Lecture 11: TSP Techniques

Rohan Menezes rohanmenezes@alumni.upenn.edu

The rest of the semester...

- Finished with our satisfiability + constraint programming saga!
- 3 more lectures on "special topics" + final presentations
- Don't forget: project check-in due 4/18 at 4pm
- You should be at least 2/3 done with project!

Traveling Salesman Problem

- Problem: in weighted complete graph, find a tour of minimum total cost that visits every vertex exactly once and returns to starting vertex
- Graph can be directed or undirected
- Applications in routing, logistics, producing microchips
- NP-complete!

Preliminary Notation

- We'll look at complete directed graphs (parallel edges, but no self-loops) with n nodes, m edges
- Undirected graphs are often a special case
- Directed edge $(i, j)=i \rightarrow j$ has weight $w(i, j)$
- We'll denote a tour as a permutation $v_{1}, v_{2} \ldots, v_{n}$ of the vertices, which represents $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n} \rightarrow v_{1}$

Example

- For simplicity, examples will generally be drawn undirected
- Imagine each edge (i, j) is really two parallel edges with same cost
- Optimal tour cost:

$$
10+25+30+15=80
$$

Attempt: Solving TSP with CP?

- Define 0/1 variables $x_{i j}$ indicating if edge (i, j) is in the TSP tour
- Each vertex is visited exactly once:

$$
\sum_{j \neq i} x_{i j}=\sum_{j \neq i} x_{j i}=1, \quad \forall 1 \leq i \leq n
$$

- Want to minimize total cost:

$$
C=\sum_{(i, j)} w(i, j) \cdot x_{i j}
$$

An issue

- This CP formulation allows "subtours" rather than forcing one contiguous tour!

5-city problem

$$
\begin{gathered}
\text { Tour solution } \\
\left(x_{12}=x_{25}=x_{54}=x_{43}=x_{31}=1\right)
\end{gathered} \quad \begin{gathered}
\text { Subtour solution } \\
\left(x_{23}=x_{32}=x_{15}=x_{54}=x_{41}=1\right)
\end{gathered}
$$

FIGURE 9.11
A 5-city TSP example with a tour and subtour solutions of the associated assignment model

Disallowing subtours

- For each possible subtour of vertices S, make sure that we take less than $|S|$ edges between them
- As a constraint:

$$
\sum_{i \neq j \in S} x_{i j}<|S|, \quad \forall S \subset V,|S|>1
$$

- Problem: there are exponentially many subtours!
- Ways to fix this or add constraints lazily..
- But in general CP is not state-of-the-art for TSP

Traveling Salesman Problem

- Observation: TSP is an approximation-friendly problem
- In practice, "good enough" usually is good enough!
- Goal: design efficient heuristics that give an empirically cheap tour (possibly not quite cheapest)
- Today: constructive heuristics
- Start from nothing and iteratively build up partial solution

Nearest-Neighbor (NN)

- Start at any vertex u. Pick nearest unseen out-neighbor v of u and add it to end of tour, then repeat starting from v. Continue until all vertices added.
- Pros:
- Simple, intuitive, and relatively efficient
- Empirically OK, esp. on Euclidean TSP
- Cons:
- Greedy: can easily miss shortcut paths

Nearest-Neighbor (NN)

- Current tour: 1
- Current cost:

0

Nearest-Neighbor (NN)

- Current tour:

1, 4

- Current cost:

$$
20+20=40
$$

Nearest-Neighbor (NN)

- Current tour:

$$
1,4,2
$$

- Current cost:

$$
20+10+25=55
$$

Nearest-Neighbor (NN)

- Current tour:

$$
1,4,2,3
$$

- Current cost:

$$
20+10+35+30=95
$$

Nearest-Insertion (NI)

- Start the tour T at any vertex
- Pick the nearest unseen out-neighbor v of any vertex in the tour
- Insert it into the tour $T=t_{1}, \ldots, t_{k}$ so that the total tour distance is minimized
- i.e., find i s.t. $w\left(t_{i}, v\right)+w\left(v, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right)$ is minimized
- Repeat until all vertices added to tour
- Intuition: still greedy, but not as greedy as NN - allow the partial tour to be modified

Nearest-Insertion (NI)

- Current tour: 1
- Current cost:

0

Nearest-Insertion (NI)

- Current tour: 1
- Current cost:

0

- Next vertex: 4

O Only one place to insert (up to rotation)

Nearest-Insertion (NI)

- Current tour: 1. 4
- Current cost:

$$
20+20=40
$$

Nearest-Insertion (NI)

- Current tour:

1. 4

- Current cost:

$$
20+20=40
$$

- Next vertex: 2

After 1: $w(1,2)+w(2,4)-w(1,4)=25+10-20=15$
After 4: $w(4,2)+w(2,1)-w(1,4)=10+25-20=15$

Nearest-Insertion (NI)

- Current tour:

$$
1,2,4
$$

- Current cost:

$$
25+10+20=55
$$

Nearest-Insertion (NI)

- Current tour:

$$
1,2,4
$$

- Current cost:

$$
25+10+20=55
$$

- Next vertex: 3

After 1: $w(1,3)+w(3,2)-w(1,2)=30+35-25=40$
After 2: $w(2,3)+w(3,4)-w(2,4)=35+15-10=40$
After $4: w(4,3)+w(3,1)-w(4,1)=15+30-20=35$

Nearest-Insertion (NI)

- Current tour:

$$
1,2,4,3
$$

- Current cost:

$$
25+10+15+30=80
$$

Farthest-Insertion (FI)

- Start the tour T at any vertex
- Pick the nearest farthest unseen out-neighbor v of any vertex in the tour
- Insert it into the tour $T=t_{1}, \ldots, t_{k}$ so that the total tour distance is minimized
- i.e., find i s.t. $w\left(t_{i}, v\right)+w\left(v, t_{i+1}\right)-w\left(t_{i}, t_{i+1}\right)$ is minimized
- Repeat until all vertices added to tour
- Intuition: start with the general outline of the tour and then fill in the details later

Farthest-Insertion (FI)

- Current tour: 1
- Current cost:

0

Farthest-Insertion (FI)

- Current tour: 1
- Current cost:

0

- Next vertex: 3

O Only one place to insert (up to rotation)

Farthest-Insertion (FI)

- Current tour: 1, 3
- Current cost:

$$
30+30=60
$$

Farthest-Insertion (FI)

- Current tour:

1, 3

- Current cost:

$$
30+30=60
$$

- Next vertex: 2

After 1: $w(1,2)+w(2,3)-w(1,3)=25+35-30=30$
After 3: $w(3,2)+w(2,1)-w(1,3)=35+25-30=30$

Farthest-Insertion (FI)

- Current tour: 1, 2, 3
- Current cost:

$$
25+35+30=90
$$

Farthest-Insertion (FI)

- Current tour:

$$
1,2,3
$$

- Current cost:

$$
25+35+30=90
$$

- Next vertex: 4

After 1: $w(1,4)+w(4,2)-w(1,2)=20+10-25=5$
After $2: w(2,4)+w(4,2)-w(2,3)=10+15-35=-10$
After 3: $w(3,4)+w(4,1)-w(3,1)=15+20-30=5$

Farthest-Insertion (FI)

- Current tour:

$$
1,2,4,3
$$

- Current cost:

$$
25+10+15+30=80
$$

Insertion Heuristics

- Aims to be less naively greedy than NN
- Unlike NN, can modify partial tour
- Somewhat more expensive than NN heuristic
- FI works pretty well in practice...
- ...but NI not so much.

Savings Heuristic

- Pick any vertex x to be the "central vertex"
- Start with $n-1$ subtours: $x \rightarrow v \rightarrow x$ for all $v \in V-x$
- For each edge (i, j), where $i, j \in V-x$, compute its savings $s(i, j)$
- $s(i, j)=w(i, x)+w(x, j)-w(i, j)$
- Sort edges in decreasing order of savings
- Repeat until only one tour remains:
- Let (i, j) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)

Savings Heuristic

- Current cost:

$$
25+25+30+30+20+20=150
$$

Savings Heuristic

- Current cost:

$$
25+25+30+30+20+20=150
$$

(i, j)	Savings $s(i, j)$
$(2,3)$	$w(2,1)+w(1,3)-w(2,3)$ $=25+30-35=20$
$(3,2)$	$w(3,1)+w(1,2)-w(3,2)$ $=30+25-35=20$
$(2,4)$	$w(2,1)+w(1,4)-w(2,4)$ $=25+20-10=35$
$(4,2)$	$w(4,1)+w(1,2)-w(4,2)$ $=20+25-10=35$
$(3,4)$	$w(3,1)+w(1,4)-w(3,4)$ $=30+20-15=35$
$(4,3)$	$w(4,1)+w(1,3)-w(4,3)$ $=20+30-15=35$

Savings Heuristic

- Current cost:

$$
25+25+30+30+20+20=150
$$

(i, j)	Savings $s(i, j)$
$(2,3)$	$w(2,1)+w(1,3)-w(2,3)$ $=25+30-35=20$
$(3,2)$	$w(3,1)+w(1,2)-w(3,2)$ $=30+25-35=20$
$(2,4)$	$w(2,1)+w(1,4)-w(2,4)$ $=25+20-10=35$
$(4,2)$	$w(4,1)+w(1,2)-w(4,2)$ $=20+25-10=35$ $(3,4)$$w(3,1)+w(1,4)-w(3,4)$ $=30+20-15=35$
$(4,3)$	$w(4,1)+w(1,3)-w(4,3)$ $=20+30-15=35$

Savings Heuristic

- Current cost:

$$
25+25+20+15+30=115
$$

(i, j)	Savings $s(i, j)$
$(2,3)$	$w(2,1)+w(1,3)-w(2,3)$ $=25+30-35=20$
$(3,2)$	$w(3,1)+w(1,2)-w(3,2)$ $=30+25-35=20$
$(2,4)$	$w(2,1)+w(1,4)-w(2,4)$ $=25+20-10=35$
$(4,2)$	$w(4,1)+w(1,2)-w(4,2)$ $=20+25-10=35$
$(3,4)$	$w(3,1)+w(1,4)-w(3,4)$ $=30+20-15=35$
$(4,3)$	$w(4,1)+w(1,3)-w(4,3)$ $=20+30-15=35$

Savings Heuristic

- Current cost:

$$
25+25+20+15+30=115
$$

(i, j)	Savings $s(i, j)$
$(2,3)$	$w(2,1)+w(1,3)-w(2,3)$ $=25+30-35=20$
$(3,2)$	$w(3,1)+w(1,2)-w(3,2)$ $=30+25-35=20$
$(2,4)$	$w(2,1)+w(1,4)-w(2,4)$ $=25+20-10=35$
$(4,2)$	$w(4,1)+w(1,2)-w(4,2)$ $=20+25-10=35$
$(3,4)$	$w(3,1)+w(1,4)-w(3,4)$ $=30+20-15=35$
$(4,3)$	$w(4,1)+w(1,3)-w(4,3)$ $=20+30-15=35$

Savings Heuristic

- Current cost:

$$
25+25+20+15+30=115
$$

(i, j)	Savings $s(i, j)$
$(2,3)$	$\begin{aligned} & w(2,1)+w(1,3)-w(2,3) \\ & \quad=25+30-35=20 \end{aligned}$
$(3,2)$	$\begin{aligned} & w(3,1)+w(1,2)-w(3,2) \\ & \quad=30+25-35=20 \end{aligned}$
$(2,4)$	$\begin{aligned} & w(2,1)+w(1,4)-w(2,4) \\ & \quad=25+20-10=35 \end{aligned}$
$(4,2)$	$\begin{aligned} & w(4,1)+w(1,2)-w(4,2) \\ & \quad=20+25-10=35 \end{aligned}$
$(3,4)$	$\begin{aligned} & w(3,1)+w(1,4)-w(3,4) \\ & \quad=30+20-15=35 \end{aligned}$
$(4,3)$	$\begin{aligned} & w(4,1)+w(1,3)-w(4,3) \\ & \quad=20+30-15=35 \end{aligned}$

Savings Heuristic

- Current cost:
$25+10+15+30=80$

(i, j)	Savings $s(i, j)$
$(2,3)$	$w(2,1)+w(1,3)-w(2,3)$ $=25+30-35=20$
$(3,2)$	$w(3,1)+w(1,2)-w(3,2)$ $=30+25-35=20$
$(2,4)$	$w(2,1)+w(1,4)-w(2,4)$ $=25+20-10=35$
$(4,2)$	$w(4,1)+w(1,2)-w(4,2)$ $=20+25-10=35$
$(3,4)$	$w(3,1)+w(1,4)-w(3,4)$ $=30+20-15=35$
$(4,3)$	$w(4,1)+w(1,3)-w(4,3)$ $=20+30-15=35$

Vehicle Routing Problem

- Actually, the Savings heuristic was created to solve a generalization of the TSP:
- The Vehicle Routing Problem (VRP) also takes place in a weighted, complete graph
- Instead of one salesman, we have a fleet of vehicles which are all parked at a central vertex (the depot)
- May or may not be a limit on the number of vehicles
- Goal: find routes starting and ending at the depot for each vehicle with minimum total weight so that each vertex is visited once by some vehicle

Constrained VRP

- In real life: why use a fleet of vehicles when you could have one vehicle that travels all the routes?
- There may be additional constraints for vehicles, e.g.:
- Maximum distance a vehicle can travel
- Carrying capacity of a vehicle, where each node has some volume to be delivered

Savings Heuristic for VRP

- Let x denote the depot
- Start with $n-1$ subtours: $x \rightarrow v \rightarrow x$ for all $v \in V-x$
- For each edge (i, j), where $i, j \in V-x$, compute its savings $s(i, j)$
- $s(i, j)=w(i, x)+w(x, j)-w(i, j)$
- Sort edges in decreasing order of savings
- Repeat until only one tour remains or we reach negative savings:
- Let (i, j) be the next edge in sorted order
- If edges (i, x) and (x, j) are in our subtours, and i, j are not already in the same tour: replace (i, x) and (x, j) by (i, j)...
- ...unless it would violate our constraints

Solving TSP with OR-Tools

- OR-Tools comes with a routing solver that can solve the TSP and VRP with much more complex constraints!
- Pickups and drop-offs, time windows, penalties,
- The guide is pretty good: https:/ /developers.google.com/optimization/routing
- Comes with many heuristics including NN, Savings, etc...
- By default, solver automatically chooses a heuristic to use based on the problem at hand
- Note: the routing solver is optimized for getting a "good enough" solution to constrained problems, not exact solving huge TSPs

Scaling and Shifting

- Warning: the OR-Tools routing solver may not work correctly with fractional/negative edge weights
- Even worse, it might not throw an error!
- Can fix negative weights by shifting:
- Add large constant K to all weights to make them positive
- Preserves TSP structure since all tours increase by $K \cdot n$
- May not necessarily preserve VRP structure -_(ツ)_1
- Can fix fractional weights by scaling:
- Multiply all weights by a large constant M to make them integers (or minimize rounding error)
- If no rounding, preserves TSP and VRP structure

The OR-Tools TSP Solver doesn't always produce an optimal solution.

How well does it do in practice?

Let's test it on instances from the National TSP Collection, a set of real-world instances ranging in size from 29 to $71,000+$ nodes.

Benchmarking the TSP Solver

Country	\# Cities	Output Cost	Optimal Cost	Percent Error	*Runtime (s)
W. Sahara	29	27749	27603	0.53%	0.0320
Djibouti	38	7078	6656	6.3%	0.0657
Qatar	194	10064	9352	7.6%	2.61
Uruguay	734	83476	79114	5.5%	37.9
Zimbabwe	929	101100	95345	6.0%	91.4
Oman	1979	92250	86891	6.2%	668

[^0]
[^0]: *Running on my Dell XPS laptop with 16GB of RAM, in a Jupyter notebook

