Lecture 12:
- Local Search

mailto:jediahk@seas.upenn.edu

Logistics

Project check-in due before next class!

Project presentations in class the week after
Please email me if you get COVID

Recap: Heuristics

Last week: construction heuristics
Start with nothing and build up a partial solution
Nearest neighbor, nearest/farthest insertion, savings

This week: improvement heuristics
Start with any solution and try to find a better one
In particular: local search

Local Search

Out of all possible solutions, consider some of them
as "neighbors” in (undirected) neighborhood graph
Typically, two solutions are neighbors if we can
transform one into the other by a simple operation
Start with any solution node, and attempt to reach a
better one by exploring its neighborhood

Limit which moves are acceptable to make the
graph directed

Terminating Local Search

When should we give up exploring?
Time bound: give up if it's taking too long

Step bound: give up after some number of steps
Problem-specific knowledge will help here

Improvement bound: give up if we have not
improved our solution (enough)
Can combine with time/step bounds

Back to TSP

Local search is natural for TSP
Start with any tour, and try to improve it into a
cheaper tour

What's a reasonable "neighbor relation” on all tours?
What's a simple operation to transform one tour into
another tour?

2-Adjacency and 2-Optimality

We say TSP tours T and T’ are 2-adjacent if we can
transform one into the other by deleting two edges
and adding two edges

We say TSP tour T is 2-optimal if there is no cheaper
tour adjacentto T

The 2-opt Swap

Idea: “‘uncross”’ the tour where it crosses over itself

swap(T,i,j) =T[1:i— 1]+ T[i:j]R+T[j + 1 : n]
swap([4,C,B,D],2,3) = [A] + [C,B]® + [D] = [A,B,C, D]

The 2-opt Heuristic

attempt to improve tour T
2-opt(T) :
until cost(T) does not decrease:
for each pair of indices i <j:
if cost(swap(T,i,j)) < cost(T):
let T = swap(T,i,j)

The 2-opt Heuristic

Current tour:

A D, C B

Current cost:
20 +10 + 35+ 30 = 95

The 2-opt Heuristic

Current tour:

A D, C B

Current cost:
20 +10 + 35+ 30 = 95

cost(swap(T, 1, 2)) = cost([D, A, C, B]):
20+30+35+5=90

The 2-opt Heuristic

Current tour:

D,AC B

Current cost:

20*+30+35+5=90

The 2-opt Heuristic

Current tour:

D,AC B

Current cost:

20*+30+35+5=90

cost(swap(T, 1, 2)) = cost([A4, D, C, B]):
20 +10+35+30 =905

The 2-opt Heuristic

Current tour:

D,AC B

Current cost:

20*+30+35+5=90

cost(swap(T, 1, 3)) = cost([C, A, D, B]):
30+20+5+35=90

The 2-opt Heuristic

Current tour:

D,AC B

Current cost:

20*+30+35+5=90

cost(swap(T, 1, 4)) = cost([B, C, A, D]):
35+30+20+5 =90

The 2-opt Heuristic

Current tour:

D,AC B

Current cost:

20*+30+35+5=90

cost(swap(T, 2, 3)) = cost([D, C, A, B]):
15+30+25+5=7/5

The 2-opt Heuristic

Current tour:

D,C A B

Current cost:

15+30+25+5=7/5

Etc..

Generalizing 2-opt

Can easily generalize 2-opt to 3-opt, 4-opt, k-opt..

Lin-Kernighan heuristic: start with k-opt for k = 2,
then dynamically increase/decrease k over time
based on several criteria

One of the most effective TSP heuristics!

PERCENT EXCESS OVER THE HELD-KARP BOUND

35

25

20

15

10

10,000-City Random Uniform Euclidean Instances

2o0pt
3opt

Spacefill
Stip worse solution
Karp
NI
NN worse runtime
CHCI :VN
Greedy
Fl
Savings CCA
AppClristo
Christo
GENI-10
2opt
3opt
LK
MLLK ok Helsgaun Tabu
1 1 | 1 | |
0.1 1.0 10.0 100.0 1,000.0 10,000.0

NORMALIZED RUNNING TIME IN SECONDS

Local Search for SAT

Even though SAT isn't an optimization problem, we
can still try to solve it with local search

A “solution” will be any truth assignment, even if it
isn't satisfying

What is a reasonable "neighbor relation” on all
assignments?

Neighborhood of Assignments

What's a simple operation to transform one
assignment into another?

Flip the truth value
of a single variable

GSAT (Greedy SAT)

Which variable to flip?
First attempt: let's just be greedy

Flip the variable that maximizes the number of
clauses that become satisfied
"Hill-climbing step”
What termination criterion makes sense?
Steps!

GSAT (Greedy SAT)

Slight improvement to objective:

Makecount: number of clauses that become
satisfied if we flip a variable

Breakcount: number of clauses that become
unsatisfied if we flip a variable

Instead of maximizing makecount, maximize
diffscore = makecount - breakcount
Corresponds to maximizing total number of satisfied clauses

GSAT Data Structures

How do we efficiently calculate which flip is best?
Unsat list: all currently unsatisfied clauses
Occurrence lists: clauses containing each literal

Makecount and breakcount lists: for each variable,
store the number of clauses that become

satisfied/unsatisfied if we flip

When we flip x, update counts for all other variables in
clauses containing x

Store number of true literals in each clause

GSAT Flip Pseudocode

for simplicity assume v = T and we set v = F afterwards
pre flip(v):
for clause C containing v:
if n true lits[C] = 1: # case 1 -> 0
add C to unsat list
for literal | in C: make count[var(l)] +=1
break count[v] -=1
else if n true lits[(C] = 2: # case 2 -> 1
let | = the other true literal in C
break count[var(l)] +=1
for clause C containing v:

false -> true case is essentially symmetric

GSAT (Greedy SAT) ®-

(I) S

Value F F F
(V 3) Makecount 1 2 2
V 2 V 3) Breakcount 0 0 1

We started with a “‘random” assignment. It just happened to be (F, F, F).

~ GSAT (Greedy SAT) &
(I) |

(i ivg)

~ GSAT (Greedy SAT) &
(I) |

(i ivg)

~ GSAT (Greedy SAT) &
(I) |

(i ivg)

Incompleteness

Unlike DPLL, GSAT (and many local search algorithms
In general) is incomplete
May not necessarily find an optimal/feasible
solution even given unlimited time

May start at node that can't reach any feasible/optimal
node or get stuck in a cycle/local optimum

" Abad GSAT example 9

®
5
(jvi)
(.v.v?)
i 0B

" Abad GSAT example 9

®
35
(jvi)
(.v.v?)
i 0B

Avoiding local optima

Can use a technique we've seen before...

Aggressive restarts: whenever we can't greedily
increase number of satisfied clauses, restart with a
new random assignment

Towards a better algorithm

Might still just repeatedly get stuck in local maxima

How can we explore the search space more
loosely to escape?

Also, our greedy heuristic is slow: requires
checking all variables at each step

Simplified WalkSAT

For now, let's just consider 2-SAT

Simplified WalkSAT algorithm:
Start with any assignment of ¢
Arbitrarily pick a clause C that is not satisfied
Randomly flip the value of one of C's literals

"Random walk” might never finish!

~ simplified WalkSAT b’

(. v l) \¥ Flip 3! m

(@@
8.5
5B

...

o o s
Simplified WalkSAT «?*
- '
(.V-) '@ Flip 1!

(& V&)
(jvi)
0B

...

| Simplified WalkSAT S8
(.vl) . — |
(.Vi)
(2V3)
(j V i) '# Flip 3! (0ops..)
0B

...

~ simplified WalkSAT b’

vy g

8.5
i

...

o o« 5
Simplified WalkSAT «?*
(Blv2) '
o ——

(2 V3)
l l “# Flip 3!

...

~ simplified WalkSAT b’
(8lv2) |
(. v i) =

(jvi)
(lVl)

Analyzing Simplified WalkSAT

For now, let's just consider 2-SAT
Simplified WalkSAT is mathematically “nice”
Suppose ¢ has a satisfying assignment «a

State of WalkSAT: how many variables in the
current assignment agree with a?

Analyzing Simplified WalkSAT

at least one variable in the [V] worst case: accidentally
clause must disagree y flip a correct variable

unsatisfied clause

At least 2 probability of advancing to next state
If we reach state n, done

In expectation, satisfying assignment will be
found in 0(n?) steps

From 2-SAT to 3-SAT

Intuition behind simplified WalkSAT running time:
we're at least as likely to move forward as
backwards, so given enough time we'll get lucky

Who cares about 2-SAT? Not NP-complete.
OK, so let's just do the same procedure for 3-SAT

The Problem with 3-SAT

Probability of moving to next state is at least 1/3

Probability of moving backwards to previous state
can be as bad as 2/3!

Intuition: we're "pulled” backwards, and the more
steps we take the farther we are from our goal

Expected runtime: 0(2™)

A Smarter 3-CNF WalkSAT

Idea: since we move farther "backwards’ the
longer we run, we should not run for long

Can utilize aggressive restarts
If we don't find a satisfying assignment in 3n steps, restart

Expected runtime: 0 ((g)n>

Assuming we start from a random assignment

WalkSAT in Practice

In practice, rather than just rely on randomness,
we'll mix random walks and greediness

WalkSAT algorithm:
Start with any assignment of ¢
Arbitrarily pick a clause C that is not satisfied
With fixed probability p:
Randomly flip the value of one of C's literals
Else with probability 1 — p:

Flip literal in € to maximize number of clauses that
become satisfied

Choosing a Mixing Probability

What to choose for the mixing probability p?
Prof. Charles Elkan (UCSD):

For random hard 3SAT problems (those with the ratio of clauses to
variables around 4.25) p = 0.5 works well. For 3SAT formulas with
more structure, as generated in many applications, slightly more
greediness, i.e. p < 0.5, is often better,

Best to determine experimentally for your problem

For industrial (hon-random) and unsatisfiable SAT
instances, WalkSAT is probably much worse than CDCL

