Lecture 13:
- Genetic Algorithms

mailto:rohanmenezes@seas.upenn.edu

Final Projects

Check-in extended to Thursday at 4 pm
Presentations next class
Submissions due the same day at midnight

Genetic Algorithms

Class of heuristic search
algorithms inspired by Darwin’s
theory of evolution

Survival of the fittest

"Evolve” population of candidate
solutions in a search space

Basic Elements

Encoding of a candidate solution as a string of
characters (genes) from a finite alphabet

A string of genes defines an individual
A population is a set of N individuals

A fitness function maps an individual to a fitness score,
indicating the quality of that candidate solution

The 0-1 Knapsack Problem

Given n items with values vy, ..., v, and weights wy, ...w,,, select
maximum-value subset to fit into a knapsack with capacity W.

Knapsack Genes

Alphabet: {0,1} (binary)
Example candidate solution encoding:

1 1 1 O
O O ©6 © O

(Totals: $7 and 14kgQ)

Knapsack Fithess

Fithness function:); b;v; if 3., bjw; < W else 0
"The total knapsack value, or 0 if capacity is exceeded"

1 1 1 O
O O ©6 © O

(Totals: $7 and 14kg; fitness: 7)

Knapsack Population

Initial random population (generation 0):

Genome Weight Value Fitness
11100 17kg $16 0
00100 4kg $10 10
01001 3kg $4 4
11001 15kg $8 8

Basic Steps

o Start with an initial population

o Randomly select individuals to survive and reproduce,
based on fithess

o Combine and/or mutate selected individuals to
generate a new population (the next generation)

o Eventually, return the best found individual

Fitness Proportionate Selection

o 'Roulette wheel selection” el is rotage,,
o Spin wheel N times, select with ey
replacement
o Duplicates allowed o & ()

has largest share of . .
whee! Weakest individual .
.. ' &_/ has smallest share of :
the roulette wheel .

Fitness Proportionate Selection

o "Expected value” of an el is rotagg,,
individual (expected # of 11
selections) L Q‘

. fitness e i &
T total fitness polet
__ fitness
T avg. fitness ‘/0‘
. f (l) mm‘nﬂ:: o .. Weakest individual
o Notation: ExpVal(i,t) = == e N G ek

ft

o Make all selections in one spin
of wheel with N evenly-
spaced pointers

e Reduce variance in selection

6

e Same expected values

o Every above-average member
IS guaranteed to be selected
at least once

Problem: Premature Convergence

Collapse of population diversity early on
Caused by favoring exploitation over exploration too heavily
GA becomes simple “hill-climbing” algorithm

I’m king of
the world!

7

Sigma Scaling

Hold rate of exploitation relatively constant
Rather than depending on fithess variance

max(1 + ft(‘)()f’f 0.1)if o(t) > 0

1 otherwise

ExpVal(i,t) =

Minimum expected value arbitrarily set to 0.1
Give very low fitness individuals a chance

e How to implement a desired
expected value distribution?

o ExpVal(i,t) = N * (wheel %)

ExpVal(i,t)
N

6

@

e wheel % =

Rank Selection

Select individuals based on fitness rank (not value)

Eliminates need for fitness scaling
Absolute differences in fitnesses are ignored

Use linearly (or exponentially) decaying expected
values based on rank

Y.iExpVal(i,t) = N

Tournament Selection

Choose 2 individuals at random

Select the more fit individual with probability k, and the
less fit individual otherwise
k is a hyperparameter, e.g. 0.75

Continue selecting (with replacement) N times

Genetic Operators

Once we've selected individuals for
survival/reproduction, how do we create the next
generation?

Crossover

Combining the attributes of 2 (randomly paired) parents

Parenté I

, crossover point

. L —
Children '

Multi-point Crossover

Combining the attributes of 2 (randomly paired) parents

. .
Parents _| |

, crossover points |

Child rer ——
N 44 s

Uniform Crossover

Combining the attributes of 2 (randomly paired) parents

For each child, choose each bit from either parent with
equal probability

Mutation

For each attribute (gene), with some small mutation
probability, make a random modification

Helps maintain genetic diversity, exploration

For alphabets with notion of ordering or distance,
magnitude of mutation is important

Controlled by a hyperparameter (like “step size”)

Elitism

Force the GA to retain some number of the best
iIndividuals at each generation

Prevent random exclusion from selection, as well as
destruction from crossover or mutation

Termination

Some options:
X number of generations completed - typically 100s
Threshold on g; (standard deviation of fithess scores)
Threshold on best fithess improvement

Solving Knapsack with a GA

Fithness function:); b;v; if 3., bjw; < W else 0
"The total knapsack value, or 0 if capacity is exceeded"

1 1 1 O
O O ©6 © O

(Totals: $7 and 14kg; fitness: 7)

Solving Knapsack with a GA

Initial random population (generation 0):

Genome Weight Value Fitness
11100 17kg $16 0
00100 4kg $10 10
01001 3kg $4 4
11001 15kg $8 8

Ordered by fitness:

Solving Knapsack with a GA

Genome Weight Value Fitness
00100 4kg $10 10
11001 15kg $8 8
01001 3kg $4 4
11100 17kg $16 0

T

Solving Knapsack with a GA

Random selection based on fithess (with replacement):.

Genome Weight Value Fitness
00100 4kg $10 10
00100 4kg $10 10
11001 15kg $8 8
01001 3kg $4 4

Random pairing:

Solving Knapsack with a GA

Genome Weight Value Fitness
00100 4kg $10 10
11001 15kg $8 8
00100 4kg $10 10
01001 3kg $4 4

T

Solving Knapsack with a GA

Crossover (recombination):

00100 000|100
110 | 6 o 1| CIGH
))
ool o o | CIGH

Results from crossover

Solving Knapsack with a GA

Genome Weight Value Fitness
00101 6kg $12 12
11000 13kg $6 6
00001 2kg $2 2
01100 5kg $12 12

Random mutation

Solving Knapsack with a GA

Genome Weight Value Fitness
00111 7kg $13 13
11000 13kg $6 6
00000 0kg $0 0
01100 5kg $12 12

Population (generation 1):

Solving Knapsack with a GA

Genome Weight Value Fitness
00111 7kg $13 13
01100 5kg $12 12
11000 13kg $6 6
00000 Okg $0 0

Solving Knapsack with a GA

Random selection based on fithess (with replacement):.

Genome Weight Value Fitness
00111 7kg $13 13
00111 7kg $13 13
01100 5kg $12 12
01100 5kg $12 12

Solving Knapsack with a GA

Random pairing:

Genome Weight Value Fitness
00111 7kg $13 13
01100 5kg $12 12
00111 7kg $13 13
01100 5kg $12 12

T

Solving Knapsack with a GA

Crossover (recombination):

00111 000|111
0110 o 1| o
l l
0o011|P oo | 8

01101 01111

Solving Knapsack with a GA

Results from crossover:

Genome Weight Value Fitness
00110 5kg $11 11
01101 7kg $14 14
00100 4kg $10 10
01111 8kg $15 15

Solving Knapsack with a GA

Random mutation:;

Genome Weight Value Fitness
00110 5kg $11 11
01100 5kg $12 12
00100 4kg $10 10
01111 8kg $15 15

Solving Knapsack with a GA

Population (generation 2):

Genome Weight Value Fitness
01111 8kg $15 15
01100 5kg $12 12
00110 5kg $11 11
00100 4kg $10 10

Solving Knapsack with a GA

Population (generation 2):

Genome Weight Value Fitness
01 11 8kg $15 15
01100 5kg $12 12
00110 5kg $11 11
00100 4kg $10 10

_

B

Pros and Cons of GAs

Pros
General approximate optimization strategy
Find a good solution quickly in a large space
Requires minimal domain-specific knowledge

Simple to implement
Inherently parallelizable

Cons
No guarantees of performance
May get stuck at local maximum
May be outperformed by specialized strategies

Applications of GAs

Traveling Salesman Problem (TSP)

Uses specialized encoding and crossover
operations

Outperformed by specialized approximation
strategies on very large instances

Applications of GAs

Automotive Design
Engineering
Robotics

Applications of GAs

Molecular structure optimization
Protein folding prediction

Applications of GAs

Cryptography
Financial modeling

