
Lecture 9
Message Passing

1

Mutex poisoning
Mutex locking returns an Option. Why?

impl<T> Mutex<T> {

 pub fn lock(&self) -> Option<MutexGuard<'_, T>> {

 // omitted

 }

}

If a thread panics while holding a Mutex, the mutex
is “poisoned” instead of automatically unlocked.

Locking a poisoned mutex returns None

2
https://doc.rust-lang.org/src/std/sync/mutex.rs.html#315-320

https://doc.rust-lang.org/src/std/sync/mutex.rs.html#315-320

Mutex poisoning
fn pay_salaries(accounts: Mutex<Accounts>) {

 let mut accounts = accounts.lock().unwrap();

 let employees = accounts.employees();

 for account in employees {

 account += 1000;

 }

 accounts.corporate() -= 1000 * employees.len();

}

3

Mutex poisoning
fn pay_salaries(accounts: Mutex<Accounts>) {

 let mut accounts = accounts.lock().unwrap();

 let employees = accounts.employees();

 for account in employees {

 account += 1000;

 }

 accounts.corporate() -= 1000 * employees.len();

}

4

When a thread panics while holding a mutex,
application-specific invariants may not be upheld.

Mutex poisoning
fn pay_salaries(accounts: Mutex<Accounts>) {

 let mut accounts = accounts.lock().unwrap();

 let employees = accounts.employees();

 for account in employees {

 account += 1000;

 }

 accounts.corporate() -= 1000 * employees.len();

}

5

When a thread panics while holding a mutex,
application-specific invariants may not be upheld.

More practice with Send + Sync
https://stackoverflow.com/questions/59428096/
understanding-the-send-trait

6

https://stackoverflow.com/questions/59428096/understanding-the-send-trait
https://stackoverflow.com/questions/59428096/understanding-the-send-trait

Case Study: spawning threads
See spawn directory in lecture code

7

Parallelism (again)

8

But with channels this time

Mutexes are hard, what else can we do?
Do not communicate by sharing memory; instead, share memory by
communicating.

- Effective Go

9

https://go.dev/doc/effective_go

Mutexes are hard, what else can we do?
Do not communicate by sharing memory; instead, share memory by
communicating.

- Effective Go

View 1:

Programs are a set of threads running in
parallel that operate on one shared heap

View 2:

Programs are a set of threads running in
parallel operating on disjoint heaps and sharing
data via inter-thread channels

10

https://go.dev/doc/effective_go

Higher-level concurrency: channels
use std::sync::mpsc;

use std::thread;

fn main() {

 // (transmit, receive)

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 tx.send(10).unwrap();

 });

 println!("Got: {}", rx.recv().unwrap());

}

Two ends:

● Multiple producers
● Single consumer

11

Higher-level concurrency: channels
use std::sync::mpsc;

use std::thread;

fn main() {

 // (transmit, receive)

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 tx.send(10).unwrap();

 });

 println!("Got: {}", rx.recv().unwrap());

}

sending a value is instantaneous

recving a value waits until a value is in the
channel.

12

Higher-level concurrency: channels
use std::sync::mpsc;

use std::thread;

fn main() {

 // (transmit, receive)

 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {

 tx.send(10).unwrap();

 });

 println!("Got: {}", rx.recv().unwrap());

}

send and recv return an Option

When can sending or receiving go wrong?

13

But what is a channel?
use std::collections::VecDeque;

use std::sync::Mutex;

pub struct Channel<T> {

 data: Mutex<VecDeque<T>>

}

impl<T> Channel<T> {

 pub fn new() -> Channel<T> { ... }

 pub fn send(&self, value: T) {

 self.data.lock().unwrap().push_back(value);

 }

 pub fn recv(&self) -> Option<T> {

 self.data.lock().unwrap().data.pop_front()

 }

}

14

But what is a channel?
use std::collections::VecDeque;

use std::sync::Mutex;

pub struct Channel<T> {

 data: Mutex<VecDeque<T>>

}

impl<T> Channel<T> {

 pub fn new() -> Channel<T> { ... }

 pub fn send(&self, value: T) {

 self.data.lock().unwrap().push_back(value);

 }

 pub fn recv(&self) -> Option<T> {

 self.data.lock().unwrap().data.pop_front()

 }

}

15

This doesn’t match the
interface we want

Ok, but really
use std::collections::VecDeque;

use std::sync::{Arc, Condvar, Mutex};

pub struct Channel<T> {

 data: Mutex<VecDeque<T>>,

 cv: Condvar,

}

impl<T> Channel<T> {

 pub fn new() -> Channel<T> { ... }

 pub fn send(&self, value: T) {

 let mut data = self.data.lock().unwrap();

 data.push_back(value);

 self.cv.notify_one();

 }

Condition variable: allows a
thread to sleep until a
condition is met

 pub fn recv(&self) -> Option<T> {

 let mut data = self.data.lock().unwrap();

 while data.is_empty() {

 data = self.cv.wait(data).unwrap();

 }

 data.pop_front()

 }

}

Example: sleep until queue is
non-empty

16

Wake one thread that
is sleeping

Sleep til condition is
met

Going further
If the queue is long enough, two threads should
be able to send and receive without waiting for
the mutex.

One mutex for each thread item?

In general: implementing channels is a
challenging concurrency problem. See
crossbeam for a good implementation.

17

front back
Channel

https://docs.rs/crossbeam/latest/crossbeam/

Quiz
Suppose you have a multi-threaded web server
with each thread processing requests, and they
need to occasionally log events to a global,
combined log.

How would you implement with channels?

With shared-state (mutex)?

What are the pros and cons?

fn worker_thread(args: ???) {

 loop {

 // do some work

 let event = generate_event();

 // log event somehow?

 ...

 }

}

18

Quiz
Shared state

static logs: Mutex<Vec<String>> =

 Mutex::new(Vec::new());

fn worker_thread() {

 loop {

 // do some work

 let event = generate_event();

 logs.lock().push(event);

 }

}

19

Quiz
Shared state

static logs: Mutex<Vec<String>> =

 Mutex::new(Vec::new());

fn worker_thread() {

 loop {

 // do some work

 let event = generate_event();

 logs.lock().push(event);

 }

}

Channels

fn worker_thread(logger: Sender<String>) {

 loop {

 // do some work

 let event = generate_event();

 logger.send(event);

 }

}

fn logger_thread(workers: Vec<Receiver<String>>) {

 let logs = Vec::new();

 loop {

 let event = recv_from_any_worker(workers);

 logs.push(event);

 }

}

20

Channel tx

Channel rx

Quiz
Shared-state

Pro:

● Logger thread can’t become overwhelmed

Con:

● Worker threads waste time waiting for
lock to be released

Channels

Pro:

● Worker threads can send the log
instantly and get back to work

Con:

● Logger thread can get
overwhelmed

21

Takeaways
Channels are a nice abstraction, but generally
have higher overheads than using a mutex.

If your problem involves communication, use
someone else’s channel implementation instead
of making your own!

If the performance isn’t high enough, think
about how you can use a mutex instead.

22

Another channel example
fn main() {

 let (tx, rx) = mpsc::channel();

 let rx = Arc::new(Mutex::new(rx));

 for i in 1..100 {

 tx.send(i).unwrap();

 }

 for _ in 0..10 {

 let rx = Arc::clone(&rx);

 std::thread::spawn(move || loop {

 let n: u64 = rx.lock().unwrap().recv().unwrap();

 let result = collatz(n);

 println!("Collatz({n}) = {result}");

 });

 }

} 23

How to turn a single-consumer channel
into a multi-consumer channel?

“Thread Pool”: handful of threads
collectively completing list of tasks

Concurrency or parallelism?

What’s the difference between concurrency and
parallelism? Is there one?

Website Book

24

Concurrency or parallelism?
Concurrency

● View 1: tasks are interruptible
● View 2: multiple tasks can make progress

Parallelism

● Subset of concurrency
● Multiple tasks are executed at the same

time

A

B
A

B

time

25

Concurrency or parallelism?
Concurrency

● View 1: tasks are interruptible
● View 2: multiple tasks can make progress

Parallelism

● Subset of concurrency
● Multiple tasks are executed at the same

time

A

B
B

time A

C

Also usually exhibits interleaving, since a
single CPU thread runs many OS threads

26

Concurrency or parallelism?
Concurrency

● View 1: tasks are interruptible
● View 2: multiple tasks can make progress

Parallelism

● Subset of concurrency
● Multiple tasks are executed at the same

time

A

B
B

time A

C

Harder than single-threaded
Faster than single-threaded

27

Concurrency or parallelism?
Why care about concurrency?

● Is it faster?
● Is it hard?

A

B

28

Concurrency or parallelism?
Why care about concurrency?

● Is it faster?
● Is it hard?

Is it faster?

Yes! Some operations require waiting on someone
else. Do something else while you wait.

● Send request to a server -> wait on network
● Read from a file -> wait on OS

A

B

Is it hard?

Not as hard as parallelism. No data races, but still
need to worry about tasks getting interrupted

● What if your task gets interrupted after
popping a Vec element but before updating
the length? 29

Concurrency example
Sequential

fn main() {

 let servers = vec![...];

 for server in servers {

 let request = make_request(server);

 request.wait_for_response();

 }

}

Concurrent (not parallel)

fn main() {

 let servers = vec![...];

 let mut requests = vec![];

 for server in servers {

 requests.push(make_request(server));

 }

 for request in requests {

 request.wait_for_response();

 }

}

30

Concurrency or parallelism?

Non-interleaving Interleaving

Non-simultaneous Fully sequential Single-threaded
concurrency

Simultaneous Multi-threading

concurrent

concurrent &
parallel

31

Concurrency or parallelism?

Non-interleaving Interleaving

Non-simultaneous Fully sequential Single-threaded
concurrency

Simultaneous Multi-threading

Last two lectures

First part of course
previous slide &
async Rust

concurrent

concurrent &
parallel

32

https://rust-lang.github.io/async-book/

Concurrency or parallelism?

Non-interleaving Interleaving

Non-simultaneous Fully sequential Single-threaded
concurrency

Simultaneous Multi-threading but simpler Multi-threading

Last two lectures

First part of course

concurrent

concurrent &
parallel

33

previous slide &
async Rust

https://rust-lang.github.io/async-book/

Want to learn more?
Concurrency is Not Parallelism

https://go.dev/blog/waza-talk

34

https://go.dev/blog/waza-talk

A preview of next week
So far, we’ve seen some Rust guarantees that
hold about all programs at all moments during
execution

● References are never null
● References point to alive values
● A value has at most one mutable

reference pointing at it

● Values won’t be dropped multiple times
● Values can’t be accessed after being

moved

● Non-thread-safe values can’t be sent
between threads

These guarantees have nice results:

● Rust programs never segfault
● Rust programs never have data races
● Rust programs never exhibit undefined

behavior

For no performance penalty!

35

A preview of next week
So far, we’ve seen some Rust guarantees that
hold about all programs at all moments during
execution

Can’t prove these properties to the compiler?
Use dynamic checks

● Rc
● RefCell
● Arc
● Mutex

but there’s a performance cost

36

A preview of next week
So far, we’ve seen some Rust guarantees that
hold about all programs at all moments during
execution

Sometimes the program is valid, but

● we can’t prove it to the compiler
● we don’t want a performance penalty

For example, implementing Vec

What to do?

37

Unsafe Rust
Temporarily disable some of Rust’s safety
checks

● e.g. allows using raw pointers

let address = 0x012345;

let ptr = address as *const i32;

unsafe {

 println!("Value at address: {}", *ptr);

}

38

Use unsafe to build safe abstractions on top of
unsafe code.

● Vec and String have unsafe code inside,
but all public functions are safe to call.

raw pointer, not
a reference!

Unsafe example: building safe abstractions
Get mutable access to separate halves
of vec

● Impossible to do in safe Rust;
compiler can’t verify halves don’t
overlap

pub const fn split_at_mut(v: Vec<T>, mid: usize)

 -> Option<(&mut [T], &mut [T])>

{

39

 if mid <= v.len() {

 let len = v.len();

 let ptr = v.ptr();

 unsafe {

 (

 Slice::from_raw(ptr, mid),

 Slice::from_raw(ptr.add(mid), len - mid),

)

 }

 } else {

 None

 }

}

Unsafe example: making Mutex Send/Sync
pub struct Mutex<T> {

 inner: sys::Mutex,

 poison: poison::Flag,

 data: UnsafeCell<T>,

}

unsafe impl<T: Send> Send for Mutex<T> {}

unsafe impl<T: Send> Sync for Mutex<T> {}

Since we are confident the mutex locking logic
makes it safe to Send and Sync a Mutex<T>
regardless of what T is, we can declare the trait
implementations.

40

Internal types of Mutex are not
necessarily safe to Send and Sync

But! It’s unsafe to impl these traits: if we impl
Sync for a type that isn’t safe to share, then
Rust’s guarantees no longer hold

Compare to Clone: always safe to impl even
though poor judgement will cause bad
performance

Unsafe Rust
If we can turn off safety checks, how is this
better than C/C++?

● If a segfault occurs, only have to look at
unsafe blocks instead of whole program

● Unsafe code in standard library and
popular packages is audited to ensure
correctness

41

