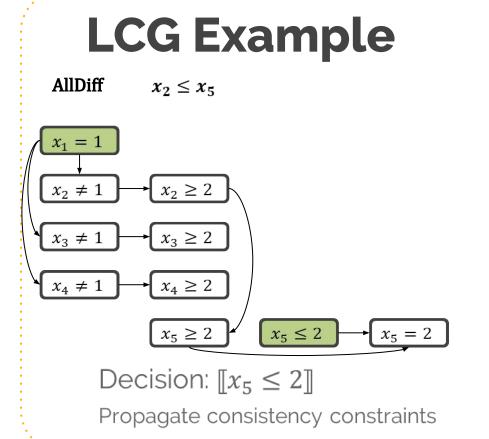
AllDiff



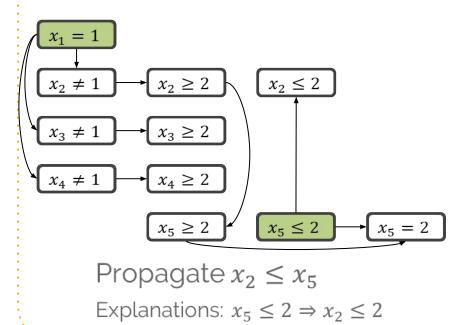
Propagate consistency clauses

AllDiff $x_2 \le x_5$



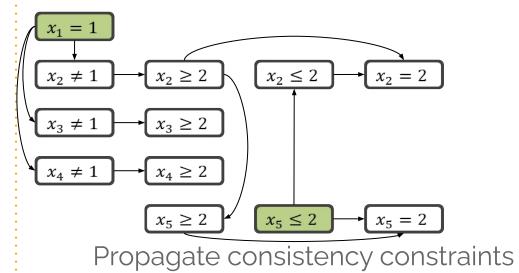


AllDiff $x_2 \le x_5$ $x_2 \le x_5$

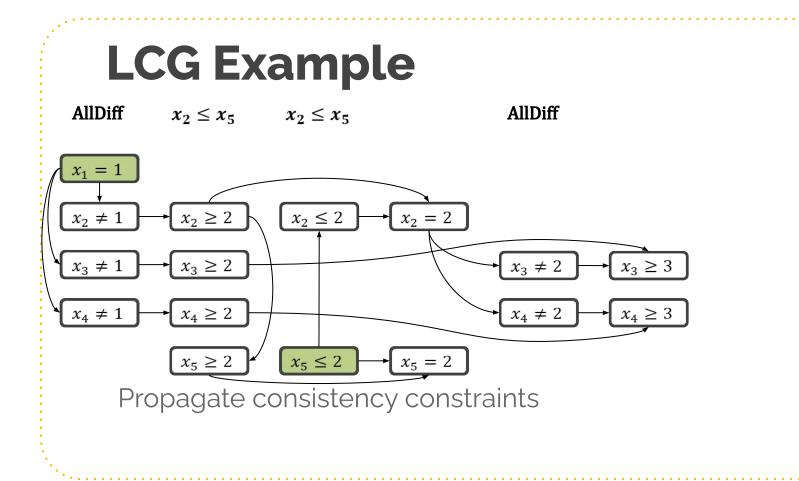


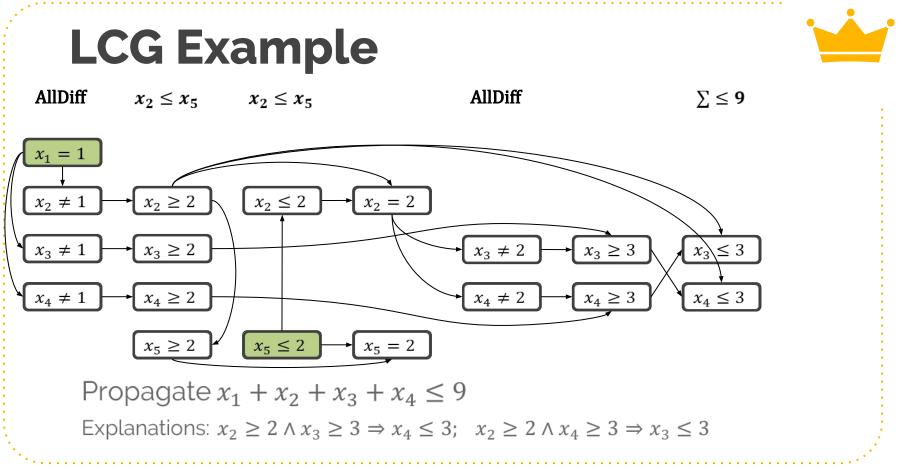
`

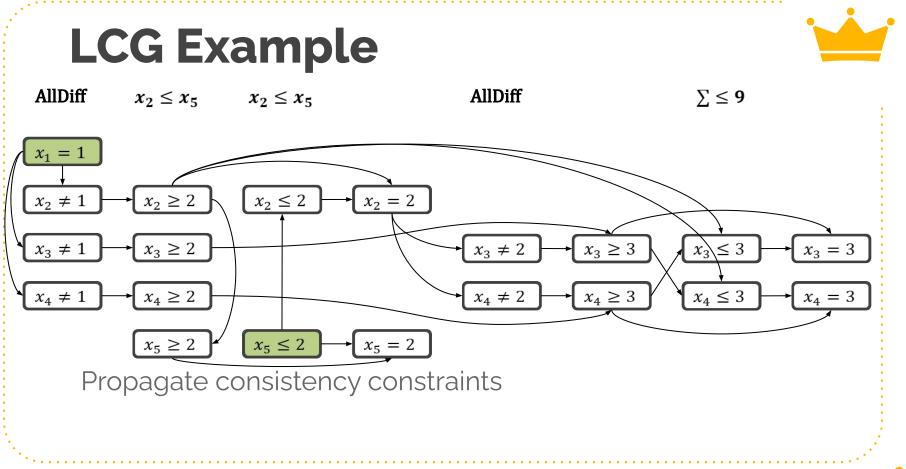
AllDiff $x_2 \le x_5$ $x_2 \le x_5$

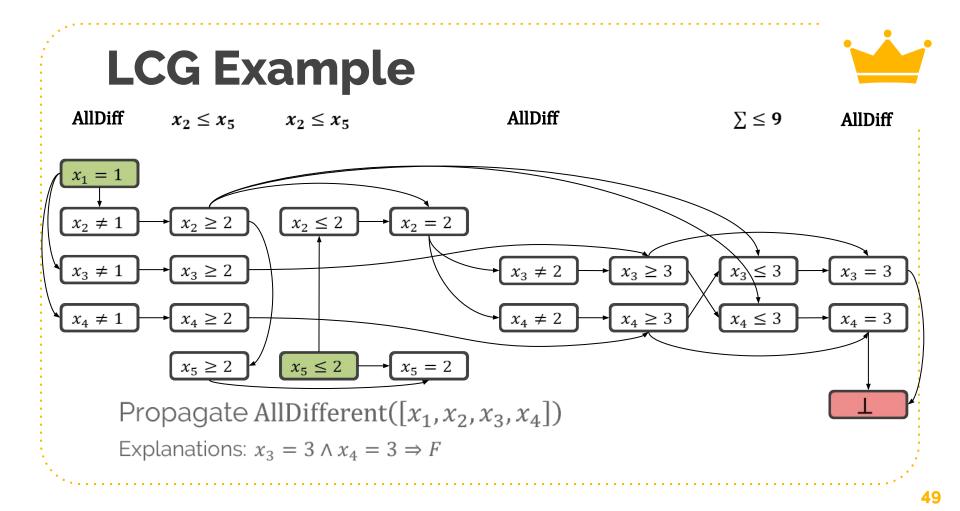


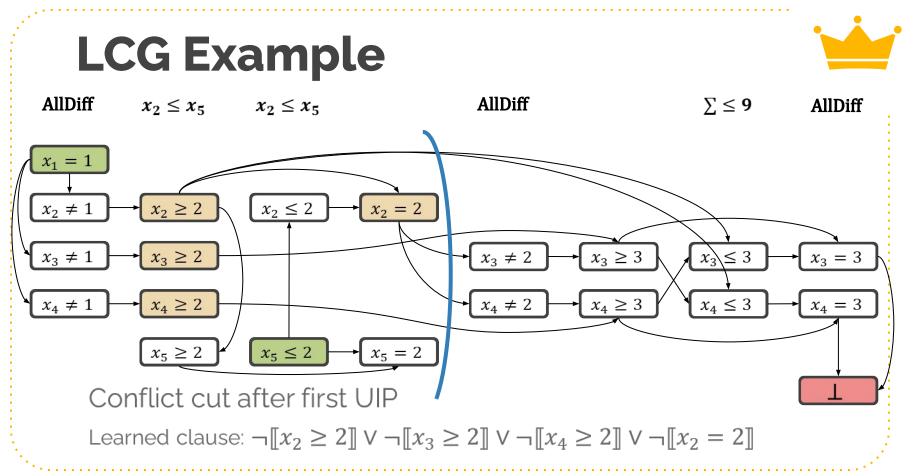
LCG Example AllDiff AllDiff $x_2 \leq x_5$ $x_2 \leq x_5$ $x_1 = 1$ $x_2 \leq 2$ $x_2 \ge 2$ $x_2 = 2$ $x_2 \neq 1$ $x_3 \ge 2$ $x_3 \neq 1$ $x_3 \neq 2$ $x_4 \ge 2$ $x_4 \neq 2$ $x_4 \neq 1$ $x_5 \ge 2$ $x_5 \leq 2$ $x_5 = 2$ Propagate AllDifferent($[x_1, x_2, x_3, x_4]$) Explanations: $x_2 = 2 \Rightarrow x_3 \neq 2$; $x_2 = 2 \Rightarrow x_4 \neq 2$



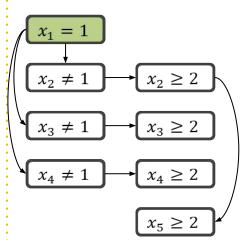






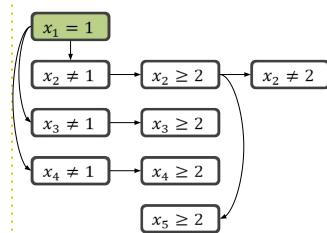


AllDiff $x_2 \le x_5$



Backtrack to asserting level! Learned clause: $\neg [x_2 \ge 2] \lor \neg [x_3 \ge 2] \lor \neg [x_4 \ge 2] \lor \neg [x_2 = 2]$

AllDiff $x_2 \le x_5$



Propagate from learned clause Learned clause: $\neg [x_2 \ge 2] \lor \neg [x_3 \ge 2] \lor \neg [x_4 \ge 2] \lor \neg [x_2 = 2]$

· 🔶 ·

Explanation Deletion

- Explanation clauses are needed for immediate unit propagation and for generating learned clauses
- But when we backtrack past the explanations, may not need them anymore
 - Can delete from formula

Lazy Boolean Variable Creation Many of the boolean variables are never actually used

- Idea: create boolean variables when we need them
- Array encoding: initially only create $[x \le i]$ variables
 - Create [x = i] variables on demand
 - Don't forget to add clause: $[x = i] \Leftrightarrow [x \le i] \land \neg [x \le i 1]$
- List encoding: create both types of variables on demand!
 - When creating $[x \le i]$, add clauses:
 - $[x \le i] \Rightarrow [x \le i_{next}]$, where i_{next} is next-higher existing bnd

Lazy Variable Tradeoffs

- List encoding has fewer variables, so it can succeed on large domains where array encoding fails
- Array encoding interacts better with clause learning
 - This is significant!
- List encoding is trickier to implement

References

Feydy, T. J., & Stuckey, P. J. (2009). Lazy Clause Generation Reengineered. *Principles and Practice of Constraint Programming - CP 2009 Lecture Notes in Computer Science*, 352–366. doi: 10.1007/978-3-642-04244-7_29

Marriott, K., & Stuckey, P. J. (1999). *Programming with constraints: an introduction*. Cambridge (Massachusetts): MIT Press.

Ohrimenko, O., Stuckey, P. J., & Codish, M. (2009). Propagation via lazy clause generation. *Constraints*, *14*(3), 357–391. doi: 10.1007/s10601-008-9064-x

Stuckey, P. J. (2010). Lazy Clause Generation: Combining the Power of SAT and CP (and MIP?) Solving. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems Lecture Notes in Computer Science, 5–9. doi: 10.1007/978-3-642-13520-0_3

Stuckey, P. J. (2010, June). Lazy Clause Generation: Combining the best of SAT and CP (and MIP?) solving. Retrieved from https://people.eng.unimelb.edu.au/pstuckey/cpaior-talk.pdf