Lecture 12: LocalSearch

Logistics

- Project check-in due before next class!
- Project presentations in class the week after
- Please email me if you get COVID

Recap: Heuristics

- Last week: construction heuristics
- Start with nothing and build up a partial solution
- Nearest neighbor, nearest/farthest insertion, savings
- This week: improvement heuristics
- Start with any solution and try to find a better one
- In particular: local search

Local Search

- Out of all possible solutions, consider some of them as "neighbors" in (undirected) neighborhood graph
- Typically, two solutions are neighbors if we can transform one into the other by a simple operation
- Start with any solution node, and attempt to reach a better one by exploring its neighborhood
- Limit which moves are acceptable to make the graph directed

Terminating Local Search

- When should we give up exploring?
- Time bound: give up if it's taking too long
- Step bound: give up after some number of steps
- Problem-specific knowledge will help here
- Improvement bound: give up if we have not improved our solution (enough)
- Can combine with time/step bounds

Back to TSP

- Local search is natural for TSP
- Start with any tour, and try to improve it into a cheaper tour
- What's a reasonable "neighbor relation" on all tours?
- What's a simple operation to transform one tour into another tour?

2-Adjacency and 2-Optimality

- We say TSP tours T and T^{\prime} are 2 -adjacent if we can transform one into the other by deleting two edges and adding two edges
- We say TSP tour T is 2-optimal if there is no cheaper tour adjacent to T

The 2-opt Swap

- Idea: "uncross" the tour where it crosses over itself

- $\operatorname{swap}(T, i, j)=T[1: i-1]+T[i: j]^{R}+T[j+1: n]$

$$
\text { - } \operatorname{swap}([A, C, B, D], 2,3)=[A]+[C, B]^{R}+[D]=[A, B, C, D]
$$

The 2-opt Heuristic

\# attempt to improve tour T
2-opt (T) :
until cost(T) does not decrease:
for each pair of indices $i<j$:
if cost(swap $(T, i, j))<\operatorname{cost}(T):$
let $T=\operatorname{swap}(T, i, j)$

The 2-opt Heuristic

- Current tour:
A, D, C, B
- Current cost:

$$
20+10+35+30=95
$$

The 2-opt Heuristic

- Current tour:
A, D, C, B
- Current cost:

$$
20+10+35+30=95
$$

- $\operatorname{cost}(\operatorname{swap}(T, 1,2))=\operatorname{cost}([D, A, C, B])$

$$
20+30+35+5=90
$$

The 2-opt Heuristic

- Current tour:

D, A, C, B

- Current cost:

$$
20+30+35+5=90
$$

The 2-opt Heuristic

- Current tour:

D, A, C, B

- Current cost:

$$
20+30+35+5=90
$$

- $\operatorname{cost}(\operatorname{swap}(T, 1,2))=\operatorname{cost}([A, D, C, B])$

$$
20+10+35+30=95
$$

The 2-opt Heuristic

- Current tour:

D, A, C, B

- Current cost:

$$
20+30+35+5=90
$$

- $\operatorname{cost}(\operatorname{swap}(T, 1,3))=\operatorname{cost}([C, A, D, B])$

$$
30+20+5+35=90
$$

The 2-opt Heuristic

- Current tour:

D, A, C, B

- Current cost:

$$
20+30+35+5=90
$$

- $\operatorname{cost}(\operatorname{swap}(T, 1,4))=\operatorname{cost}([B, C, A, D])$

$$
35+30+20+5=90
$$

The 2-opt Heuristic

- Current tour:

D, A, C, B

- Current cost:

$$
20+30+35+5=90
$$

- $\operatorname{cost}(\operatorname{swap}(T, 2,3))=\operatorname{cost}([D, C, A, B])$

$$
15+30+25+5=75
$$

The 2-opt Heuristic

- Current tour:

D, C, A, B

- Current cost:

$$
15+30+25+5=75
$$

- Etc

Generalizing 2-opt

- Can easily generalize 2 -opt to 3 -opt, 4 -opt, k-opt...
- Lin-Kernighan heuristic: start with k-opt for $k=2$, then dynamically increase/decrease k over time based on several criteria
- One of the most effective TSP heuristics!

10,000-City Random Uniform Euclidean Instances

Local Search for SAT

- Even though SAT isn't an optimization problem, we can still try to solve it with local search
- A "solution" will be any truth assignment, even if it isn't satisfying
- What is a reasonable "neighbor relation" on all assignments?

Neighborhood of Assignments

- What's a simple operation to transform one assignment into another?

Flip the truth value of a single variable

GSAT (Greedy SAT)

- Which variable to flip?
- First attempt: let's just be greedy
- Flip the variable that maximizes the number of clauses that become satisfied
- "Hill-climbing step"
- What termination criterion makes sense?
- Steps!

GSAT (Greedy SAT)

- Slight improvement to objective:
- Makecount: number of clauses that become satisfied if we flip a variable
- Breakcount: number of clauses that become unsatisfied if we flip a variable
- Instead of maximizing makecount, maximize diffscore = makecount - breakcount
- Corresponds to maximizing total number of satisfied clauses

GSAT Data Structures

- How do we efficiently calculate which flip is best?
- Unsat list: all currently unsatisfied clauses
- Occurrence lists: clauses containing each literal
- Makecount and breakcount lists: for each variable, store the number of clauses that become satisfied/unsatisfied if we flip
- When we flip x, update counts for all other variables in clauses containing x
- Store number of true literals in each clause

GSAT Flip Pseudocode

```
# for simplicity assume v = T and we set v = F afterwards
pre_flip(v):
    for clause C containing v:
        if n_true_lits[C] = 1: # case 1 -> 0
            add C to unsat_list
            for literal l in C: make_count[var(l)] += 1
            break_count[v] -= 1
        else if n_true_lits[C] = 2: # case 2 -> 1
            let l = the other true literal in C
            break_count[var(l)] += 1
    for clause C containing }\overline{v}\mathrm{ :
        # false -> true case is essentially symmetric
```


GSAT (Greedy SAT)

	1	2	3
Value	F	F	F
Makecount	1	2	2
Breakcount	0	0	1

We started with a "random" assignment. It just happened to be (F, F, F).

GSAT (Greedy SAT)

	1	2	3
Value	F	T	F
Makecount	0	0	1
Breakcount	0	2	1

GSAT (Greedy SAT)

	1	2	3
Value	F	T	T
Makecount	1	0	1
Breakcount	0	1	1

GSAT (Greedy SAT)

	1	2	3
Value	T	T	T
Makecount	0	0	0
Breakcount	1	1	1

Incompleteness

- Unlike DPLL, GSAT (and many local search algorithms in general) is incomplete
- May not necessarily find an optimal/feasible solution even given unlimited time
- May start at node that can't reach any feasible/optimal node or get stuck in a cycle/local optimum

A bad GSAT example

	1	2	3
Value	F	F	F
Makecount	0	0	1
Breakcount	0	1	2

A bad GSAT example

	1	2	3
Value	T	F	F
Makecount	0	0	1
Breakcount	0	1	2

Avoiding local optima

- Can use a technique we've seen before...
- Aggressive restarts: whenever we can't greedily increase number of satisfied clauses, restart with a new random assignment

Towards a better algorithm

- Might still just repeatedly get stuck in local maxima
- How can we explore the search space more loosely to escape?
- Also, our greedy heuristic is slow: requires checking all variables at each step

Simplified WalkSAT

- For now, let's just consider 2-SAT
- Simplified WalkSAT algorithm:
- Start with any assignment of φ
- Arbitrarily pick a clause C that is not satisfied
- Randomly flip the value of one of C 's literals
- "Random walk" might never finish!

Simplified WalkSAT

1	2	3
F	F	F

[^0]
Simplified WalkSAT

1	2	3
F	F	T

Simplified WalkSAT

1	2	3
T	F	T

$$
\begin{aligned}
& (3 \vee 2) \\
& (1 \vee \overline{3}) \\
& (2 \vee \overline{3}) \\
& (\overline{2} \vee 3)
\end{aligned} \quad \text { Flip 3! (oops...1) }
$$

Simplified WalkSAT

(3V2) ©fipzt
$(1 \vee \overline{3})$

1	2	3
T	F	F

$(2 \vee \overline{3})$
$(\overline{2} \vee 3)$

Simplified WalkSAT

1	2	3
T	T	T

(2) Flip 3!

Simplified WalkSAT

$$
\begin{aligned}
& (3 \vee 2) \\
& (1 \vee \overline{3}) \\
& (2 \vee \overline{3}) \\
& (\overline{2} \vee 3)
\end{aligned}
$$

1	2	3
T	T	T

Analyzing Simplified WalkSAT

- For now, let's just consider 2-SAT
- Simplified WalkSAT is mathematically "nice"
- Suppose φ has a satisfying assignment α
- State of WalkSAT: how many variables in the current assignment agree with α ?

Analyzing Simplified WalkSAT

- At least $1 ⁄ 2$ probability of advancing to next state - If we reach state n, done
- In expectation, satisfying assignment will be found in $O\left(n^{2}\right)$ steps

From 2-SAT to 3-SAT

- Intuition behind simplified WalkSAT running time: we're at least as likely to move forward as backwards, so given enough time we'll get lucky
- Who cares about 2-SAT? Not NP-complete.
- OK, so let's just do the same procedure for 3-SAT

The Problem with 3-SAT

- Probability of moving to next state is at least $1 / 3$
- Probability of moving backwards to previous state can be as bad as 2/3!
- Intuition: we're "pulled" backwards, and the more steps we take the farther we are from our goal
- Expected runtime: $O\left(2^{n}\right)$

A Smarter 3-CNF WalkSAT

- Idea: since we move farther "backwards" the longer we run, we should not run for long
- Can utilize aggressive restarts
- If we don't find a satisfying assignment in $3 n$ steps, restart
- Expected runtime: $O\left(\left(\frac{4}{3}\right)^{n}\right)$
- Assuming we start from a random assignment

WalkSAT in Practice

- In practice, rather than just rely on randomness, we'll mix random walks and greediness
- WalkSAT algorithm:
- Start with any assignment of φ
- Arbitrarily pick a clause C that is not satisfied
- With fixed probability p :
- Randomly flip the value of one of C 's literals
- Else with probability $1-p$:
- Flip literal in C to maximize number of clauses that become satisfied

Choosing a Mixing Probability

- What to choose for the mixing probability p ?
- Prof. Charles Elkan (UCSD):

For random hard 3SAT problems (those with the ratio of clauses to variables around 4.25) $p=0.5$ works well. For 3SAT formulas with more structure, as generated in many applications, slightly more greediness, i.e. p <0.5, is often better.

- Best to determine experimentally for your problem
- For industrial (non-random) and unsatisfiable SAT instances, WalkSAT is probably much worse than CDCL

[^0]: $$
 \begin{aligned}
 & (3 \vee 2) \text { नlip } 3! \\
 & (1 \vee \overline{3}) \\
 & (2 \vee \overline{3}) \\
 & (\overline{2} \vee 3)
 \end{aligned}
 $$

