
Lecture 13:
Genetic Algorithms
Rohan Menezes rohanmenezes@alumni.upenn.edu

CIS 189

mailto:rohanmenezes@seas.upenn.edu

Final Projects
● Check-in extended to Thursday at 4 pm
● Presentations next class
● Submissions due the same day at midnight

2

Genetic Algorithms
● Class of heuristic search

algorithms inspired by Darwin’s
theory of evolution

● Survival of the fittest
● “Evolve” population of candidate

solutions in a search space

3

Basic Elements
● Encoding of a candidate solution as a string of

characters (genes) from a finite alphabet
● A string of genes defines an individual
● A population is a set of 𝑁 individuals
● A fitness function maps an individual to a fitness score,

indicating the quality of that candidate solution

4

The 0-1 Knapsack Problem
● Given 𝑛 items with values 𝑣!, … , 𝑣" and weights 𝑤!, …𝑤", select

maximum-value subset to fit into a knapsack with capacity 𝑊.

5

Knapsack Genes
● Alphabet: {0,1} (binary)
● Example candidate solution encoding:

6

1 1 0 1 0

(Totals: $7 and 14kg)

Knapsack Fitness
● Fitness function: ∑# 𝑏#𝑣# if ∑# 𝑏#𝑤# ≤ 𝑊 else 0
● ”The total knapsack value, or 0 if capacity is exceeded”

7

1 1 0 1 0

(Totals: $7 and 14kg; fitness: 7)

Knapsack Population
● Initial random population (generation 0):

8

Genome Weight Value Fitness
1 1 1 0 0 17kg $16 0

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4

1 1 0 0 1 15kg $8 8

Basic Steps
● Start with an initial population
● Randomly select individuals to survive and reproduce,

based on fitness
● Combine and/or mutate selected individuals to

generate a new population (the next generation)
● Eventually, return the best found individual

9

Fitness Proportionate Selection

● “Roulette wheel selection”
● Spin wheel 𝑁 times, select with

replacement
● Duplicates allowed

10

Fitness Proportionate Selection

● “Expected value” of an
individual (expected # of
selections)

● = 𝑁 !"#$%&&
#'#() !"#$%&&

● = !"#$%&&
(*+. !"#$%&&

● Notation: 𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = -!(/)
1-!

11

Stochastic Universal Sampling (SUS)

● Make all selections in one spin
of wheel with 𝑁 evenly-
spaced pointers

● Reduce variance in selection
● Same expected values
● Every above-average member

is guaranteed to be selected
at least once

12

3

4
1

2

5

Problem: Premature Convergence

● Collapse of population diversity early on
● Caused by favoring exploitation over exploration too heavily

● GA becomes simple “hill-climbing” algorithm

13

Sigma Scaling
● Hold rate of exploitation relatively constant

● Rather than depending on fitness variance

● 𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = ,max(1 +
-! / 21-!
34 5

, 0.1) if 𝜎 𝑡 > 0
1 otherwise

● Minimum expected value arbitrarily set to 0.1
● Give very low fitness individuals a chance

14

Stochastic Universal Sampling (SUS)

● How to implement a desired
expected value distribution?

● 𝐸𝑥𝑝𝑉𝑎𝑙(𝑖, 𝑡) = 𝑁 ∗ (wheel %)

● wheel % = 6789:;(/,5)
=

15

3

4
1

2

5

Rank Selection
● Select individuals based on fitness rank (not value)
● Eliminates need for fitness scaling

● Absolute differences in fitnesses are ignored
● Use linearly (or exponentially) decaying expected

values based on rank
● ∑/𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = 𝑁

16

Tournament Selection
● Choose 2 individuals at random
● Select the more fit individual with probability 𝑘, and the

less fit individual otherwise
● 𝑘 is a hyperparameter, e.g. 0.75

● Continue selecting (with replacement) 𝑁 times

17

Genetic Operators
● Once we’ve selected individuals for

survival/reproduction, how do we create the next
generation?

18

Crossover
● Combining the attributes of 2 (randomly paired) parents

19

Multi-point Crossover
● Combining the attributes of 2 (randomly paired) parents

20

Uniform Crossover
● Combining the attributes of 2 (randomly paired) parents

● For each child, choose each bit from either parent with
equal probability

21

Mutation
● For each attribute (gene), with some small mutation

probability, make a random modification
● Helps maintain genetic diversity, exploration
● For alphabets with notion of ordering or distance,

magnitude of mutation is important
● Controlled by a hyperparameter (like “step size”)

22

Elitism
● Force the GA to retain some number of the best

individuals at each generation
● Prevent random exclusion from selection, as well as

destruction from crossover or mutation

23

Termination
Some options:
● 𝑋 number of generations completed - typically 100s
● Threshold on 𝜎5 (standard deviation of fitness scores)
● Threshold on best fitness improvement

24

Solving Knapsack with a GA
● Fitness function: ∑# 𝑏#𝑣# if ∑# 𝑏#𝑤# ≤ 𝑊 else 0
● ”The total knapsack value, or 0 if capacity is exceeded”

25

1 1 0 1 0

(Totals: $7 and 14kg; fitness: 7)

Solving Knapsack with a GA
● Initial random population (generation 0):

26

Genome Weight Value Fitness
1 1 1 0 0 17kg $16 0

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4

1 1 0 0 1 15kg $8 8

Solving Knapsack with a GA
● Ordered by fitness:

27

Genome Weight Value Fitness
0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 1 0 0 1 3kg $4 4

1 1 1 0 0 17kg $16 0

Solving Knapsack with a GA
● Random selection based on fitness (with replacement):

28

Genome Weight Value Fitness
0 0 1 0 0 4kg $10 10

0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 1 0 0 1 3kg $4 4

Solving Knapsack with a GA
● Random pairing:

29

Genome Weight Value Fitness

0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4

Solving Knapsack with a GA
● Crossover (recombination):

30

0 0 1 | 0 0
1 1 0 | 0 1

↓
0 0 1 | 0 1
1 1 0 | 0 0

0 0 | 1 0 0
0 1 | 0 0 1

↓
0 0 | 0 0 1
0 1 | 1 0 0

Solving Knapsack with a GA
● Results from crossover

31

Genome Weight Value Fitness

0 0 1 0 1 6kg $12 12

1 1 0 0 0 13kg $6 6

0 0 0 0 1 2kg $2 2

0 1 1 0 0 5kg $12 12

Solving Knapsack with a GA
● Random mutation

32

Genome Weight Value Fitness

0 0 1 1 1 7kg $13 13

1 1 0 0 0 13kg $6 6

0 0 0 0 0 0kg $0 0

0 1 1 0 0 5kg $12 12

Solving Knapsack with a GA
● Population (generation 1):

33

Genome Weight Value Fitness
0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

1 1 0 0 0 13kg $6 6

0 0 0 0 0 0kg $0 0

Solving Knapsack with a GA
● Random selection based on fitness (with replacement):

34

Genome Weight Value Fitness
0 0 1 1 1 7kg $13 13

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

0 1 1 0 0 5kg $12 12

Solving Knapsack with a GA
● Random pairing:

35

Genome Weight Value Fitness

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

Solving Knapsack with a GA
● Crossover (recombination):

36

0 0 1 1 | 1
0 1 1 0 | 0

↓
0 0 1 1 | 0
0 1 1 0 | 1

0 0 | 1 1 1
0 1 | 1 0 0

↓
0 0 | 1 0 0
0 1 | 1 1 1

Solving Knapsack with a GA
● Results from crossover:

37

Genome Weight Value Fitness

0 0 1 1 0 5kg $11 11

0 1 1 0 1 7kg $14 14

0 0 1 0 0 4kg $10 10

0 1 1 1 1 8kg $15 15

Solving Knapsack with a GA
● Random mutation:

38

Genome Weight Value Fitness

0 0 1 1 0 5kg $11 11

0 1 1 0 0 5kg $12 12

0 0 1 0 0 4kg $10 10

0 1 1 1 1 8kg $15 15

Solving Knapsack with a GA
● Population (generation 2):

39

Genome Weight Value Fitness
0 1 1 1 1 8kg $15 15

0 1 1 0 0 5kg $12 12

0 0 1 1 0 5kg $11 11

0 0 1 0 0 4kg $10 10

Solving Knapsack with a GA
● Population (generation 2):

40

Genome Weight Value Fitness
0 1 1 1 1 8kg $15 15

0 1 1 0 0 5kg $12 12

0 0 1 1 0 5kg $11 11

0 0 1 0 0 4kg $10 10

Pros and Cons of GAs
● Pros

● General approximate optimization strategy
● Find a good solution quickly in a large space
● Requires minimal domain-specific knowledge
● Simple to implement
● Inherently parallelizable

● Cons
● No guarantees of performance
● May get stuck at local maximum
● May be outperformed by specialized strategies

41

Applications of GAs
● Traveling Salesman Problem (TSP)

● Uses specialized encoding and crossover
operations

● Outperformed by specialized approximation
strategies on very large instances

42

Applications of GAs
● Automotive Design
● Engineering
● Robotics

43

Applications of GAs
● Molecular structure optimization
● Protein folding prediction

44

Applications of GAs
● Cryptography
● Financial modeling

45

