
Lecture 12:
Local Search
Jediah Katz jediahk@seas.upenn.edu

CIS 189

mailto:jediahk@seas.upenn.edu

Logistics
● Project check-in due before next class!
● Project presentations in class the week after

○ Please email me if you get COVID

2

Recap: Heuristics
● Last week: construction heuristics

● Start with nothing and build up a partial solution
● Nearest neighbor, nearest/farthest insertion, savings

● This week: improvement heuristics
● Start with any solution and try to find a better one
● In particular: local search

3

Local Search
● Out of all possible solutions, consider some of them

as “neighbors” in (undirected) neighborhood graph
○ Typically, two solutions are neighbors if we can

transform one into the other by a simple operation
● Start with any solution node, and attempt to reach a

better one by exploring its neighborhood
● Limit which moves are acceptable to make the

graph directed

4

Terminating Local Search
● When should we give up exploring?
● Time bound: give up if it’s taking too long
● Step bound: give up after some number of steps

○ Problem-specific knowledge will help here

● Improvement bound: give up if we have not
improved our solution (enough)
○ Can combine with time/step bounds

5

Back to TSP
● Local search is natural for TSP
● Start with any tour, and try to improve it into a

cheaper tour
● What’s a reasonable “neighbor relation” on all tours?

○ What’s a simple operation to transform one tour into
another tour?

6

2-Adjacency and 2-Optimality
● We say TSP tours 𝑇 and 𝑇′ are 2-adjacent if we can

transform one into the other by deleting two edges
and adding two edges

● We say TSP tour 𝑇 is 2-optimal if there is no cheaper
tour adjacent to 𝑇

7

The 2-opt Swap
● Idea: “uncross” the tour where it crosses over itself

● swap 𝑇, 𝑖, 𝑗 = 𝑇 1 ∶ 𝑖 − 1 + 𝑇 𝑖: 𝑗 ! + 𝑇[𝑗 + 1 ∶ 𝑛]
○ swap 𝐴, 𝐶, 𝐵, 𝐷 , 2, 3 = [𝐴] + 𝐶, 𝐵 ! + [𝐷] = [𝐴, 𝐵, 𝐶, 𝐷]

8

A AB B

D DC C

attempt to improve tour 𝑇
2-opt(𝑻):

until cost(𝑻) does not decrease:
for each pair of indices 𝒊 < 𝒋:
if cost(swap(𝑻, 𝒊, 𝒋)) < cost(𝑻):
let 𝑻 = swap(𝑻, 𝒊, 𝒋)

The 2-opt Heuristic

9

The 2-opt Heuristic

10

D

B C

A

35

20 15

25 30

5

● Current tour:

A, D, C, B

● Current cost:

20 + 10 + 35 + 30 = 95

The 2-opt Heuristic

11

D

B C

A

35

20 15

25 30

5

● Current tour:

A, D, C, B

● Current cost:

20 + 10 + 35 + 30 = 95

● cost swap 𝑇, 1, 2 = cost(𝐷, 𝐴, 𝐶, 𝐵):

20 + 30 + 35 + 5 = 90

The 2-opt Heuristic

12

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

20 + 30 + 35 + 5 = 90

The 2-opt Heuristic

13

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

20 + 30 + 35 + 5 = 90

● cost swap 𝑇, 1, 2 = cost(𝐴, 𝐷, 𝐶, 𝐵):

20 + 10 + 35 + 30 = 95

The 2-opt Heuristic

14

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

20 + 30 + 35 + 5 = 90

● cost swap 𝑇, 1, 3 = cost(𝐶, 𝐴, 𝐷, 𝐵):

30 + 20 + 5 + 35 = 90

The 2-opt Heuristic

15

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

20 + 30 + 35 + 5 = 90

● cost swap 𝑇, 1, 4 = cost(𝐵, 𝐶, 𝐴, 𝐷):

35 + 30 + 20 + 5 = 90

The 2-opt Heuristic

16

D

B C

A

35

20 15

25 30

5

● Current tour:

D, A, C, B

● Current cost:

20 + 30 + 35 + 5 = 90

● cost swap 𝑇, 2, 3 = cost(𝐷, 𝐶, 𝐴, 𝐵):

15 + 30 + 25 + 5 = 75

The 2-opt Heuristic

17

D

B C

A

35

20 15

25 30

5

● Current tour:

D, C, A, B

● Current cost:

15 + 30 + 25 + 5 = 75

● Etc...

Generalizing 2-opt
● Can easily generalize 2-opt to 3-opt, 4-opt, 𝒌-opt...
● Lin-Kernighan heuristic: start with 𝑘-opt for 𝑘 = 2,

then dynamically increase/decrease 𝑘 over time
based on several criteria
○ One of the most effective TSP heuristics!

18

19

worse solution

worse runtime

Local Search for SAT
● Even though SAT isn’t an optimization problem, we

can still try to solve it with local search
● A “solution” will be any truth assignment, even if it

isn’t satisfying
● What is a reasonable “neighbor relation” on all

assignments?

20

Neighborhood of Assignments
● What’s a simple operation to transform one

assignment into another?

21

Flip the truth value
of a single variable

GSAT (Greedy SAT)
● Which variable to flip?
● First attempt: let’s just be greedy
● Flip the variable that maximizes the number of

clauses that become satisfied
○ “Hill-climbing step”

● What termination criterion makes sense?
○ Steps!

22

GSAT (Greedy SAT)
● Slight improvement to objective:
● Makecount: number of clauses that become

satisfied if we flip a variable
● Breakcount: number of clauses that become

unsatisfied if we flip a variable
● Instead of maximizing makecount, maximize

diffscore = makecount – breakcount
○ Corresponds to maximizing total number of satisfied clauses

23

GSAT Data Structures
● How do we efficiently calculate which flip is best?
● Unsat list: all currently unsatisfied clauses
● Occurrence lists: clauses containing each literal
● Makecount and breakcount lists: for each variable,

store the number of clauses that become
satisfied/unsatisfied if we flip
○ When we flip 𝑥, update counts for all other variables in

clauses containing 𝑥

● Store number of true literals in each clause
24

GSAT Flip Pseudocode

25

for simplicity assume 𝒗 = T and we set 𝒗 = F afterwards
pre_flip(𝒗):

for clause 𝑪 containing 𝒗:
if n_true_lits[𝑪] = 1: # case 1 -> 0

add 𝑪 to unsat_list
for literal 𝒍 in 𝑪: make_count[var(𝒍)] += 1
break_count[𝒗] -= 1

else if n_true_lits[𝑪] = 2: # case 2 -> 1
let 𝒍 = the other true literal in 𝑪
break_count[var(𝒍)] += 1

for clause 𝑪 containing 𝒗:
false -> true case is essentially symmetric

GSAT (Greedy SAT)

26

1 2 3
Value F F F

Makecount 1 2 2

Breakcount 0 0 1

2
3
1 ∨ 3
1 ∨ 2 ∨ 3

We started with a “random” assignment. It just happened to be (F, F, F).

GSAT (Greedy SAT)

27

1 2 3
Value F T F

Makecount 0 0 1

Breakcount 0 2 1

2
3
1 ∨ 3
1 ∨ 2 ∨ 3

GSAT (Greedy SAT)

28

1 2 3
Value F T T

Makecount 1 0 1

Breakcount 0 1 1

2
3
1 ∨ 3
1 ∨ 2 ∨ 3

GSAT (Greedy SAT)

29

1 2 3
Value T T T

Makecount 0 0 0

Breakcount 1 1 1

2
3
1 ∨ 3
1 ∨ 2 ∨ 3

Incompleteness

30

● Unlike DPLL, GSAT (and many local search algorithms
in general) is incomplete
○ May not necessarily find an optimal/feasible

solution even given unlimited time
● May start at node that can’t reach any feasible/optimal

node or get stuck in a cycle/local optimum

A bad GSAT example

31

1 2 3
Value F F F

Makecount 0 0 1

Breakcount 0 1 2

3
1 ∨ 3
2 ∨ 3
2 ∨ 3
1 ∨ 2 ∨ 3

A bad GSAT example

32

1 2 3
Value T F F

Makecount 0 0 1

Breakcount 0 1 2

3
1 ∨ 3
2 ∨ 3
2 ∨ 3
1 ∨ 2 ∨ 3

Avoiding local optima
● Can use a technique we’ve seen before...
● Aggressive restarts: whenever we can’t greedily

increase number of satisfied clauses, restart with a
new random assignment

33

Towards a better algorithm
● Might still just repeatedly get stuck in local maxima
● How can we explore the search space more

loosely to escape?
● Also, our greedy heuristic is slow: requires

checking all variables at each step

34

Simplified WalkSAT
● For now, let’s just consider 2-SAT
● Simplified WalkSAT algorithm:

○ Start with any assignment of 𝜑
○ Arbitrarily pick a clause 𝐶 that is not satisfied
○ Randomly flip the value of one of 𝐶’s literals

● “Random walk” might never finish!

35

Simplified WalkSAT

36

1 2 3
F F F

🎲 Flip 3!3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Simplified WalkSAT

37

1 2 3
F F T

🎲 Flip 1!

3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Simplified WalkSAT

38

1 2 3
T F T

🎲 Flip 3! (oops…!)

3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Simplified WalkSAT

39

1 2 3
T F F

🎲 Flip 2!3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Simplified WalkSAT

40

1 2 3
T T T

🎲 Flip 3!

3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Simplified WalkSAT

41

1 2 3
T T T

3 ∨ 2
1 ∨ 3
2 ∨ 3
2 ∨ 3

Analyzing Simplified WalkSAT
● For now, let’s just consider 2-SAT
● Simplified WalkSAT is mathematically “nice”
● Suppose 𝜑 has a satisfying assignment 𝛼
● State of WalkSAT: how many variables in the

current assignment agree with 𝛼?

42

0 1 2 𝒏 - 1 𝒏. . .

Analyzing Simplified WalkSAT

[𝑥 ∨ 𝑦]
unsatisfied clause

● At least ½ probability of advancing to next state
○ If we reach state 𝑛, done

● In expectation, satisfying assignment will be
found in 𝑂 𝑛" steps

43

at least one variable in the
clause must disagree

worst case: accidentally
flip a correct variable

From 2-SAT to 3-SAT
● Intuition behind simplified WalkSAT running time:

we’re at least as likely to move forward as
backwards, so given enough time we’ll get lucky

● Who cares about 2-SAT? Not NP-complete.
● OK, so let’s just do the same procedure for 3-SAT

44

The Problem with 3-SAT
● Probability of moving to next state is at least 1/3
● Probability of moving backwards to previous state

can be as bad as 2/3!
● Intuition: we’re “pulled” backwards, and the more

steps we take the farther we are from our goal
● Expected runtime: 𝑂 2#

45

A Smarter 3-CNF WalkSAT
● Idea: since we move farther “backwards” the

longer we run, we should not run for long
● Can utilize aggressive restarts

○ If we don’t find a satisfying assignment in 3𝑛 steps, restart

● Expected runtime: 𝑂 !
"

#

○ Assuming we start from a random assignment

46

WalkSAT in Practice
● In practice, rather than just rely on randomness,

we’ll mix random walks and greediness
● WalkSAT algorithm:

○ Start with any assignment of 𝜑
○ Arbitrarily pick a clause 𝐶 that is not satisfied
○ With fixed probability 𝑝:

■ Randomly flip the value of one of 𝐶’s literals
○ Else with probability 1 − 𝑝:

■ Flip literal in 𝐶 to maximize number of clauses that
become satisfied

47

Choosing a Mixing Probability
● What to choose for the mixing probability 𝑝?

● Prof. Charles Elkan (UCSD):
For random hard 3SAT problems (those with the ratio of clauses to
variables around 4.25) p = 0.5 works well. For 3SAT formulas with
more structure, as generated in many applications, slightly more
greediness, i.e. p < 0.5, is often better.

● Best to determine experimentally for your problem
○ For industrial (non-random) and unsatisfiable SAT

instances, WalkSAT is probably much worse than CDCL

48

