Lecture 8

Parallel Programming

PLQ Review: traits and enums

trait Shape {
fn area(&self) -> £32;

}

impl Shape for Circle {
fn area(&self) -> £32 {
self.0 * self.0 * 3.14

}
impl Shape for Rect {

fn area(&self) -> £32 {
self.0 * self.1l

enum Shape {

Circle(Circle),

Rect (Rect),

}
impl Shape

fn area(&self)
match self {
&Shape::Circle(Circle(r))

{

-> £32 {

r * r * 3.14,

&Shape: :Rect (Rect (x,

x *

Y

v))

=>

=>

PLQ Review: traits and enums

trait Shape { enum Shape {

fn area (&self) -> £32; Circle (Circle),
} Rect (Rect),

}

Can extend implementers but not Can extend functionality but not
functionality implementers

e implement trait for a new type e Add new enum method to add

e can't add new trait method without functionality

breaking existing implementers e C(Can’t add new variant to enum without

breaking existing methods

https://en.wikipedia.org/wiki/Expression_problem

https://en.wikipedia.org/wiki/Expression_problem

Where are we? Where are we going?

Multi-threading is the motivation behind many Coming up:
of Rust’s features. Today, we’'ll start tying

together many features: Two lectures on parallelism

One lecture on unsafe Rust
One lecture on Rust ecosystem
One flex lecture

limiting mutability
smart pointers
ownership

traits

Who cares about parallelism?

Easy to buy more cores, impossible to buy

Figure 6. Growth of computer performance using integer programs (SPECintCPU).
faster cores
End of the Line = 2X/20 years (3%/yr)
PY HOW to use more co res? Amdahl's Law = 2X/6 years (12%/year)
End of Dennard Scaling => Multicore 2X/3.5 years (23%/year)
CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)

100,000
5
N~ 10,000
g
= 1,000
'd
>
8
c 100
©
E
1
§ 10
o

1980 1985 1990 1995 2000 2005 2010 2015

Why is parallelism hard?

#define NUM THREADS 10 int main() {
#define INCREMENTS 10000 pthread t threads[NUM THREADS];

for (int 1 = 0; i < NUM THREADS; i++) {
int counter = 0; pthread create(&threads[i], NULL,

increment counter, NULL);

void* increment counter(void* arg) { }
for (int 1 = 0; 1 < INCREMENTS; i++) { // wait for threads to finish...
counter = counter + 1;

} printf("Counter: %$d\n", counter);
return NULL; }

What is printed?

https://godbolt.org/z/PbPe81aMc

Data race

Multiple accesses with at least one writer

Thread 1:

for (int 1 = 0; 1 < INCREMENTS; 1i++)
int cur_count = counter;
int new count = cur count + 1;

counter = new count;

}

Thread 2:

cur_count <- 11

cur_count <- 11

time new_count <- 12

counter <- 12

new_count <- 12

counter <- 12

Mutex (“mutual exclusion®)

#define NUM THREADS 10 int main() {
#define INCREMENTS 10000 pthread t threads[NUM THREADS];

pthread mutex init(&counter mutex, NULL);
int counter = 0; for (int 1 = 0; 1 < NUM THREADS; i++) |
pthread mutex t counter mutex; pthread create(&threads[i], NULL,

increment counter, NULL);

void* increment counter(void* arg) { }

for (int 1 = 0; i < INCREMENTS; i++) { // wait for threads to finish

pthread mutex lock(&counter mutex) ;

= { counter++;

rintf("Counter: %d\n", counter);
pthread mutex unlock(&counter mutex) ; P ('t)7

}
return NULL;

“critical section”

https.//godbolt.org/z/P6PM9e TjE

time

Critical section

Guarantee that only one thread will be
executing critical section at a time

e Other threads wait if mutex is locked

for (int i = 0; 1 < INCREMENTS;

lock (mutex) ;

int cur count = counter;
int new count = cur count + 1;
counter = new_ count;

unlock (mutex)

}

it++)

Thread 1: Thread 2:
lock (mutex)
cur_count <- 11
new_count <- 12 lock (mutex)

counter <- 12

unlock(mutex)

mutex acquired

{

Mutex challenges

What are bugs you can make when using
mutexes?

10

Mutex challenges

Forget to use one at all

Forget to lock

Forget to unlock

Lock in wrong order

Lock while already locked
Unlock while already unlocked

11

Rust’s bold claims

Impossible to forget to protect data with a
mutex

e Compile-time guarantee of no data races!

Impossible to

e Forgetto lock
e Forget to unlock
e Unlock while already unlocked

Can still do:

e Lockin wrong order
e Lock while already locked

Initially [safety and concurrency] seemed orthogonal,
but to our amazement, the solution turned out to be
identical: the same tools that make Rust safe also
help you tackle concurrency head-on.”

Compiler enforces rules for safe concurrency. “Thread
safety isn't just documentation; it's law.”

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

12

What does parallelism look like in Rust?

use std::thread; fn main() {

let mut counter = 0;
const NUM THREADS: usize = 10; for in 0..NUM THREADS {
const INCREMENTS PER THREAD: usize = 10000; thread: :spawn (|| {

for in 0..INCREMENTS PER THREAD ({

counter += l,‘
}):

}
// wailt for threads to finish...

println! ("Counter: {}", counter);

13

What does parallelism look like in Rust?

Same data race problem as before!

Which (if any) of Rust’s ownership/borrowing
rules are violated?

thread::spawn (|| {

for

in 0..INCREMENTS PER THREAD {

counter += 1;

N

important
| part

thread executes

7
a closure

14

One (of many) problems

error[E0499] :

10

11
12

13
14

cannot borrow ‘counter® as mutable more than once at a time
--> race.rs:10:36

thread::spawn (|| {

P

for

A~ “counter’ mutably borrowed in previous iteration of loop
in O..INCREMENTSiPERiTHREAD {
counter += 1;
——————— borrows occur due to use of ‘counter’ in closure

Need to be able to mutate counter, but can’t
give out multiple mutable references?

15

One (of many) problems

error[E0373]: closure may outlive "main’, but borrows ‘counter’, which is owned by "main’

10

11
12

no

I
I
I
I
I
I
t

e:

thread::spawn (|| {
A~ may outlive borrowed value "counter’
for in O.. INCREMENTS PER THREAD {
counter += 1;
——————— ‘counter” is borrowed here

function requires argument type to outlive ~'static®

How long can a thread live?
Who owns counter?

16

Questions to solve:

Need to be able to mutate counter,
but can’t give out multiple mutable
references?

How long can a thread live?
Who owns counter?

17

One (of many) problems

error[E0373]: closure may outlive "main’, but borrows “counter’, which is owned by

10 | thread::spawn (|| {
| A~ may outlive borrowed value "counter’
11 | for in O..INCREMENTS_PER_THREAD {
12 | counter += 1;
l mm e ‘counter’ is borrowed here
[
note: function requires argument type to outlive " 'static®
--> race.rs:10:22
I
10 | let handle = thread::spawn (|| {
| 777777777777777777777 A
11 | | for in O..INCREMENTS_PER_THREAD {
12 | | counter += 1;
13 | | }
14 | | 1)
I ~
help: to force the closure to take ownership of “counter’, use the "move keyword
[
10 | let handle = thread::spawn (move || {
| ++++

‘main’

18

Rc/RefCell to the rescue?

use std::rc::Rc;
use std::cell::RefCell;

use std::thread;

const NUM THREADS: usize = 10;
const INCREMENTS PER THREAD: usize = 10000;

Shared ownership and interior mutability

fn main() {

let counter = Rc::new(RefCell::new(0)) ;

for _in 0..NUM THREADS {

let counter = Rc::clone(&counter);

thread: :spawn (move

LA

for in 0..INCREMENTS PER THREAD {

*counter.borrow mut() += 1;

)
}

// wait for threads to finish...

println! ("Counter:

(A

counter.borrow mut());

19

Rc/RefCell to the rescue?

use

std::rc::Rc;

fn main() {

use

use

con

con

Sh

error[E0277] :

14

15
16
17
18

"Rc<RefCell<i32>>" cannot be sent between threads safely

--> raced.rs:14:36

let handle = thread: :spawn (move || {
A

for in 0..INCREMENTS PER THREAD {
*counter.borrow mut () += 1;

b
~ "Rc<RefCell<i32>>" cannot be sent between threads safely

20

Module std::rc & 1.0.0 - source - [-]

[-] Single-threaded reference-counting pointers. ‘Rc’ stands for ‘Reference Counted’.

The type Rc<T> provides shared ownership of a value of type T, allocated in the heap. Invoking clone on Rc produces a new
pointer to the same allocation in the heap. When the last Rc pointer to a given allocation is destroyed, the value stored in that
allocation (often referred to as “inner value”) is also dropped.

Shared references in Rust disallow mutation by default, and Rc is no exception: you cannot generally obtain a mutable reference to
something inside an Rc. If you need mutability, puta Cell or RefCell inside the Rc; see an example of mutability inside an Rc.

Rc uses non-atomic reference counting. This means that overhead is very low, but an Rc cannot be sent between threads, and
consequently Rc does notimplement Send. As a result, the Rust compiler will check at compile time that you are not sending Rcs
between threads. If you need multi-threaded, atomic reference counting, use sync: :Arc.

Shared ownership and interior mutability

Single Threaded: Multi-Threaded:

Rc: shared ownership with a Arc: shared ownership with an
reference count atomic reference count

RefCell: interior mutability by MutexX: interior mutability by making
panicking if multiple mutable other threads wait

borrows

22

Rust parallelism third attempt

use std::sync::{Arc,Mutex};

use std::thread;

const NUM THREADS: usize = 10;
const INCREMENTS PER THREAD: usize = 10000;

Mutex provides interior mutability!
Exclusive ownership while mutex locked

fn main() {

let counter = Arc::new(Mutex::new(0));
for in 0..NUM THREADS {
let counter = Arc::clone (&counter) ;
thread: :spawn (move || {
for in 0..INCREMENTS PER THREAD {
let mut guard = counter.lock () .unwrap()

*guard += 1;

)
}
// wait for threads to finish...

println! ("Counter: {}", counter.lock() .unwrap()):;

23

Zooming inon thread: :spawn

let counter = Arc::new(Mutex::new(O));<:> (1) make shared resource
for in 0..4 {

let counter: Arc<Mutex<u32>> =
@ (2) clone shared resource handle once per
Arc::clone (&counter) ;
thread
thread::spawn (move {(:) .
(3) move shared resource handle into thread

let mut guard = counter.lock () .unwrap();
*guard += 1;
});

Very common pattern
when spawning threads

Threads have separate stacks
but a shared heap

Share ownership of same mutex

Control access of shared counter
via mutex

' Thread 0 stack

Arc<Mutex<u32>>

' Thread 1 stack

Arc<Mutex<u32>>

Thread 2 stack

Arc<Mutex<u32>>

*ptr

Arclnner<Mutex<u32>

refcount:3

*ptr

locked:0

*Inner

| counter: 11

Mutex R

Zooming in on Mutexes

use std::sync:: {Mutex, MutexGuard};

fn increment(m: &Mutex<u32>) {

let guard: MutexGuardu32> = m.lock() .unwrap():;

*guard += 1;

// guard is dropped -> mutex is unlocked

fn main() {
let counter = Mutex::new(0);

increment (&counter) ;

26

Quiz

Why is it impossible to forget to unlock a
mutex?

27

Quiz

Why is it impossible to forget to unlock a
mutex?

Impossible to not drop MutexGuard

fn copy inner(m: &Mutex<u32>) -> u32 {
let guard: MutexGuard<u32> = m.lock() .unwrap()
let value = *guard;
return value

// guard is dropped -> mutex is unlocked

28

Quiz

Why is it impossible to forget to lock a mutex?

29

Quiz

Why is it impossible to forget to lock a mutex?

Only lock gives access to inner value

Can’t have reference to inner value outlive
guard

fn no lockl (m:

let wvalue

return v;

fn no lock2 (m:

let mut gu
let v: &mu

return v;

&Mutex<u32>) -> u32 {

= m.?2?2?2() ;

&Mutex<u32>) -> &mut u32 {
ard = m.lock () .unwrap ()

t u32 = &gmut *guard;

30

Quiz

Why is it impossible to unlock a mutex twice?

31

Quiz

Why is it impossible to unlock a mutex twice?

fn double unlock (m: &Mutex<u32>)
let guard = m.lock () .unwrap();
let value = *guard;

drop (guard) ;
drop (guard) ;

return value;

-> u32 {

32

Quiz code

https://godbolt.org/z/P179e9a3z

33

Compared to C

int counter = 0;

pthread mutex t counter mutex;

Nothing associates mutex
with data!

let counter: Mutex<u32> =

Mutex: :new (0) ;

Mutex has ownership of
protected data

34

Quiz takeaways

Ownership and reference lifetimes make it
impossible to misuse a mutex

Initially [safety and concurrency] seemed orthogonal,
but to our amazement, the solution turned out to be
identical: the same tools that make Rust safe also
help you tackle concurrency head-on.”

Compiler enforces rules for safe concurrency. “Thread
safety isn't just documentation; it's law.”

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

35

How does the compiler know?

error[E0277]: "Rc<RefCell<i32>>" cannot be sent between threads safely
--> raced.rs:14:36

~ "Rc<RefCell<i32>>" cannot be sent between threads safely

14 | let handle = thread::spawn (move || {
I A
I |
I
15 | | for in 0..INCREMENTS PER THREAD {
16 | | *counter.borrow mut() += 1;
17 | | }
18 | | });
I
I

suspicious: is this analysis special-cased for
standard library types?

36

How does the compiler know?

14

15
16
17
18

error[E0277] :

"Rc<RefCell<i32>>" cannot be sent between threads safely

--> raced.rs:14:36

let handle = thread: :spawn (move || {
A

for in 0..INCREMENTS PER THREAD {
*counter.borrow mut () += 1;

});

~ "Rc<RefCell<i32>>" cannot be sent between threads safely

= help: within " [closure]’, the trait "Send is not implemented for

"Rc<RefCell<i32>>"

37

Send and Sync

Send: it is safe to send this type to another
thread

Sync : it is safe to share this type between
threads

e Tis Sync if and only if &T is Send

“safe” -> won’t cause memory safety errors or
data races

38

Types that are..

not Send Send
not Sync Rc RefCell
Sync incredibly rare Most structs

Mutex
Arc

39

Not Sync or Send: Rc

use std::rc::Rc;

use std::thread;

fn main() {
let count = Rc::new(0);
let clonel = Rc::clone(&count);
let clone2 = Rc::clone(&count) ;
thread: :spawn (move || {
drop(clonel);
}) i

thread: :spawn (move || {

drop(clone?2);
1)

Main thread stack

count: Re<u32>

Thread 1 stack

clonel: Re<u32>

Thread 2 stack

clone2: Re<u32>

Rclnner
refcount: 3

val: 0

Shared mutable access to
refcount even through
immutable reference

40

Not Sync or Send: Rc

error[E0277]: "Rc<i32>" cannot be sent between threads safely
--> rc.rs:8:19

A "Re<i32>" cannot be sent between threads safely

8 | thread: :spawn (move || {

I _____________ A e

I | I

| | within this " [closure]’

I |

| required by a bound introduced by this call
9 | | drop(clonel) ;
0 | | });

I

I

help: within " [closure]’, the trait "Send’ is not implemented for

"Re<i32e>"

41

Send but not Sync: RefCell

Main thread stack
use std::{thread, cell::RefCell};

ref1: Heap

fn increment (r: &RefCell<u32>) { ' | &RefCell<u32> :

let mut count = r.borrow mut(); i i i RefCell

*count += 1; i borrows: 0
} | Thread 1 stack val: 11
fn main() | [rer2 s

let count = RefCell::new(11l); i &RefCell<u32>

let refl = gcount; i i

let ref2 = g&count; i i

thread: :spawn (move || { T i

increment (ref2) ; i
b ; borrows is non-atomic: two ___________________________
increment (refl); threads could both successfully

} borrow_mut at the same time

Send but not Sync: RefCell

error[E0277]: "RefCell<u32>" cannot be shared between threads safely
--> refcell.rs:13:19
I

~ "RefCell<u32>" cannot be shared between threads safely

13 | thread: :spawn (move || {

I _____________ _A

I I

|| required by a bound introduced by this call
14 | | increment (refl);
15 | | b i

I

I

help: the trait "Sync’ is not implemented for "RefCell<u32>"
note: if you want to do aliasing and mutation between multiple threads, use “std::sync::Mutex instead
note: required for “&RefCell<u32>" to implement ~Send’

43

Send and Sync are special

Automatically derived for all types whose
members are Send/Sync

You won'’t implement Send/Sync for your types,
but you may use them as bounds for type
parameters in generic functions

44

Quiz:

If the lock is always automatically released, is it
possible to have a deadlock in Rust?

45

Quiz:

If the lock is always automatically released, is it
possible to have a deadlock in Rust?

Yes! Double lock, as shown before

What else?

46

Quiz:

If the lock is always automatically released, is it Yes!
possible to have a deadlock in Rust?

fn swapl(a: Arc<Mutex<u32>>, b: Arc<Mutex<u32z>>) {

let mut guard a = a.lock() .unwrap();
let mut guard b = b.lock() .unwrap();
// do the swap

<+— thread 1 waiting

fn swap2(a: Arc<Mutex<u32>>, b: Arc<Mutex<u32>>) {

let mut guard b = b.lock() .unwrap();
let mut guard a = a.lock() .unwrap();

// do the swap

<«— thread 2 waiting

47

Quiz:
If the lock is always automatically released, is it Yes!

possible to have a deadlock in Rust?

fn swapl (a: Arc<Mutex<u32>>, Db: fn main () {

Arc<Mutex<u32>>) { let a

Arc::new (Mutex::new(10)) ;

let mut guard a a.lock () .unwrap() ; let b

Arc::new (Mutex: :new (20));

let mut guard b = b.lock() .unwrap();

// do the swap let a cloned = Arc::clone(&a);
} let b cloned = Arc::clone (&b);
thread: :spawn (move || {
fn swap2(a: Arc<Mutex<u32>>, Db: swapl (a_cloned, b _cloned);
Arc<Mutex<u32>>) { 1)
let mut guard b = b.lock() .unwrap(); swap?2 (Arc::clone(&a), Arc::clone(&b));

let mut guard a a.lock () .unwrap () ; }

// do the swap

One last form of interior mutability

use std::sync::atomic::{AtomicUsize, Ordering}; Atomics allow mutation through a shared

reference.
fn increment atomic (counter: &AtomicUsize) {

counter.fetch _add(1l, Ordering::SeqCst); Other threads are guaranteed not to observe

} 4 intermediate values.

What's this?

e it's complicated: just use Ordering:SeqCst

49

