

Lecture 11:

TSP Techniques

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

0

The rest of the semester...

- Finished with our satisfiability + constraint programming saga!
- 3 more lectures on "special topics" + final presentations
- Don't forget: project check-in due 4/18 at 4pm
 - You should be at least 2/3 done with project!

Traveling Salesman Problem

- **Problem:** in weighted complete graph, find a tour of minimum total cost that visits every vertex exactly once and returns to starting vertex
 - Graph can be directed or undirected
- Applications in routing, logistics, producing microchips
 - NP-complete!

Preliminary Notation

- We'll look at complete directed graphs (parallel edges, but no self-loops) with n nodes, m edges
 Ondirected graphs are often a special case
- Directed edge $(i,j) = i \rightarrow j$ has weight w(i,j)
- We'll denote a **tour** as a permutation $v_1, v_2 \dots, v_n$ of the vertices, which represents $v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n \rightarrow v_1$

- 0
- For simplicity, examples will generally be drawn undirected
- Imagine each edge (*i*, *j*) is really two parallel edges with same cost

Optimal tour cost:

10 + 25 + 30 + 15 = 80

0

Attempt: Solving TSP with CP?

- Define 0/1 variables x_{ij} indicating if edge (i, j) is in the TSP tour
- Each vertex is visited exactly once:

$$\sum_{j \neq i} x_{ij} = \sum_{j \neq i} x_{ji} = 1, \qquad \forall 1 \le i \le n$$

• Want to minimize total cost:

$$C = \sum_{(i,j)} w(i,j) \cdot x_{ij}$$

An issue

• This CP formulation allows "subtours" rather than forcing one contiguous tour!

A 5-city TSP example with a tour and subtour solutions of the associated assignment model

Disallowing subtours

• As a constraint:

$$\sum_{i \neq j \in S} x_{ij} < |S|, \qquad \forall S \subset V, |S| > 1$$

- Problem: there are exponentially many subtours!
 - Ways to fix this or add constraints lazily...
 - But in general CP is not state-of-the-art for TSP

0

Traveling Salesman Problem

- Observation: TSP is an approximation-friendly problem
 In practice, "good enough" usually is good enough!
- Goal: design efficient heuristics that give an empirically cheap tour (possibly not quite cheapest)
- Today: constructive heuristics
 - Start from nothing and iteratively build up partial solution

0

Nearest-Neighbor (NN)

- Start at any vertex *u*. Pick nearest unseen out-neighbor *v* of *u* and add it to end of tour, then repeat starting from *v*. Continue until all vertices added.
 - Pros:
 - Simple, intuitive, and relatively efficient
 - Empirically OK, esp. on Euclidean TSP
- Const
 - Greedy: can easily miss shortcut paths

- Current tour:
- Current cost:
 - 0

- Current tour: 1, 4
 - Current cost:

20 + 20 = 40

- Current tour: 1, 4, 2
 - Current cost:

20 + 10 + 25 = 55

- Current tour: 1, 4, 2, 3
 - Current cost: 20 + 10 + 35 + 30 = 95

- Start the tour *T* at any vertex
- Pick the nearest unseen out-neighbor *v* of **any** vertex in the tour
- Insert it into the tour $T = t_1, ..., t_k$ so that the total tour distance is minimized
 - i.e., find i s.t. $w(t_i, v) + w(v, t_{i+1}) w(t_i, t_{i+1})$ is minimized
- Repeat until all vertices added to tour
- Intuition: still greedy, but not as greedy as NN allow the partial tour to be modified

- Current tour:
 1
- Current cost:
 - 0

- Current tour:
 1
- Current cost:
 - 0
- Next vertex: 4
 Only one place to insert (up to rotation)

• Current tour: 1, 4

- Current cost:
 - 20 + 20 = 40

18

• Current tour:

1, 4

Current cost: 20 + 20 = 40

• Next vertex: 2

After 1: w(1, 2) + w(2, 4) - w(1,4) = 25 + 10 - 20 = 15After 4: w(4, 2) + w(2, 1) - w(1,4) = 10 + 25 - 20 = 15

• Current tour: 1, 2, 4

Current cost: 25 + 10 + 20 = 55

• Current tour:

1, 2, 4

Current cost: 25 + 10 + 20 = 55

• Next vertex: 3

After 1: w(1, 3) + w(3, 2) - w(1, 2) = 30 + 35 - 25 = 40After 2: w(2, 3) + w(3, 4) - w(2, 4) = 35 + 15 - 10 = 40After 4: w(4, 3) + w(3, 1) - w(4, 1) = 15 + 30 - 20 = 35

Current tour:
 1, 2, 4, 3

Current cost: 25 + 10 + 15 + 30 = 80

- Start the tour *T* at any vertex
- Pick the nearest farthest unseen out-neighbor v of any vertex in the tour
- Insert it into the tour $T = t_1, ..., t_k$ so that the total tour distance is minimized
 - i.e., find i s.t. $w(t_i, v) + w(v, t_{i+1}) w(t_i, t_{i+1})$ is minimized
- Repeat until all vertices added to tour
- Intuition: start with the general outline of the tour and then fill in the details later

- Current tour:
 1
- Current cost:

0

- Current tour:
- Current cost:

Next vertex: 3
 Only one place to insert (up to rotation)

• Current tour: 1, 3

Current cost: 30 + 30 = 60

0

Farthest-Insertion (FI)

- Current tour:
 - 1, 3
 - Current cost: 30 + 30 = 60

• Next vertex: 2

After 1: w(1, 2) + w(2, 3) - w(1, 3) = 25 + 35 - 30 = 30After 3: w(3, 2) + w(2, 1) - w(1, 3) = 35 + 25 - 30 = 30

• Current tour: 1, 2, 3

Current cost:

25 + 35 + 30 = 90

28

0

Farthest-Insertion (FI)

- Current tour:
 - 1, 2, 3
 - Current cost: 25 + 35 + 30 = 90

• Next vertex: 4

After 1: w(1, 4) + w(4, 2) - w(1, 2) = 20 + 10 - 25 = 5After 2: w(2, 4) + w(4, 2) - w(2, 3) = 10 + 15 - 35 = -10After 3: w(3, 4) + w(4, 1) - w(3, 1) = 15 + 20 - 30 = 5

Current tour:
 1, 2, 4, 3

Current cost: 25 + 10 + 15 + 30 = 80

Insertion Heuristics

- Aims to be less naively greedy than NN
 - Unlike NN, can modify partial tour
- Somewhat more expensive than NN heuristic
- FI works pretty well in practice...
- ...but NI not so much.

Savings Heuristic

- Pick any vertex x to be the "central vertex"
- Start with n 1 subtours: $x \to v \to x$ for all $v \in V x$
- For each edge (i, j), where $i, j \in V x$, compute its **savings** s(i, j)

 $\circ \quad s(i,j) = w(i,x) + w(x,j) - w(i,j)$

- Sort edges in decreasing order of savings
- Repeat until only one tour remains:
- Let (*i*, *j*) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)

Savings	s Heuristic
10	4 20 15
25	35 30

• Current cost:

25 + 25 + 30 + 30 + 20 + 20 = 150

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3, 4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Savings Heuristic		
4	(i , j)	Savings s(i, j)
20	(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
10 15	(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
25 30	(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
2 35 3	(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
Current cost:	(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
25 + 25 + 30 + 30 + 20 + 20 = 150	(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Savings Heuristic			
Current cost: 25 + 25 + 20 + 15 + 30 = 115			

	(i , j)	Savings s(i,j)
	(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
	(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
	(2, 4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
	(4,2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
ע	(3, 4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
	(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

. . .

.

stic		
	(i , j)	Savings s(i,j)
	(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
	(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
	(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
	(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
	(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
	(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Current cost:
25 + 25 + 20 + 15 + 30 = 115

Savings Heuristic
• Current cost:
25 + 25 + 20 + 15 + 30 = 115

	(i , j)	Savings s(i,j)
	(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
	(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
N V	(2, 4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
	(4,2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
	(3, 4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
	(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

.

.

Savings	Heuristic
	4
10 25	15 1 30
	35 3

Current cost:
25 + 10 + 15 + 30 = 80

(i , j)	Savings s(i,j)
(2,3)	w(2,1) + w(1,3) - w(2,3) = 25 + 30 - 35 = 20
(3,2)	w(3,1) + w(1,2) - w(3,2) = 30 + 25 - 35 = 20
(2,4)	w(2,1) + w(1,4) - w(2,4) = 25 + 20 - 10 = 35
(4, 2)	w(4,1) + w(1,2) - w(4,2) = 20 + 25 - 10 = 35
(3,4)	w(3,1) + w(1,4) - w(3,4) = 30 + 20 - 15 = 35
(4,3)	w(4,1) + w(1,3) - w(4,3) = 20 + 30 - 15 = 35

Vehicle Routing Problem

- Actually, the Savings heuristic was created to solve a generalization of the TSP:
- The Vehicle Routing Problem (VRP) also takes place in a weighted, complete graph
- Instead of one salesman, we have a fleet of vehicles which are all parked at a central vertex (the **depot**)
 - May or may not be a limit on the number of vehicles
- Goal: find routes starting and ending at the depot for each vehicle with minimum total weight so that each vertex is visited once by some vehicle

Constrained VRP

- In real life: why use a fleet of vehicles when you could have one vehicle that travels all the routes?
- There may be additional constraints for vehicles, e.g.:
 - Maximum distance a vehicle can travel
 - Carrying capacity of a vehicle, where each node has some volume to be delivered

Savings Heuristic for VRP

- Let *x* denote the depot
- Start with n 1 subtours: $x \to v \to x$ for all $v \in V x$
- For each edge (i, j), where $i, j \in V x$, compute its **savings** s(i, j)

 $\circ \quad s(i,j) = w(i,x) + w(x,j) - w(i,j)$

- Sort edges in decreasing order of savings
- Repeat until only one tour remains or we reach negative savings:
- Let (*i*, *j*) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)...
 - ...unless it would violate our constraints

Solving TSP with OR-Tools

- OR-Tools comes with a **routing solver** that can solve the TSP and VRP with much more complex constraints!
 - Pickups and drop-offs, time windows, penalties...
- The guide is pretty good: <u>https://developers.google.com/optimization/routing</u>
- Comes with many heuristics including NN, Savings, etc...
 - By default, solver automatically chooses a heuristic to use based on the problem at hand
- Note: the routing solver is optimized for getting a "good enough" solution to constrained problems, not exact solving huge TSPs

Scaling and Shifting

- Warning: the OR-Tools routing solver may not work correctly with fractional/negative edge weights
 - Even worse, it might not throw an error!
- Can fix negative weights by shifting:
 - Add large constant *K* to all weights to make them positive
 - Preserves TSP structure since all tours increase by $K \cdot n$
 - May not necessarily preserve VRP structure $^{(\mathcal{Y})}/^{-}$
- Can fix fractional weights by **scaling**:
 - Multiply all weights by a large constant *M* to make them integers (or minimize rounding error)
 - If no rounding, preserves TSP and VRP structure

The OR-Tools TSP Solver doesn't always produce an optimal solution.

How well does it do in practice?

Let's test it on instances from the National TSP Collection, a set of real-world instances ranging in size from 29 to 71,000+ nodes.

0

Benchmarking the TSP Solver

Country	# Cities	Output Cost	Optimal Cost	Percent Error	*Runtime (s)
W. Sahara	29	27749	27603	0.53%	0.0320
Djibouti	38	7078	6656	6.3%	0.0657
Qatar	194	10064	9352	7.6%	2.61
Uruguay	734	83476	79114	5.5%	37.9
Zimbabwe	929	101100	95345	6.0%	91.4
Oman	1979	92250	86891	6.2%	668

*Running on my Dell XPS laptop with 16GB of RAM, in a Jupyter notebook.