



# Lecture 10: From CP to SAT

Rohan Menezes <u>rohanmenezes@alumni.upenn.edu</u>

### A loose analogy I've used



#### **Constraint Program**





**Routing Scheduling** 





**Assignment Packing** 

**CP-SAT** 



#### **SAT Formula**

| p | q | p∧q |
|---|---|-----|
| T | T | T   |
| T | F | F   |
| F | T | F   |
| F | F | F   |

**SAT Solver** 









Compiler



**Assembly Language** 



Hardware

### Today...



- How does CP-SAT "compile" constraint programs into CNF-SAT formulas?
- Actually, that analogy is wrong!
  - CP-SAT does not just turn constraints into clauses and hand it off to a SAT solver...
  - We'll see it's more like a "conversation" btwn CP-SAT & solver
- Disclaimer: this is (not my) active research
  - Many details are necessarily left out, and any errors are mine
  - Thanks to: P. Stuckey, O. Ohrimenko, M. Codish, T. Feydy

### Recap: CDCL



```
\operatorname{cdcl}(\varphi):
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
     let x = pick variable()
     create new decision level; set x = T
     while unit propagate() = CONFLICT:
         if level = 0: return UNSAT
         let (conflict cls, assrt lvl) = analyze conflict()
         let \varphi = \varphi \cup \{ \text{ conflict cls } \}
         # discard all assignments after asserting level
         backjump(assrt lvl)
 return SAT
```

### Recap: CDCL



- Recall: CDCL = Conflict Driven Clause Learning
- Incrementality: CDCL solvers allow new clauses to be added during the search
- Conflict analysis
  - Build implication graph
  - Find set of literals that caused the conflict
  - Learn a new conflict clause

## **Background: CP Solvers**



- We'll consider CP over discrete finite domains only (i.e., bounded integer vars)
- Need to understand a bit about how traditional finite domain solvers work first









### **Background: CP Solvers**



- Maintain a domain D that tracks the possible values for each variable
  - Doesn't need to be contiguous (e.g., {1, 3, 5})
- Let  $\min_{D}(x)$  and  $\max_{D}(x)$  denote the min and max possible values for variable x in domain D
  - o Initially D(x) = [lb(x)..ub(x)] for each variable x

### **Bounds Consistency**



- We say a constraint c involving variables  $x_1, ..., x_n$  is **bounds consistent** with domain D if for each  $x_i$ :
  - o it's possible to set  $x_i = \min_{D}(x_i)$  and still satisfy c, and
  - o it's possible to set  $x_i = \max_{D}(x_i)$  and still satisfy c
- **Ex**: D(x) = [4..7], D(y) = [1..5], D(z) = [-1..2] subject to x = y + z
  - $x = 4 \rightarrow y = 4, z = 0$
  - o  $x = 7 \rightarrow y = 5, z = 2$
  - o  $y = 1 \rightarrow x = 4$ , z = ? X not bounds consistent!

### **Propagators**



- A **propagator** for constraint c is an algorithm that accepts a domain D, and returns:
  - $\circ$  A new domain D' where c is bounds consistent with D'
  - $\circ$  Implications "explaining" the updated bounds in D'
- Different constraints have different propagation rules for finding D'

### Propagator for x = y + z



- How to ensure bounds consistency for x = y + z?
- We can rewrite to isolate each variable:

$$x = y + z$$
  $y = x - z$   $z = x - y$ 

- Now we can derive a pair of inequalities for each:
  - $o x \ge \min_{D}(y) + \min_{D}(z) \text{ and } x \le \max_{D}(y) + \max_{D}(z)$
  - $y \ge \min_{D}(x) \max_{D}(z) \text{ and } y \le \max_{D}(x) \min_{D}(z)$
  - $z \ge \min_{D}(x) \max_{D}(y) \text{ and } z \le \max_{D}(x) \min_{D}(y)$
- Tighten upper/lower bounds accordingly to get D'

### Propagator for x = y + z



- What are "explanations"?
- **Ex**: D(x) = [4..7], D(y) = [1..5], D(z) = [-1..2]
- Since  $y \ge \min_{D}(x) \max_{D}(z) = 4 2 = 2$ , we update the domain of y to D'(y) = [2..5]
- The explanation for this update is the implication:

$$(x \ge 4) \land (z \le 2) \Rightarrow y \ge 2$$

### **Finite Domain Propagation**



Many traditional CP solvers use **finite domain propagation**:

- Start with the initial domain  $D_0$  specified by the user
- Try adding a new constraint c (e.g. assigning a variable)
- Repeatedly run all constraint propagators on *D* until:
  - A var has no possible values: BACKTRACK, add  $\neg c!$
  - Nothing changes: add another constraint and repeat
- Does this sound familiar?





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ |
|----------|-----------|
| $D(x_1)$ | {1}       |
| $D(x_2)$ | [14]      |
| $D(x_3)$ | [14]      |
| $D(x_4)$ | [14]      |
| $D(x_5)$ | [14]      |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent( $[x_1, x_2, x_3, x_4]$ ),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff |
|----------|-----------|---------|
| $D(x_1)$ | {1}       | {1}     |
| $D(x_2)$ | [14]      | [24]    |
| $D(x_3)$ | [14]      | [24]    |
| $D(x_4)$ | [14]      | [24]    |
| $D(x_5)$ | [14]      | [14]    |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff | $x_2 \le x_5$ |
|----------|-----------|---------|---------------|
| $D(x_1)$ | {1}       | {1}     | {1}           |
| $D(x_2)$ | [14]      | [24]    | [24]          |
| $D(x_3)$ | [14]      | [24]    | [24]          |
| $D(x_4)$ | [14]      | [24]    | [24]          |
| $D(x_5)$ | [14]      | [14]    | [24]          |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff | $x_2 \leq x_5$ | $x_5 \leq 2$ |
|----------|-----------|---------|----------------|--------------|
| $D(x_1)$ | {1}       | {1}     | {1}            | {1}          |
| $D(x_2)$ | [14]      | [24]    | [24]           | [24]         |
| $D(x_3)$ | [14]      | [24]    | [24]           | [24]         |
| $D(x_4)$ | [14]      | [24]    | [24]           | [24]         |
| $D(x_5)$ | [14]      | [14]    | [24]           | {2}          |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff             | $x_2 \le x_5$ | $x_5 \leq 2$ | $x_2 \le x_5$ |
|----------|-----------|---------------------|---------------|--------------|---------------|
| $D(x_1)$ | {1}       | {1}                 | {1}           | {1}          | {1}           |
| $D(x_2)$ | [14]      | [24]                | [24]          | [24]         | {2}           |
| $D(x_3)$ | [14]      | [ <b>2</b> 4]       | [24]          | [24]         | [24]          |
| $D(x_4)$ | [14]      | [ <mark>2</mark> 4] | [24]          | [24]         | [24]          |
| $D(x_5)$ | [14]      | [14]                | [24]          | {2}          | {2}           |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff             | $x_2 \le x_5$ | $x_5 \leq 2$ | $x_2 \le x_5$ | AllDiff |
|----------|-----------|---------------------|---------------|--------------|---------------|---------|
| $D(x_1)$ | {1}       | {1}                 | {1}           | {1}          | {1}           | {1}     |
| $D(x_2)$ | [14]      | [24]                | [24]          | [24]         | {2}           | {2}     |
| $D(x_3)$ | [14]      | [ <mark>2</mark> 4] | [24]          | [24]         | [24]          | [34]    |
| $D(x_4)$ | [14]      | [24]                | [24]          | [24]         | [24]          | [34]    |
| $D(x_5)$ | [14]      | [14]                | [24]          | {2}          | {2}           | {2}     |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff       | $x_2 \le x_5$ | $x_5 \leq 2$ | $x_2 \le x_5$ | AllDiff | $\sum \leq 9$ |
|----------|-----------|---------------|---------------|--------------|---------------|---------|---------------|
| $D(x_1)$ | {1}       | {1}           | {1}           | {1}          | {1}           | {1}     | {1}           |
| $D(x_2)$ | [14]      | [24]          | [24]          | [24]         | {2}           | {2}     | {2}           |
| $D(x_3)$ | [14]      | [ <b>2</b> 4] | [24]          | [24]         | [24]          | [34]    | {3}           |
| $D(x_4)$ | [14]      | [24]          | [24]          | [24]         | [24]          | [34]    | {3}           |
| $D(x_5)$ | [14]      | [14]          | [24]          | {2}          | {2}           | {2}     | {2}           |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff | $x_2 \leq x_5$ | $x_5 \leq 2$ | $x_2 \le x_5$ | AllDiff | $\sum \leq 9$ | AllDiff |
|----------|-----------|---------|----------------|--------------|---------------|---------|---------------|---------|
| $D(x_1)$ | {1}       | {1}     | {1}            | {1}          | {1}           | {1}     | {1}           | {1}     |
| $D(x_2)$ | [14]      | [24]    | [24]           | [24]         | {2}           | {2}     | {2}           | {2}     |
| $D(x_3)$ | [14]      | [24]    | [24]           | [24]         | [24]          | [34]    | {3}           | Ø       |
| $D(x_4)$ | [14]      | [24]    | [24]           | [24]         | [24]          | [34]    | {3}           | Ø       |
| $D(x_5)$ | [14]      | [14]    | [24]           | {2}          | {2}           | {2}     | {2}           | {2}     |





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

|          | $x_1 = 1$ | AllDiff             | $x_2 \le x_5$ | $x_5 > 2$ | etc |
|----------|-----------|---------------------|---------------|-----------|-----|
| $D(x_1)$ | {1}       | {1}                 | {1}           | {1}       |     |
| $D(x_2)$ | [14]      | [24]                | [24]          | [24]      |     |
| $D(x_3)$ | [14]      | [ <b>2</b> 4]       | [24]          | [24]      |     |
| $D(x_4)$ | [14]      | [ <mark>2</mark> 4] | [24]          | [24]      |     |
| $D(x_5)$ | [14]      | [14]                | [24]          | [34]      |     |

**Backtrack!** 

Domain  $D_1$ 

### **FD Propagation is Like DPLL**



- Adding a constraint is like making a decision
- Running constraint propagators is like unit propagation
- Backtracking is like... backtracking
- So why don't we try to just do this all in SAT?

### Representing Integers in SAT



- First question: what are the boolean variables?
- Attempt 1: for each CP var x, create boolean variables [x = i] for  $lb(x) \le i \le ub(x)$ 
  - Number of variables is linear in size of domain
  - Issue: need very long clauses to represent inequalities (e.g.  $x \le 10$ )
    - Poor propagation strength
- **Attempt 2**: logarithmic encoding (create a boolean variable for each bit of *x*)
  - Logarithmic in size of domain, but even worse propagation strength

### **Order Encoding**



- For each CP var x, create boolean variables:
  - o [x = i] for  $lb(x) \le i \le ub(x)$
  - $[x \le i]$  for  $lb(x) \le i \le ub(x)$
- Note that  $(x \ge i) \equiv \neg [x \le i 1]$  and  $(x \ne i) \equiv \neg [x = i]$
- Need to add consistency clauses:
  - $[x \le i] \Rightarrow [x \le i + 1]$  for  $lb(x) \le i \le ub(x) 1$
  - $[x = i] \Leftrightarrow [x \le i] \land \neg [x \le i 1]$
- Linear in size of domain; good propagation strength

### Adding a CP constraint in SAT



- How can we write the constraint x = y + z with clauses?
- Need to enforce it for each possible value of x, y, z
- For each  $lb \le i, j \le ub$ , add clauses:

$$[y = i] \land [z = j] \Rightarrow [x = i + j]$$

$$[x = i] \land [z = j] \Rightarrow [y = i - j]$$

- How many clauses?  $O(|ub lb|^2)$ 
  - What if we sum more variables? Exponential blowup!

### **Lazy Clause Generation**



- Key observation: although it takes a lot of clauses to represent a CP constraint, most clauses are never used
- Lazy clause generation: rather than generate all these clauses before solving, just generate the ones we need, when we need them!
- OK, but how does that actually work...

### **Lazy Clause Generation**



- Recall that FD propagators return an "explanation" for updating bounds, e.g.  $(x \ge 4) \land (z \le 2) \Rightarrow y \ge 2$
- Easy to express these explanations as clauses
- Can run propagators during execution of CDCL solver, then add explanation clauses to formula
  - If we only introduce explanation clauses when the LHS of the implication is currently true, they will immediately become unit clauses!

### LCG Pseudocode



```
lazy clause generation(constraint program):
let P = make propagators (constraint program)
if lcg propagate() = CONFLICT: return INFEASIBLE
while not all variables have been set:
     let x = pick variable()
                                                   lcg propagate (P, \varphi):
     create new decision level; set x = T
                                                      while True:
     while lcg propagate (P, \varphi) = CONFLICT:
                                                        if unit prop() = CONFLICT:
          if level = 0: return INFEASIBLE
                                                          return CONFLICT
         let (cls, lvl) = analyze conflict()
                                                        for propagator p \in P:
         let \varphi = \varphi \cup \{ \text{ cls } \}
                                                          let expl clauses = p(\varphi)
         backjump(lv1)
                                                          let \varphi = \varphi \cup \text{expl clauses}
 return FEASIBLE
                                                        if \varphi did not change:
                                                          return SUCCESS
```





$$D_0(x_1) = D_0(x_2) = D_0(x_3) = D_0(x_4) = D_0(x_5) = [1..4]$$
  
s.t.  $x_2 \le x_5$ , AllDifferent([ $x_1, x_2, x_3, x_4$ ]),  $x_1 + x_2 + x_3 + x_4 \le 9$ 

$$x_1 = 1$$

Decision:  $[x_1 = 1]$ 

(Note: For simplicity, some clauses are ignored in this example, and decision levels are left out; don't take it too seriously.)



**AllDiff** 



Propagate AllDifferent( $[x_1, x_2, x_3, x_4]$ )

Explanations:  $x_1 = 1 \Rightarrow x_2 \neq 1$ ;  $x_1 = 1 \Rightarrow x_3 \neq 1$ ;  $x_1 = 1 \Rightarrow x_4 \neq 1$ 



**AllDiff** 



Propagate consistency clauses



AllDiff  $x_2 \le x_5$ 



Propagate  $x_2 \le x_5$ 

Explanations:  $x_2 \ge 2 \Rightarrow x_5 \ge 2$ 



AllDiff 
$$x_2 \le x_5$$



Decision:  $[x_5 \le 2]$ 

Propagate consistency constraints





AllDiff

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$



Propagate  $x_2 \le x_5$ 

Explanations:  $x_5 \le 2 \Rightarrow x_2 \le 2$ 



**AllDiff** 

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$



Propagate consistency constraints



AllDiff

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$

**AllDiff** 



Propagate AllDifferent( $[x_1, x_2, x_3, x_4]$ )

Explanations:  $x_2 = 2 \Rightarrow x_3 \neq 2$ ;  $x_2 = 2 \Rightarrow x_4 \neq 2$ 



**AllDiff** 

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$

**AllDiff** 



Propagate consistency constraints



**AllDiff** 

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$

**AllDiff** 

 $\sum \leq 9$ 



Propagate  $x_1 + x_2 + x_3 + x_4 \le 9$ 

Explanations:  $x_2 \ge 2 \land x_3 \ge 3 \Rightarrow x_4 \le 3$ ;  $x_2 \ge 2 \land x_4 \ge 3 \Rightarrow x_3 \le 3$ 



**AllDiff** 

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$

**AllDiff** 

 $\sum \leq 9$ 



Propagate consistency constraints



**AllDiff** 

$$x_2 \leq x_5$$

$$x_2 \leq x_5$$

**AllDiff** 

 $\sum \leq 9$ 

**AllDiff** 



Propagate AllDifferent( $[x_1, x_2, x_3, x_4]$ )

Explanations:  $x_3 = 3 \land x_4 = 3 \Rightarrow F$ 







AllDiff  $x_2 \le x_5$ 



Backtrack to asserting level!

Learned clause:  $\neg [x_2 \ge 2] \lor \neg [x_3 \ge 2] \lor \neg [x_4 \ge 2] \lor \neg [x_2 = 2]$ 



AllDiff  $x_2 \le x_5$ 



Propagate from learned clause

Learned clause:  $\neg [x_2 \ge 2] \lor \neg [x_3 \ge 2] \lor \neg [x_4 \ge 2] \lor \neg [x_2 = 2]$ 

### **Explanation Deletion**



- Explanation clauses are needed for immediate unit propagation and for generating learned clauses
- But when we backtrack past the explanations, may not need them anymore
  - Can delete from formula

# **Lazy Boolean Variable Creation**



- Many of the boolean variables are never actually used
- Idea: create boolean variables when we need them
- Array encoding: initially only create  $[x \le i]$  variables
  - Create [x = i] variables on demand
  - On't forget to add clause:  $[x = i] \Leftrightarrow [x \le i] \land \neg [x \le i 1]$
- List encoding: create both types of variables on demand!
  - When creating  $[x \le i]$ , add clauses:
    - $[x \le i] \Rightarrow [x \le i_{\text{next}}]$ , where  $i_{\text{next}}$  is next-higher existing bnd
    - $[x \le i_{prev}] \Rightarrow [x \le i]$ , where  $i_{prev}$  is next-lower existing bnd

### **Lazy Variable Tradeoffs**



- List encoding has fewer variables, so it can succeed on large domains where array encoding fails
- Array encoding interacts better with clause learning
  - This is significant!
- List encoding is trickier to implement

### References



Feydy, T. J., & Stuckey, P. J. (2009). Lazy Clause Generation Reengineered. *Principles and Practice of Constraint Programming - CP 2009 Lecture Notes in Computer Science*, 352–366. doi: 10.1007/978-3-642-04244-7\_29

Marriott, K., & Stuckey, P. J. (1999). *Programming with constraints: an introduction*. Cambridge (Massachusetts): MIT Press.

Ohrimenko, O., Stuckey, P. J., & Codish, M. (2009). Propagation via lazy clause generation. *Constraints*, 14(3), 357–391. doi: 10.1007/s10601-008-9064-x

Stuckey, P. J. (2010). Lazy Clause Generation: Combining the Power of SAT and CP (and MIP?) Solving. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems Lecture Notes in Computer Science, 5–9. doi: 10.1007/978-3-642-13520-0\_3

Stuckey, P. J. (2010, June). Lazy Clause Generation: Combining the best of SAT and CP (and MIP?) solving. Retrieved from https://people.eng.unimelb.edu.au/pstuckey/cpaior-talk.pdf