
Lecture 8
Parallel Programming

1

PLQ Review: traits and enums
trait Shape {

 fn area(&self) -> f32;

}

impl Shape for Circle {

 fn area(&self) -> f32 {

 self.0 * self.0 * 3.14

 }

}

impl Shape for Rect {

 fn area(&self) -> f32 {

 self.0 * self.1

 }

}

enum Shape {

 Circle(Circle),

 Rect(Rect),

}

impl Shape {

 fn area(&self) -> f32 {

 match self {

 &Shape::Circle(Circle(r)) =>

 r * r * 3.14,

 &Shape::Rect(Rect(x, y)) =>

 x * y,

 }

 }

}

2

PLQ Review: traits and enums
trait Shape {

 fn area(&self) -> f32;

}

Can extend implementers but not
functionality
● implement trait for a new type
● can’t add new trait method without

breaking existing implementers

enum Shape {

 Circle(Circle),

 Rect(Rect),

}

Can extend functionality but not
implementers
● Add new enum method to add

functionality
● Can’t add new variant to enum without

breaking existing methods

3
https://en.wikipedia.org/wiki/Expression_problem

https://en.wikipedia.org/wiki/Expression_problem

Where are we? Where are we going?
Multi-threading is the motivation behind many
of Rust’s features. Today, we’ll start tying
together many features:

● limiting mutability
● smart pointers
● ownership
● traits

Coming up:

● Two lectures on parallelism
● One lecture on unsafe Rust
● One lecture on Rust ecosystem
● One flex lecture

4

Who cares about parallelism?
Easy to buy more cores, impossible to buy
faster cores

● How to use more cores?

5

Why is parallelism hard?
#define NUM_THREADS 10

#define INCREMENTS 10000

int counter = 0;

void* increment_counter(void* arg) {

 for (int i = 0; i < INCREMENTS; i++) {

 counter = counter + 1;

 }

 return NULL;

}

int main() {

 pthread_t threads[NUM_THREADS];

 for (int i = 0; i < NUM_THREADS; i++) {

 pthread_create(&threads[i], NULL,

 increment_counter, NULL);

 }

 // wait for threads to finish...

 printf("Counter: %d\n", counter);

}

https://godbolt.org/z/PbPe81aMc

What is printed?
6

Data race
Multiple accesses with at least one writer

for (int i = 0; i < INCREMENTS; i++) {

 int cur_count = counter;

 int new_count = cur_count + 1;

 counter = new_count;

}

7

Thread 1:

time

Thread 2:

cur_count <- 11

cur_count <- 11

new_count <- 12

counter <- 12

new_count <- 12

counter <- 12

Mutex (“mutual exclusion”)
#define NUM_THREADS 10

#define INCREMENTS 10000

int counter = 0;

pthread_mutex_t counter_mutex;

void* increment_counter(void* arg) {

 for (int i = 0; i < INCREMENTS; i++) {

 pthread_mutex_lock(&counter_mutex);

 counter++;

 pthread_mutex_unlock(&counter_mutex);

 }

 return NULL;

}

int main() {

 pthread_t threads[NUM_THREADS];

 pthread_mutex_init(&counter_mutex, NULL);

 for (int i = 0; i < NUM_THREADS; i++) {

 pthread_create(&threads[i], NULL,

 increment_counter, NULL);

 }

 // wait for threads to finish...

 printf("Counter: %d\n", counter);

}

https://godbolt.org/z/P6PM9eTjE
8

“critical section”

Critical section
Guarantee that only one thread will be
executing critical section at a time

● Other threads wait if mutex is locked

for (int i = 0; i < INCREMENTS; i++) {

 lock(mutex);

 int cur_count = counter;

 int new_count = cur_count + 1;

 counter = new_count;

 unlock(mutex)

}

9

Thread 1:

time

Thread 2:

lock(mutex)

cur_count <- 11

new_count <- 12 lock(mutex)

counter <- 12 …

unlock(mutex) …

mutex acquired

Mutex challenges
What are bugs you can make when using
mutexes?

10

Mutex challenges
● Forget to use one at all
● Forget to lock
● Forget to unlock
● Lock in wrong order
● Lock while already locked
● Unlock while already unlocked

11

Rust’s bold claims
Impossible to forget to protect data with a
mutex

● Compile-time guarantee of no data races!

Can still do:

● Lock in wrong order
● Lock while already locked

12

Impossible to

● Forget to lock
● Forget to unlock
● Unlock while already unlocked

Initially [safety and concurrency] seemed orthogonal,
but to our amazement, the solution turned out to be
identical: the same tools that make Rust safe also
help you tackle concurrency head-on.”

Compiler enforces rules for safe concurrency. “Thread
safety isn't just documentation; it's law.”

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

What does parallelism look like in Rust?
use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

13

fn main() {

 let mut counter = 0;

 for _ in 0..NUM_THREADS {

 thread::spawn(|| {

 for _ in 0..INCREMENTS_PER_THREAD {

 counter += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter);

}

What does parallelism look like in Rust?
use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

fn main() {

 let mut counter = 0;

 for _ in 0..NUM_THREADS {

 thread::spawn(|| {

 for _ in 0..INCREMENTS_PER_THREAD {

 counter += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter);

}

Same data race problem as before!

Which (if any) of Rust’s ownership/borrowing
rules are violated?

14

important
part

thread executes
a closure

One (of many) problems

15

error[E0499]: cannot borrow `counter` as mutable more than once at a time
 --> race.rs:10:36
 |
10 | thread::spawn(|| {
 | ^^ `counter` mutably borrowed in previous iteration of loop
11 | for _ in 0..INCREMENTS_PER_THREAD {
12 | counter += 1;
 | ------- borrows occur due to use of `counter` in closure
13 | }
14 | });

Need to be able to mutate counter, but can’t
give out multiple mutable references?

One (of many) problems

16

How long can a thread live?
Who owns counter?

error[E0373]: closure may outlive `main`, but borrows `counter`, which is owned by `main`
 |
10 | thread::spawn(|| {
 | ^^ may outlive borrowed value `counter`
11 | for _ in 0..INCREMENTS_PER_THREAD {
12 | counter += 1;
 | ------- `counter` is borrowed here
 |
 note: function requires argument type to outlive `'static`

Questions to solve:
Need to be able to mutate counter,
but can’t give out multiple mutable

references?

How long can a thread live?
Who owns counter?

17

One (of many) problems

18

Need to be able to mutate counter, but can’t
give out mutable references?

error[E0373]: closure may outlive `main`, but borrows `counter`, which is owned by `main`
 |
10 | thread::spawn(|| {
 | ^^ may outlive borrowed value `counter`
11 | for _ in 0..INCREMENTS_PER_THREAD {
12 | counter += 1;
 | ------- `counter` is borrowed here
 |
 note: function requires argument type to outlive `'static`
 --> race.rs:10:22
 |
10 | let handle = thread::spawn(|| {
 | ______________________^
11 | | for _ in 0..INCREMENTS_PER_THREAD {
12 | | counter += 1;
13 | | }
14 | | });
 | |__________^
help: to force the closure to take ownership of `counter`, use the `move` keyword
 |
10 | let handle = thread::spawn(move || {
 | ++++

Rc/RefCell to the rescue?
use std::rc::Rc;

use std::cell::RefCell;

use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

19

fn main() {

 let counter = Rc::new(RefCell::new(0));

 for _ in 0..NUM_THREADS {

 let counter = Rc::clone(&counter);

 thread::spawn(move || {

 for _ in 0..INCREMENTS_PER_THREAD {

 *counter.borrow_mut() += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter.borrow_mut());

}

Shared ownership and interior mutability

fn main() {

 let counter = Rc::new(RefCell::new(0));

 for _ in 0..NUM_THREADS {

 let counter = Rc::clone(&counter);

 thread::spawn(move || {

 for _ in 0..INCREMENTS_PER_THREAD {

 *counter.borrow_mut() += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter.borrow_mut());

}

Rc/RefCell to the rescue?
use std::rc::Rc;

use std::cell::RefCell;

use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

20

Shared ownership and interior mutability

error[E0277]: `Rc<RefCell<i32>>` cannot be sent between threads safely
 --> race4.rs:14:36
 |
14 | let handle = thread::spawn(move || {
 | ^
 | ____________________________________|
 | |
15 | | for _ in 0..INCREMENTS_PER_THREAD {
16 | | *counter.borrow_mut() += 1;
17 | | }
18 | | });
 | |_________^ `Rc<RefCell<i32>>` cannot be sent between threads safely
 |

fn main() {

 let counter = Rc::new(RefCell::new(0));

 for _ in 0..NUM_THREADS {

 let counter = Rc::clone(&counter);

 thread::spawn(move || {

 for _ in 0..INCREMENTS_PER_THREAD {

 *counter.borrow_mut() += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter.borrow_mut());

}

Rc/RefCell to the rescue?
use std::rc::Rc;

use std::cell::RefCell;

use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

21

Shared ownership and interior mutability

error[E0277]: `Rc<RefCell<i32>>` cannot be sent between threads safely
 --> race4.rs:14:36
 |
14 | let handle = thread::spawn(move || {
 | ------------- ^------
 | | |
 | ______________________|_____________within this `[closure]`
 | | |
 | | required by a bound introduced by this call
15 | | for _ in 0..INCREMENTS_PER_THREAD {
16 | | *counter.borrow_mut() += 1;
17 | | }
18 | | });
 | |_________^ `Rc<RefCell<i32>>` cannot be sent between threads safely
 |

Shared ownership and interior mutability
Single Threaded:

Rc: shared ownership with a
reference count

RefCell: interior mutability by
panicking if multiple mutable
borrows

Multi-Threaded:

Arc: shared ownership with an
atomic reference count

Mutex: interior mutability by making
other threads wait

22

Rust parallelism third attempt
use std::sync::{Arc,Mutex};

use std::thread;

const NUM_THREADS: usize = 10;

const INCREMENTS_PER_THREAD: usize = 10000;

23

fn main() {

 let counter = Arc::new(Mutex::new(0));

 for _ in 0..NUM_THREADS {

 let counter = Arc::clone(&counter);

 thread::spawn(move || {

 for _ in 0..INCREMENTS_PER_THREAD {

 let mut guard = counter.lock().unwrap();

 *guard += 1;

 }

 });

 }

 // wait for threads to finish...

 println!("Counter: {}", counter.lock().unwrap());

}

Mutex provides interior mutability!
Exclusive ownership while mutex locked

Zooming in on thread::spawn
let counter = Arc::new(Mutex::new(0));

for _ in 0..4 {

 let counter: Arc<Mutex<u32>> =

 Arc::clone(&counter);

 thread::spawn(move || {

 let mut guard = counter.lock().unwrap();

 *guard += 1;

 });

}

(1) make shared resource

24

1

2

3

(2) clone shared resource handle once per
thread

(3) move shared resource handle into thread

Very common pattern
when spawning threads

Heap

Shared-state concurrency
Threads have separate stacks
but a shared heap

Share ownership of same mutex

Control access of shared counter
via mutex

Thread 0 stack

Arc<Mutex<u32>>

*ptr

…
ArcInner<Mutex<u32>

refcount:3

*ptr

Mutex
locked:0

*inner

25
counter: 11

Thread 1 stack

Arc<Mutex<u32>>

*ptr

…
Thread 2 stack

Arc<Mutex<u32>>

*ptr

…

Zooming in on Mutexes
use std::sync::{Mutex, MutexGuard};

fn increment(m: &Mutex<u32>) {

 let guard: MutexGuard<u32> = m.lock().unwrap();

 *guard += 1;

 // guard is dropped -> mutex is unlocked

}

fn main() {

 let counter = Mutex::new(0);

 increment(&counter);

}

26

Quiz
Why is it impossible to forget to unlock a
mutex?

27

Quiz
Why is it impossible to forget to unlock a
mutex?

Impossible to not drop MutexGuard

fn copy_inner(m: &Mutex<u32>) -> u32 {

 let guard: MutexGuard<u32> = m.lock().unwrap();

 let value = *guard;

 return value

 // guard is dropped -> mutex is unlocked

}

28

Quiz
Why is it impossible to forget to lock a mutex?

29

Quiz
Why is it impossible to forget to lock a mutex?

fn no_lock2(m: &Mutex<u32>) -> &mut u32 {

 let mut guard = m.lock().unwrap();

 let v: &mut u32 = &mut *guard;

 return v;

}

30

Only lock gives access to inner value

Can’t have reference to inner value outlive
guard

fn no_lock1(m: &Mutex<u32>) -> u32 {

 let value = m.???();

 return v;

}

Quiz
Why is it impossible to unlock a mutex twice?

31

Quiz
Why is it impossible to unlock a mutex twice? fn double_unlock(m: &Mutex<u32>) -> u32 {

 let guard = m.lock().unwrap();

 let value = *guard;

 drop(guard);

 drop(guard);

 return value;

}

32

Quiz code
https://godbolt.org/z/P179e9a3z

33

Compared to C

int counter = 0;

pthread_mutex_t counter_mutex;

let counter: Mutex<u32> =

Mutex::new(0);

34

Nothing associates mutex
with data!

Mutex has ownership of
protected data

Quiz takeaways
Ownership and reference lifetimes make it
impossible to misuse a mutex

35

Initially [safety and concurrency] seemed orthogonal,
but to our amazement, the solution turned out to be
identical: the same tools that make Rust safe also
help you tackle concurrency head-on.”

Compiler enforces rules for safe concurrency. “Thread
safety isn't just documentation; it's law.”

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

How does the compiler know?

36

error[E0277]: `Rc<RefCell<i32>>` cannot be sent between threads safely
 --> race4.rs:14:36
 |
14 | let handle = thread::spawn(move || {
 | ^
 | ____________________________________|
 | |
15 | | for _ in 0..INCREMENTS_PER_THREAD {
16 | | *counter.borrow_mut() += 1;
17 | | }
18 | | });
 | |_________^ `Rc<RefCell<i32>>` cannot be sent between threads safely
 |

suspicious: is this analysis special-cased for
standard library types?

How does the compiler know?

37

error[E0277]: `Rc<RefCell<i32>>` cannot be sent between threads safely
 --> race4.rs:14:36
 |
14 | let handle = thread::spawn(move || {
 | ^
 | ____________________________________|
 | |
15 | | for _ in 0..INCREMENTS_PER_THREAD {
16 | | *counter.borrow_mut() += 1;
17 | | }
18 | | });
 | |_________^ `Rc<RefCell<i32>>` cannot be sent between threads safely
 |
 = help: within `[closure]`, the trait `Send` is not implemented for `Rc<RefCell<i32>>`

Send and Sync
Send: it is safe to send this type to another
thread

Sync: it is safe to share this type between
threads

● T is Sync if and only if &T is Send

“safe” -> won’t cause memory safety errors or
data races

38

Types that are…

39

not Send Send

not Sync Rc RefCell

Sync incredibly rare Most structs
Mutex
Arc

Not Sync or Send: Rc
use std::rc::Rc;

use std::thread;

fn main() {

 let count = Rc::new(0);

 let clone1 = Rc::clone(&count);

 let clone2 = Rc::clone(&count);

 thread::spawn(move || {

 drop(clone1);

 });

 thread::spawn(move || {

 drop(clone2);

 });

}

40

Heap

Main thread stack

count: Rc<u32>

… RcInner
refcount: 3

val: 0Thread 1 stack

clone1: Rc<u32>

…

Thread 2 stack

clone2: Rc<u32>

…
Shared mutable access to
refcount even through

immutable reference

Not Sync or Send: Rc

41

error[E0277]: `Rc<i32>` cannot be sent between threads safely
 --> rc.rs:8:19
 |
8 | thread::spawn(move || {
 | ------------- ^------
 | | |
 | _____|_____________within this `[closure]`
 | | |
 | | required by a bound introduced by this call
9 | | drop(clone1);
10 | | });
 | |_____^ `Rc<i32>` cannot be sent between threads safely
 |
 = help: within `[closure]`, the trait `Send` is not implemented for `Rc<i32>`

Send but not Sync: RefCell
use std::{thread, cell::RefCell};

fn increment(r: &RefCell<u32>) {

 let mut count = r.borrow_mut();

 *count += 1;

}

fn main() {

 let count = RefCell::new(11);

 let ref1 = &count;

 let ref2 = &count;

 thread::spawn(move || {

 increment(ref2);

 });

 increment(ref1);

}

42

Heap

Main thread stack

ref1:
&RefCell<u32>

… RefCell
borrows: 0

val: 11Thread 1 stack

ref2:
&RefCell<u32>

…

borrows is non-atomic: two
threads could both successfully
borrow_mut at the same time

Send but not Sync: RefCell

43

error[E0277]: `RefCell<u32>` cannot be shared between threads safely
 --> refcell.rs:13:19
 |
13 | thread::spawn(move || {
 | _____-------------_^
 | | |
 | | required by a bound introduced by this call
14 | | increment(ref1);
15 | | });
 | |_____^ `RefCell<u32>` cannot be shared between threads safely
 |
 = help: the trait `Sync` is not implemented for `RefCell<u32>`
 = note: if you want to do aliasing and mutation between multiple threads, use `std::sync::Mutex` instead
 = note: required for `&RefCell<u32>` to implement `Send`

Send and Sync are special
Automatically derived for all types whose
members are Send/Sync

You won’t implement Send/Sync for your types,
but you may use them as bounds for type
parameters in generic functions

44

Quiz:
If the lock is always automatically released, is it
possible to have a deadlock in Rust?

45

Quiz:
If the lock is always automatically released, is it
possible to have a deadlock in Rust?

Yes! Double lock, as shown before

What else?

46

Quiz:
If the lock is always automatically released, is it
possible to have a deadlock in Rust?

Yes!

47

fn swap1(a: Arc<Mutex<u32>>, b: Arc<Mutex<u32>>) {

 let mut guard_a = a.lock().unwrap();

 let mut guard_b = b.lock().unwrap();

 // do the swap

}

fn swap2(a: Arc<Mutex<u32>>, b: Arc<Mutex<u32>>) {

 let mut guard_b = b.lock().unwrap();

 let mut guard_a = a.lock().unwrap();

 // do the swap

}

thread 1 waiting

thread 2 waiting

Quiz:
If the lock is always automatically released, is it
possible to have a deadlock in Rust?

Yes!

48

fn swap1(a: Arc<Mutex<u32>>, b:

Arc<Mutex<u32>>) {

 let mut guard_a = a.lock().unwrap();

 let mut guard_b = b.lock().unwrap();

 // do the swap

}

fn swap2(a: Arc<Mutex<u32>>, b:

Arc<Mutex<u32>>) {

 let mut guard_b = b.lock().unwrap();

 let mut guard_a = a.lock().unwrap();

 // do the swap

}

fn main() {

 let a = Arc::new(Mutex::new(10));

 let b = Arc::new(Mutex::new(20));

 let a_cloned = Arc::clone(&a);

 let b_cloned = Arc::clone(&b);

 thread::spawn(move || {

 swap1(a_cloned, b_cloned);

 });

 swap2(Arc::clone(&a), Arc::clone(&b));

}

One last form of interior mutability
use std::sync::atomic::{AtomicUsize, Ordering};

fn increment_atomic(counter: &AtomicUsize) {

 counter.fetch_add(1, Ordering::SeqCst);

}

Atomics: allow mutation through a shared
reference.

Other threads are guaranteed not to observe
intermediate values.

49

What’s this?
● it’s complicated: just use Ordering:SeqCst

