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Final Projects
● Check-in extended to Thursday at 4 pm
● Presentations next class
● Submissions due the same day at midnight
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Genetic Algorithms
● Class of heuristic search 

algorithms inspired by Darwin’s 
theory of evolution

● Survival of the fittest
● “Evolve” population of candidate 

solutions in a search space
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Basic Elements
● Encoding of a candidate solution as a string of 

characters (genes) from a finite alphabet
● A string of genes defines an individual
● A population is a set of 𝑁 individuals
● A fitness function maps an individual to a fitness score, 

indicating the quality of that candidate solution
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The 0-1 Knapsack Problem
● Given 𝑛 items with values 𝑣!, … , 𝑣" and weights 𝑤!, …𝑤", select 

maximum-value subset to fit into a knapsack with capacity 𝑊.
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Knapsack Genes
● Alphabet: {0,1} (binary)
● Example candidate solution encoding:
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1 1      0 1 0

(Totals: $7 and 14kg)



Knapsack Fitness
● Fitness function: ∑# 𝑏#𝑣# if ∑# 𝑏#𝑤# ≤ 𝑊 else 0
● ”The total knapsack value, or 0 if capacity is exceeded”
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1 1      0 1 0

(Totals: $7 and 14kg; fitness: 7)



Knapsack Population
● Initial random population (generation 0):
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Genome Weight Value Fitness
1 1 1 0 0 17kg $16 0

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4

1 1 0 0 1 15kg $8 8



Basic Steps
● Start with an initial population
● Randomly select individuals to survive and reproduce, 

based on fitness
● Combine and/or mutate selected individuals to 

generate a new population (the next generation)
● Eventually, return the best found individual
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Fitness Proportionate Selection

● “Roulette wheel selection”
● Spin wheel 𝑁 times, select with 

replacement
● Duplicates allowed
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Fitness Proportionate Selection

● “Expected value” of an 
individual (expected # of 
selections) 

● = 𝑁 !"#$%&&
#'#() !"#$%&&

● = !"#$%&&
(*+. !"#$%&&

● Notation: 𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = -!(/)
1-!
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Stochastic Universal Sampling (SUS)

● Make all selections in one spin 
of wheel with 𝑁 evenly-
spaced pointers

● Reduce variance in selection
● Same expected values
● Every above-average member 

is guaranteed to be selected 
at least once
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Problem: Premature Convergence

● Collapse of population diversity early on
● Caused by favoring exploitation over exploration too heavily

● GA becomes simple “hill-climbing” algorithm
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Sigma Scaling
● Hold rate of exploitation relatively constant

● Rather than depending on fitness variance

● 𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = ,max(1 +
-! / 21-!
34 5

, 0.1) if 𝜎 𝑡 > 0
1 otherwise

● Minimum expected value arbitrarily set to 0.1
● Give very low fitness individuals a chance
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Stochastic Universal Sampling (SUS)

● How to implement a desired 
expected value distribution?

● 𝐸𝑥𝑝𝑉𝑎𝑙(𝑖, 𝑡) = 𝑁 ∗ (wheel %)

● wheel % = 6789:;(/,5)
=
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Rank Selection
● Select individuals based on fitness rank (not value)
● Eliminates need for fitness scaling

● Absolute differences in fitnesses are ignored
● Use linearly (or exponentially) decaying expected 

values based on rank
● ∑/𝐸𝑥𝑝𝑉𝑎𝑙 𝑖, 𝑡 = 𝑁
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Tournament Selection
● Choose 2 individuals at random
● Select the more fit individual with probability 𝑘, and the 

less fit individual otherwise
● 𝑘 is a hyperparameter, e.g. 0.75

● Continue selecting (with replacement) 𝑁 times
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Genetic Operators
● Once we’ve selected individuals for 

survival/reproduction, how do we create the next 
generation?
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Crossover
● Combining the attributes of 2 (randomly paired) parents
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Multi-point Crossover
● Combining the attributes of 2 (randomly paired) parents
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Uniform Crossover
● Combining the attributes of 2 (randomly paired) parents

● For each child, choose each bit from either parent with 
equal probability
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Mutation
● For each attribute (gene), with some small mutation 

probability, make a random modification
● Helps maintain genetic diversity, exploration
● For alphabets with notion of ordering or distance, 

magnitude of mutation is important
● Controlled by a hyperparameter (like “step size”)
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Elitism
● Force the GA to retain some number of the best 

individuals at each generation
● Prevent random exclusion from selection, as well as 

destruction from crossover or mutation
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Termination
Some options:
● 𝑋 number of generations completed - typically 100s
● Threshold on 𝜎5 (standard deviation of fitness scores)
● Threshold on best fitness improvement
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Solving Knapsack with a GA
● Fitness function: ∑# 𝑏#𝑣# if ∑# 𝑏#𝑤# ≤ 𝑊 else 0
● ”The total knapsack value, or 0 if capacity is exceeded”
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1 1      0 1 0

(Totals: $7 and 14kg; fitness: 7)



Solving Knapsack with a GA
● Initial random population (generation 0):
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Genome Weight Value Fitness
1 1 1 0 0 17kg $16 0

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4

1 1 0 0 1 15kg $8 8



Solving Knapsack with a GA
● Ordered by fitness:
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Genome Weight Value Fitness
0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 1 0 0 1 3kg $4 4

1 1 1 0 0 17kg $16 0



Solving Knapsack with a GA
● Random selection based on fitness (with replacement):
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Genome Weight Value Fitness
0 0 1 0 0 4kg $10 10

0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 1 0 0 1 3kg $4 4



Solving Knapsack with a GA
● Random pairing:
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Genome Weight Value Fitness

0 0 1 0 0 4kg $10 10

1 1 0 0 1 15kg $8 8

0 0 1 0 0 4kg $10 10

0 1 0 0 1 3kg $4 4



Solving Knapsack with a GA
● Crossover (recombination):
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0 0 1 | 0 0
1  1 0 | 0 1

↓
0 0 1 | 0 1
1  1 0 | 0 0

0 0 | 1 0 0
0 1 | 0 0 1

↓
0 0 | 0 0 1
0 1 | 1 0 0



Solving Knapsack with a GA
● Results from crossover
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Genome Weight Value Fitness

0 0 1 0 1 6kg $12 12

1 1 0 0 0 13kg $6 6

0 0 0 0 1 2kg $2 2

0 1 1 0 0 5kg $12 12



Solving Knapsack with a GA
● Random mutation
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Genome Weight Value Fitness

0 0 1 1 1 7kg $13 13

1 1 0 0 0 13kg $6 6

0 0 0 0 0 0kg $0 0

0 1 1 0 0 5kg $12 12



Solving Knapsack with a GA
● Population (generation 1):
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Genome Weight Value Fitness
0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

1 1 0 0 0 13kg $6 6

0 0 0 0 0 0kg $0 0



Solving Knapsack with a GA
● Random selection based on fitness (with replacement):
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Genome Weight Value Fitness
0 0 1 1 1 7kg $13 13

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

0 1 1 0 0 5kg $12 12



Solving Knapsack with a GA
● Random pairing:
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Genome Weight Value Fitness

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12

0 0 1 1 1 7kg $13 13

0 1 1 0 0 5kg $12 12



Solving Knapsack with a GA
● Crossover (recombination):
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0 0 1 1 | 1
0 1 1 0 | 0

↓
0 0 1 1 | 0
0 1 1 0 | 1

0 0 | 1 1 1
0 1 | 1 0 0

↓
0 0 | 1 0 0
0 1 | 1 1 1



Solving Knapsack with a GA
● Results from crossover:
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Genome Weight Value Fitness

0 0 1 1 0 5kg $11 11

0 1 1 0 1 7kg $14 14

0 0 1 0 0 4kg $10 10

0 1 1 1 1 8kg $15 15



Solving Knapsack with a GA
● Random mutation:
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Genome Weight Value Fitness

0 0 1 1 0 5kg $11 11

0 1 1 0 0 5kg $12 12

0 0 1 0 0 4kg $10 10

0 1 1 1 1 8kg $15 15



Solving Knapsack with a GA
● Population (generation 2):
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Genome Weight Value Fitness
0 1 1 1 1 8kg $15 15

0 1 1 0 0 5kg $12 12

0 0 1 1 0 5kg $11 11

0 0 1 0 0 4kg $10 10



Solving Knapsack with a GA
● Population (generation 2):
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Genome Weight Value Fitness
0 1 1 1 1 8kg $15 15

0 1 1 0 0 5kg $12 12

0 0 1 1 0 5kg $11 11

0 0 1 0 0 4kg $10 10



Pros and Cons of GAs
● Pros

● General approximate optimization strategy
● Find a good solution quickly in a large space
● Requires minimal domain-specific knowledge
● Simple to implement
● Inherently parallelizable

● Cons
● No guarantees of performance
● May get stuck at local maximum
● May be outperformed by specialized strategies
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Applications of GAs
● Traveling Salesman Problem (TSP)

● Uses specialized encoding and crossover 
operations

● Outperformed by specialized approximation 
strategies on very large instances
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Applications of GAs
● Automotive Design
● Engineering
● Robotics
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Applications of GAs
● Molecular structure optimization
● Protein folding prediction
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Applications of GAs
● Cryptography
● Financial modeling
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