

Lecture 13: Genetic Algorithms

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

Final Projects

- Check-in extended to Thursday at 4 pm
- Presentations next class
- Submissions due the same day at midnight

Genetic Algorithms

- Class of heuristic search algorithms inspired by Darwin's theory of evolution
- Survival of the fittest
- "Evolve" population of candidate solutions in a search space

Basic Elements

- Encoding of a candidate solution as a string of characters (genes) from a finite alphabet
- A string of genes defines an **individual**
- A **population** is a set of *N* individuals
- A **fitness function** maps an individual to a fitness score, indicating the quality of that candidate solution

The 0-1 Knapsack Problem

• Given *n* items with values v_1, \ldots, v_n and weights w_1, \ldots, w_n , select maximum-value subset to fit into a knapsack with capacity *W*.

Knapsack Genes

- Alphabet: {0,1} (binary)
- Example candidate solution encoding:

(Totals: \$7 and 14kg)

15 K9

Knapsack Fitness

- Fitness function: $\sum_i b_i v_i$ if $\sum_i b_i w_i \le W$ else 0
- "The total knapsack value, or 0 if capacity is exceeded"

(Totals: \$7 and 14kg; fitness: 7)

Knapsack Population

• Initial random population (generation 0):

Genome	Weight	Value	Fitness
11 <mark>10</mark> 0	17kg	\$16	0
00100	4kg	\$10	10
01001	3kg	\$4	4
11001	15kg	\$8	8

Basic Steps

- Start with an initial population
- Randomly select individuals to survive and reproduce, based on fitness
- Combine and/or mutate selected individuals to generate a new population (the next **generation**)
- Eventually, return the best found individual

0

Fitness Proportionate Selection

- "Roulette wheel selection"
- Spin wheel *N* times, select with replacement
 - Duplicates allowed

Fitness Proportionate Selection

 "Expected value" of an individual (expected # of selections)

• =
$$N \frac{\text{fitness}}{\text{total fitness}}$$

• = $\frac{\text{fitness}}{\text{avg. fitness}}$

Notation:
$$ExpVal(i, t) = \frac{f_t(i)}{\overline{f_t}}$$

\int

Stochastic Universal Sampling (SUS)

- Make all selections in one spin of wheel with N evenlyspaced pointers
- Reduce variance in selection
- Same expected values
- Every above-average member is guaranteed to be selected at least once

Problem: Premature Convergence

- Collapse of population diversity early on
- Caused by favoring exploitation over exploration too heavily
 - GA becomes simple "hill-climbing" algorithm

Sigma Scaling

Hold rate of exploitation relatively constant
Rather than depending on fitness variance

•
$$ExpVal(i, t) = \begin{cases} \max(1 + \frac{f_t(i) - \overline{f_t}}{2\sigma(t)}, 0.1) \text{ if } \sigma(t) > 0\\ 1 \text{ otherwise} \end{cases}$$

Minimum expected value arbitrarily set to 0.1
Give very low fitness individuals a chance

\int

Stochastic Universal Sampling (SUS)

- How to implement a desired expected value distribution?
 - ExpVal(i, t) = N * (wheel %)

• wheel
$$\% = \frac{ExpVal(i,t)}{N}$$

Rank Selection

- Select individuals based on fitness rank (not value)
- Eliminates need for fitness scaling
 - Absolute differences in fitnesses are ignored
- Use linearly (or exponentially) decaying expected values based on rank
- $\sum_{i} ExpVal(i, t) = N$

Tournament Selection

- Choose 2 individuals at random
- Select the more fit individual with probability *k*, and the less fit individual otherwise
 - *k* is a hyperparameter, e.g. 0.75
- Continue selecting (with replacement) N times

Genetic Operators

• Once we've selected individuals for survival/reproduction, how do we create the next generation?

Crossover

Multi-point Crossover

• Combining the attributes of 2 (randomly paired) parents

Uniform Crossover

- Combining the attributes of 2 (randomly paired) parents
- For each child, choose each bit from either parent with equal probability

Mutation

- For each attribute (gene), with some small mutation probability, make a random modification
- Helps maintain genetic diversity, exploration
- For alphabets with notion of ordering or distance, magnitude of mutation is important
 - Controlled by a hyperparameter (like "step size")

Elitism

0

- Force the GA to retain some number of the best individuals at each generation
- Prevent random exclusion from selection, as well as destruction from crossover or mutation

Termination

Some options:

- *X* number of generations completed typically 100s
- Threshold on σ_t (standard deviation of fitness scores)
- Threshold on best fitness improvement

- Fitness function: $\sum_i b_i v_i$ if $\sum_i b_i w_i \le W$ else 0
- "The total knapsack value, or 0 if capacity is exceeded"

(Totals: \$7 and 14kg; fitness: 7)

• Initial random population (generation 0):

Genome	Weight	Value	Fitness
111 <mark>0</mark> 0	17kg	\$16	0
00100	4kg	\$10	10
0 1 <mark>0 0 1</mark>	3kg	\$4	4
11001	15kg	\$8	8

• Ordered by fitness:

Genome	Weight	Value	Fitness
00100	4kg	\$10	10
11001	15kg	\$8	8
0 1 <mark>0 0 1</mark>	3kg	\$4	4
111 <mark>0</mark> 0	17kg	\$16	0

15 kg

Solving Knapsack with a GA

• Random selection based on fitness (with replacement):

Genome	Weight	Value	Fitness
00100	4kg	\$10	10
00100	4kg	\$10	10
11001	15kg	\$8	8
01001	3kg	\$4	4

• Random pairing:

	Genome	Weight	Value	Fitness
--	--------	--------	-------	---------

00100	4kg	\$10	10
11001	15kg	\$8	8

00100	4kg	\$10	10
01001	3kg	\$4	4

• Crossover (recombination):

• Results from crossover

|--|

00101	6kg	\$12	12
11000	13kg	\$6	6

00001	2kg	\$2	2
01100	5kg	\$12	12

Random mutation

Genome	Weight	Value	Fitness

0 0 1 <mark>1</mark> 1	7kg	\$13	13
11000	13kg	\$6	6

00000	0kg	\$0	0
01100	5kg	\$12	12

• Population (generation 1):

Genome	Weight	Value	Fitness
00111	7kg	\$13	13
01100	5kg	\$12	12
11000	13kg	\$6	6
00000	0kg	\$0	0

15 kg

Solving Knapsack with a GA

• Random selection based on fitness (with replacement):

Genome	Weight	Value	Fitness
0 0 1 1 1	7kg	\$13	13
00111	7kg	\$13	13
01100	5kg	\$12	12
01100	5kg	\$12	12

• Random pairing:

Genome	Weight	Value	Fitness
		l	

00111	7kg	\$13	13
01100	5kg	\$12	12

00111	7kg	\$13	13
01100	5kg	\$12	12

• Crossover (recombination):

• Results from crossover:

Genome	Weight	Value	Fitness

00110	5kg	\$11	11
01101	7kg	\$14	14

00100	4kg	\$10	10
O 1 1 1 1	8kg	\$15	15

• Random mutation:

Genome	Weight	Value	Fitness

00110	5kg	\$11	11
01100	5kg	\$12	12

00100	4kg	\$10	10
0 1 1 1 1	8kg	\$15	15

• Population (generation 2):

Genome	Weight	Value	Fitness
0 1 1 1 1	8kg	\$15	15
01100	5kg	\$12	12
00110	5kg	\$11	11
00100	4kg	\$10	10

• Population (generation 2):

Genome	Weight	Value	Fitness
0 1 1 1 1	8kg	\$15	15
01100	5kg	\$12	12
00110	5kg	\$11	11
00100	4kg	\$10	10

0

Pros and Cons of GAs

- Pros
 - General approximate optimization strategy
 - Find a good solution quickly in a large space
 - Requires minimal domain-specific knowledge
 - Simple to implement
 - Inherently parallelizable
- Cons
 - No guarantees of performance
 - May get stuck at local maximum
 - May be outperformed by specialized strategies

- Traveling Salesman Problem (TSP)
 - Uses specialized encoding and crossover operations
 - Outperformed by specialized approximation strategies on very large instances

- Automotive Design
- Engineering
- Robotics

- Molecular structure optimization
- Protein folding prediction

- Cryptography
- Financial modeling

