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1 Introduction

It’s been a while since we have discussed SAT. It is now time to revisit the topic. We mentioned briefly
when introducing Constraint Programming that the solver writes constraints as clauses, and then solves a
SAT formula. We’ll get into this today!

2 Prerequisites

A thorough understanding of Constraint Program (lectures 8 and 9) as well as CDCL (lecture 4) is incredibly
helpful in understanding the content of this lecture.

3 Setting the Stage

As a loose analogy to set the stage:

• Constraint Programming is akin to a programming language, where it is high level, and you are
“telling the computer what you want”.

• CP-SAT is akin to a compiler, a way of transferring written code to a language that the machine will
understand.

• The SAT Formula is akin to assembly language, the low level language that the computer under-
stands.

• The SAT solver is akin to the hardware, what actually carries out the computations.

3.1 Admitting a Lie

It turns out that this idea of CP-SAT just taking constraints and codifying them as clauses and handing it
off to a SAT solver isn’t completely accurate. Realistically, it is more of a “conversation” between CP-SAT
and the solver. This is an active area of research, and many details are necessarily left out in the remainder
of the notes. Any errors are mine.



3.2 Recall

To continue, we must recall some information from previous lectures.

First, recall CDCL: Conflict Driven Clause Learning. This was the algorithm we used for SAT solving. It
incorporated unit propagation, as well as backjumping.

cdcl(φ):
if unit_propagate () = CONFLICT: return UNSAT

while not all variables have been set:

let x = pick_variable ()

create new decision level; set x = T

while unit_propagate () = CONFLICT:

if level = 0: return UNSAT

let (conflict_cls , assrt_lvl) = analyze_conflict ()

let φ = φ∪ { conflict_cls }

# discard all assignments after asserting level

backjump(assert_lvl)

return SAT

Also, remember that as CDCL progresses, once a conflict is detected, a new clause is added to the
formula.

Conflict analysis involved building an implication graph, finding a set of literals that caused the conflict,
and adding a learned clause to the formula.

4 Finite Domain Solvers

Recall that the Constraint Programming solvers we have seen require discrete, finite domains. That is,
our variables must be integers, and they are bounded.

To understand how they work, we first need to understand how traditional finite domain solvers work.

Finite domain solvers work by maintaining a domain D that tracks the possible values for each variable.
Notably, D need not be contiguous.

Let min
D

(x) and max
D

(x) denote the minimum and maximum possible values for x in domain D.

We say that a constraint c involving variables x1, ..., xn is bounds consistent with domain D if for each xi:

• when setting xi = min
D

(xi) , we can find

(x1, x2, ..., xi−1, xi+1, ..., xn) ∈ D1 ×D2 × ...×Di−1 ×Di+1 × ...×Dn

such that (x1, ..., xn) satisfies the constraint

• when setting xi = max
D

(xi) , we can find

(x1, x2, ..., xi−1, xi+1, ..., xn) ∈ D1 ×D2 × ...×Di−1 ×Di+1 × ...×Dn

such that (x1, ..., xn) satisfies the constraint

To test bounds consistency, choose one variable, and set it to one of the bounds of its domain. Then, see if
it is possible for the remaining variables to fall within their domain and follow the constraint.

As an example, let D(x) = [4..7],D(y) = [1..5],D(z) = [−1..2] with constraint x = y + z.
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• Start with variable x, and set x = min
D(x)

(x) = 4. Then, we can have y = 4, z = 0, and we have

x ∈ Dx, y ∈ Dy, z ∈ Dz and it satisfies x = y + z

• Now let x = max
D(x)

(x) = 7. With y = 5, z = 2, this checks out.

• Moving to y, let y = min
D(y)

(y) = 1. Here, regardless of our choice for x, we will never satisfy the

constrain. Thus, the constraint is not bounds consistent with domains Dx,Dy,Dz

4.1 Propagators

We say that a propagator for constraint c is an algorithm that accepts a domain D, and returns:

• a new domain D′ where c is bounds consistent with D′

• Implications “explaining” the updated bounds in D′

Different constraints have different propagation rules for finding D′

Example

Recall our example of constraint x = y + z. How do we ensure bounds consistency for it?

We can rewrite to isolate each variables:

x = y + z y = x− z z = x− y

Now, derive a pair of inequalities for each:

x ≥ min
D

(y) + min
D

(z) and x ≤ max
D

(y) + max
D

(z)

y ≥ min
D

(x)−max
D

(z) and y ≤ max
D

(x)−min
D

(z)

z ≥ min
D

(x)−max
D

(y) and z ≤ max
D

(x)−min
D

(y)

We can then tighten the upper and lower bounds accordingly to get D′

As an example, since y ≥ min
D

(x)−max
D

(z) = 4−2, we update the original domain of y from Dy = [1..5]

to D′
y = [2..5].

With a domain update, we tie it with an explanation. For the above, the explanation would be:

(x ≥ 4) ∧ (z ≤ 2) =⇒ y ≥ 2

Many traditional Constraint Programming solvers use finite domain propagation, whereby you start with
the initial domain D0 specified by the user. Then, try adding a new constraint (e.g. assigning a variable).
Then, repeatedly run all constraint propagators on D until: 1) a variable has no possible values, where you
must backtrack, and add ¬c, or 2) nothing changes, where you add another constraint and repeat.

An example walk-through of Finite domain propagation in action is available on the lecture slides.

You might recognize that this procedure feels very similar to DPLL – and it is! To highlight this comparison,
adding a constraint in FD is similar to making a decision in DPLL. Running constraint propagators is akin
to unit propagation. Backtracking is like... well, backtracking!

If there are so many similarities, then why don’t we just try to do this entire procedure in SAT?
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Issue: What are the boolean variables?

After all, if we are trying to represent a problem as SAT, we need to define our variables, and by definition,
SAT variables are boolean.

Attempt 1

Our first attempt at defining boolean variables is as follows:
for each CP variable x, create boolean variables [[x = i]] for lb(x) ≤ i ≤ ub(x)

What are the consequences of this definition? First, the number of variables is linear with respect
to the size of the domain. Secondly, and more glaringly, we need very long clauses to represent
inequalities (e.g. x ≤ 10 for lb(x) = 0 and ub(x) = 20 would require 11 variables in the clause. As a
result, unit propagation would be harder to come by.

Attempt 2

Our second attempt is a logarithmic encoding. The idea behind this is to encode a boolean variable
for each bit of x.

This fixes the issue of the number of variables we have (now logarithmic instead of linear), but it
turns out to have even worse propagation strength.

4.2 Order Encoding

Attempt 3 is called Order Encoding. For each CP variable x, we will create the following boolean
variables:

[[x = i]] for lb(x) ≤ i ≤ ub(x)

[[x ≤ i]] for lb(x) ≤ i ≤ ub(x)

Note that x ≥ i ≡ ¬[[x ≤ i− 1]] and x ̸= i ≡ ¬[[x = i]].

Tied with these variables are consistency clauses: logical implications that must hold for our variables to
actually make sense and reflect their meaning:

[[x ≤ i]] =⇒ [[x ≤ i+ 1]] for lb(x) ≤ i ≤ ub(x)− 1

[[x = i]] ⇐⇒ [[x ≤ i]] ∧ ¬[[x ≤ i− 1]]

See that the amount of variables we need is linear with respect to the size of the domain, however, the
propagation strength is much better (that is, it is more likely for us to be able to propagate).

With these variables, let us try to write a constraint. Suppose we wanted to write the constraint x = y + z
with clauses. This turns out to be a bit more tedious than expected, because this must be enforced no
matter where in their respective domains the values x, y, z come from. Further, if two variables are known,
they together determine the third value.

Thus, for each lb ≤ i, j ≤ ub, we would add the clauses:

[[y = i]] ∧ [[z = j]] =⇒ [[x = i+ j]]

[[x = i]] ∧ [[z = j]] =⇒ [[y = i− j]]

[[x = i]] ∧ [[y = j]] =⇒ [[z = i− j]]

In this particular example, the amount of clauses we are adding is O(|ub − lb|2). Not good! And if our
constraint added more variables, the amount of clauses would undergo an exponential blowup!
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5 Lazy Clause Generation

A key observation is as follows: even though it takes a lot of clauses to represent a CP constraint, most of
the clauses are never used. Lazy Clause Generation utilizes this observation, and rather than generate
all of these clauses before solving the CP, it will “just generate the ones we need when we need them!”

That seems a bit abstract and almost too good to be true. Let’s see how it works.

When we introduced Finite Domain propagators, we said that they return an “explanation” for updating
bounds, e.g. (x ≥ 4) ∧ (z ≤ 2) =⇒ y ≥ 2. Thankfully, it is pretty easy to express these explanations as
clauses. So we will run propagators during execution of a CDCL solver, than add explanation clauses to the
formula. If we only introduce explanation clauses when the Left Hand Side of the implication is currently
true, they will immediately become unit clauses!

Below is the pseudocode for Lazy Clause Generation:

lazy_clause_generation(constraint_program ):

let P = make_propagators(constraint_program)

if lcg_propagate () = CONFLICT: return INFEASIBLE

while not all variables have been set:

let x = pick_variable ()

create new decision level; set x = T
while lcg_propagate(P,φ) = CONFLICT:

if level = 0: return INFEASIBLE

let (cls , lvl) = analyze_conflict ()

let φ = φ∪ { cls }

backjump(lvl)

return FEASIBLE

lcg_propagate(P,φ):
while True:

if unit_prop () = CONFLICT:

return CONFLICT

for propagator p ∈ P :

let explanation_clauses = p(φ)
let φ = φ∪ explanation_clauses

if φ did not change:

return SUCCESS

Please refer to the lecture slides for a walk-through example of LCG in action.
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