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Today...

How does CP-SAT "compile’ constraint programs
into CNF-SAT formulas?

Actually, that analogy is wrong!

CP-SAT does not just turn constraints into clauses and hand it
off to a SAT solver...

We'll see it's more like a “conversation” btwn CP-SAT & solver

Disclaimer: this is (hot my) active research
Many details are necessarily left out, and any errors are mine
Thanks to: P. Stuckey, O. Ohrimenko, M. Codish, T. Feydy



Recap: CDCL

cdel (@) :
if unit propagate() = CONFLICT: return UNSAT
while not all variables have been set:
let x = pick variable()
create new decision level; set x = T
while unit propagate() = CONFLICT:
if level = 0: return UNSAT
let (conflict cls, assrt 1lvl) = analyze conflict()
let ¢ = ¢ U { conflict cls }
# discard all assignments after asserting level
backjump (assrt 1vl)
return SAT



Recap: CDCL

Recall. CDCL = Conflict Driven Clause Learning

Incrementality: CDCL solvers allow new clauses to
be added during the search

Conflict analysis
Build implication graph
Find set of literals that caused the conflict
Learn a new conflict clause



Background: CP Solvers

We'll consider CP over discrete finite domains only
(Le., bounded integer vars)

Need to understand a bit about how traditional
finite domain solvers work first
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Background: CP Solvers

Maintain a domain D that tracks the possible values
for each variable
Doesn't need to be contiguous (e.g., {1, 3,5})

Let mDin(x) and mgx(x) denote the min and max

possible values for variable x in domain D
Initially D(x) = [Ib(x)..ub(x)] for each variable x



Bounds Consistency

We say a constraint ¢ involving variables x4, ..., x, IS
bounds consistent with domain D if for each x;:

it's possible to set x; = mDin(xl-) and still satisfy ¢, and
it's possible to set x; = mglx(xi) and still satisfy ¢

Ex:D(x) =[4..7], D(y) =[1..5], D(z) = [—-1..2]
subjecttox =y +z

x=4->y=42z=0 v

x=7->y=5,z=2 v

y=1-x=4, z="? X not bounds consistent!



Propagators

A propagator for constraint c is an algorithm that
accepts a domain D, and returns:

A new domain D’ where c is bounds consistent with D’
Implications “explaining” the updated bounds in D’

Different constraints have different propagation
rules for finding D’



Propagatorforx =y 4z

How to ensure bounds consistency for x =y + z?
We can rewrite to isolate each variable:

X=y+z Yy=X—2Z Z=X—-Yy
Now we can derive a pair of inequalities for each:
X > mDin(y) + mDin(z) and x < mDaX(y) + mDaX(Z)
> mi - < — mi
y > len(x) mDaX(Z) and y < mlglx(x) len(Z)
> mi — < — mi
zZ > len(x) mglx(y) and z < mgx(x) len(y)

Tighten upper/lower bounds accordingly to get D’



Propagatorforx =y 4z

What are "explanations™?

Ex:D(x) =[4..7], D(y) =[1..5], D(z) = [-1..2]

Sincey > mDin(x) — mlglx(z) =4 — 2 = 2, we update the

domain of y to D'(y) = [2..5]

The explanation for this update is the implication:
x=24)N(z<2)>y=>2



Finite Domain Propagation

Many traditional CP solvers use finite domain propagation:
Start with the initial domain D, specified by the user
Try adding a new constraint ¢ (e.g. assigning a variable)
Repeatedly run all constraint propagators on D until:
A var has no possible values: BACKTRACK, add —c!
Nothing changes: add another constraint and repeat
Does this sound familiar?



Ex: Finite Domain Propagation

Do(x1) = Do(xz) = Do(x3) = Do(x4) = Do(xs) = [1..4]
st x, < x5, AllDifferent([xq, x5, x3,%4]), X1 + X0 + X3+ x4, <9
BN
D(x4) {1}
D(xy) [1..4]

D(x;)  [1..4]

D(x,)  [1..4]

D(xs) [1..4]

Domain D,



Ex: Finite Domain Propagation

Do(x1) = Do(xz) = Do(x3) = Do(x4) = Do(xs) = [1..4]
st x, < x5, AllDifferent([xq, x5, x3,%4]), X1 + X0 + X3+ x4, <9
[ [e=g o]
D(x,) {1} {1}
D(x,) [1..4] | [2..4]

D(xs) [1..4] [2..4]

D(x,) [1..4] @ [2..4]

D(xs) [1..4]  [1..4]

Domain D,



Ex: Finite Domain Propagation

Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

T | met ADm o ex,

D(x,) {1} {1} {1}

D(x,) [1..4]  [2..4] [2..4]
D(x;) [1..4]  [2..4] [2..4]
D(x,) [1..4]  [2..4] [2..4]
D(xs) [1..4] [1..4]  [2..4]

Domain D,



Ex: Finite Domain Propagation

Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

D(x,) {1} {1} {1} {1}
D(x,) [1..4] @ [2..4] @ [2..4] [2..4]
D(xs) [1..4] [2..4] [2..4] [2..4]
D(x,) [1..4]  [2..4] @ [2..4] [2..4]
D(xs) [1..4] [1..4] [2..4] 2}

Domain D, Domain D,



Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

D(x1) {1} {1} {1} {1} {1}
D(x,) [1..4] @ [2..4] @ [2..4] [2..4] (2}
D(x;) [1..4] [2..4] [2..4] [2..4] [2..4]
D(x,) [1..4] @ [2..4] @ [2..4] [2..4] @ [2..4]
D(xs) [1..4] [1..4] [2..4] 2} 2}

Domain D, Domain D,



Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

- %=1 AIDIf x,<x5| xs<2 x,<x; AIDIff

D(xy) 1} {1} {1} 1} {1} {1}
D(x;) [1.4] | [2..4] @ [2.4] [2..4] {2} {2}
D(x3) [1.4]  [2..4]  [2.4] [2..4] @ [2..4] @ [3..4]
D(x,) [1.4] | [2..4] @ [2.4] [2..4] @ [2..4] @ [3..4]
D(xs) [1.4]  [1..4]  [2..4] {2} {2} {2}

Domain D, Domain D,



Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

- x1 =1 AllDiff xz < xs x5 < 2 xz < x5 AllDiff Z < 9

D(xy) 1} {1} {1} {1} 1} {1} {1}
D(x;) [1..4]  [2..4] @ [2..4] [2..4] {2} {2} {2}
D(x;) [1..4]  [2..4] [2..4] [2..4] @ [2..4] @ [3..4] {3}
D(x,) [1..4]  [2..4] @ [2..4] [2..4] @ [2..4] @ [3..4] {3}
D(xs) [1..4]  [1..4] [2..4] {2} {2} {2} {2}

Domain D, Domain D,



Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

- x =1 AIDiff x,<xs| xs<2 x,<x; AIDIff Y <9 AIDIff

D(xy) 1} {1} {1} 1} 1} {1} {13 {1}
D(x;) [1.4] | [2..4] @ [2..4] [2..4] {2} {2} {2} {2}
D(x3) [1.4]  [2..4]  [2.4] [2..4] @ [2..4] @ [3..4] {3} )
D(x,) [1.4] | [2..4] @ [2.4] [2..4] @ [2..4] @ [3..4] {3} )
D(xs) [1.4]  [1..4]  [2..4] {2} {2} (2} {2} {2}

Domain D, Domain D,



Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st x, < x5, AllDifferent([xq, x2,x3,%4]), x1 + x5 + x3+ x4, <9

- x, =1 AlDiff X <x5 | x5>2 etc...

D(x,) {1} {1} {1} {1}

D(x,) [L.4] | [2.4]  [2.4]  [2..4]

D(x3) [1..4]  [2..4]  [2..4] [2..4] Backtrack!
D(x,) [L.4]  [2.4]  [2.4] [2..4]

D(xs) [L.4] [L.4]  [2..4] [3..4]

Domain D, Domain D,



FD Propagation is Like DPLL

Adding a constraint is like making a decision

Running constraint propagators is like unit propagation
Backtracking is like... backtracking

So why don't we try to just do this all in SAT?



Representing Integers in SAT

First question: what are the boolean variables?

Attempt 1: for each CP var x, create boolean variables
[x = i] forIb(x) <i < ub(x)
Number of variables is linear in size of domain
Issue: need very long clauses to represent inequalities (e.g. x < 10)
Poor propagation strength

Attempt 2: logarithmic encoding (create a boolean

variable for each bit of x)
Logarithmic in size of domain, but even worse propagation strength



Order Encoding

For each CP var x, create boolean variables:
[x =i] for Ib(x) < i < ub(x)
[x <i] for Ib(x) < i < ub(x)
Notethat (x = i) =[x <i—1] and (x #i) = =[x = (]
Need to add consistency clauses:
[x<i]=[x<i+1] forlb(x) <i<ub(x)—1
[x=i]e[x<i]Axx<i-—1]
Linear in size of domain; good propagation strength



Adding a CP constraint in SAT

How can we write the constraint x = y + z with clauses?
Need to enforce it for each possible value of x, y, z
Foreachlb < i,j < ub, add clauses:
[y =i]Alz=j]=[x=1+]]
[x =i]Alz=j]=[y=1—]]
[x =i]Aly=jl=lz=1-]]
How many clauses? 0(Jub — 1b|?)

What if we sum more variables? Exponential blowup!




Lazy Clause Generation

Key observation: although it takes a lot of clauses to
represent a CP constraint, most clauses are never used

Lazy clause generation: rather than generate all these
clauses before solving, just generate the ones we need,
when we need them!

OK, but how does that actually work...



Lazy Clause Generation

Recall that FD propagators return an “explanation” for
updating bounds, eg. (x =2 4)A(z<2)=>y =2
Easy to express these explanations as clauses

Can run propagators during execution of CDCL solver,
then add explanation clauses to formula
If we only introduce explanation clauses when the LHS of

the implication is currently true, they will immediately
become unit clauses!



LCG Pseudocode

lazy clause_generation(constraint program) :

let P = make propagators(constraint program)

if lcg_propagate() = CONFLICT:

let x = pick variable()
create new decision level;
while lcg propagate (P, @) =
if level = O:
let (cls,
let ¢ = @ U { cls }
backjump (1vl)
return FEASIBLE

return INFEASIBLE
while not all wvariables have been set:

set x =T
CONFLICT:

return INFEASIBLE
lvl) = analyze_ conflict()

lcg propagate (P, @) :
while True:

if unit prop() = CONFLICT:
return CONFLICT

for propagator p € P:
let expl clauses = p (@)
let ¢ = ¢ U expl clauses

if ¢ did not change:
return SUCCESS



LCG Example

Do(x1) = Do(x3) = Do(x3) = Dy(x4) = Do(xs5) = [1..4]
st X < Xs, AllDifferent([xl, xz,X3,X4]), X1 + X2 + X3 + X4 <9

x1=1

Decision: [x; = 1]

(Note: For simplicity, some clauses are ignored in this example, and decision levels are left out; don't
take it too seriously.)



LCG Example

AlIDiff

x1=1
v

x, #1

Propagate AllDifferent([xy, x5, x3, X4])

Explanations:x; =1=2x, #1; x;=1=2x3#1;, x;=1=>x,#1



LCG Example

AlIDiff
x1=1

y
x, #1 Xy = 2
x3 # 1 X3 =2
xXg # 1 M Xy =2

Propagate consistency clauses



LCG Example

AlIDiff X2 < X5

x1=1
y
x, #1 Xy = 2
x3 # 1 X3 =2
xXg # 1 M Xy =2
X522

Propagate x, < x5
Explanations: x, = 2 = x5 > 2



LCG Example

AlIDiff X2 < X5
x1=1
y

x, #1 Xy = 2

x3 # 1 X3 =2

xXg # 1 X4 = 2
X5 = 2 X5 < 2 X5 = 2
A L i S

Decision: [xs < 2]
Propagate consistency constraints



LCG Example

AlIDiff X2 < X5 X2 < X5
x1=1

y
x, #1 Xy =2 X, <2
x3 # 1 X3 = 2
xXg # 1 M Xy =2

| X5 = 2 X5 < 2 X5 = 2

— /‘
Propagate x, < x5
Explanations: xg < 2 = x, < 2




LCG Example

AlIDiff X2 < X5 X2 < X5
x1=1

¢ //—\’
x, #1 Xy = 2 Xy < 2 X, =2
x3 # 1 X3 = 2
xXg # 1 M Xy =2

X5 = 2 X5 < 2 Xg = 2
= —
_

Propagate consistency constraints



LCG Example

AlIDiff X2 < X5 X2 < X5 AlIDiff
x1=1
¢ //—\’
x, #1 Xy = 2 Xy <2 X, =2
x3 # 1 X3 =2 X3 * 2
xXg # 1 M Xy =2 Xq # 2
X5 = 2 X5 < 2 X5 = 2
A L i S

Propagate AllDifferent([x, x5, x3,x4])
Explanations: x, =2 =>x3 #2; x, =2 = x4 # 2



LCG Example

AlIDiff X2 < X5 X2 < X5
x1=1
¢ //—\’
x, #1 Xy = 2 \ Xy < 2
x3 # 1 X3 =2 )
X, #F1 X4 = 2
Xg = 2 }‘/ X < 2

AlIDiff

X3 F 2

Xq4 F 2

Propagate consistency constraints




LCG Example

AlIDiff Xy < X5 Xy < Xg AlIDiff »<9

x; =1
¢ A’

X, # 1 xZZZN X, <2 X, =2
x; # 1 X3 > 2 Xy # 2 X3 >3 XS 3
| y
x, 1 » X, =2 Xy F 2 M x, =3 X4 <3
X5 = 2 }‘/ X5 < 2 X = 2
A il i S

Propagate x; + x, + x3+x, <9

Explanations: x, 2 2Ax323=2x,<3; x=22Ax,=23>x3=<3



LCG Example

AlIDiff Xy < X5 Xy < Xg AlIDiff »<9
x1=1
¢ A’
x, #1 xZZZN Xy < 2 Xy, = 2
x5 # 1 X3 =2 ) X5 % 2 X3 =3 XS 3 X5 =3
v
X, #1 Xq = 2 X4 F 2 X4 =3 X4 <3 X4 =3
X5 = 2 }‘/ X5 < 2 X = 2
— /‘

Propagate consistency constraints




LCG Example

AlIDiff Xy < X5 Xy < X5 AlIDiff »<9 AlIDiff
x1=1
¢ A’
x, #1 xZZZN Xy < 2 Xy, = 2
x5 # 1 X3 =2 ) X5 % 2 X3 =3 XS 3 X5 =3
v

X, #1 Xq = 2 X4 F 2 X4 =3 X4 <3 X4 =3
Xg =2 }‘/ xXs < 2 X5 = 2 ¥/'|'
A el [ S

Propagate AllDifferent(]|xq, x5, X3, X4])
Explanations: x3 =3Ax, =3 = F




LCG Example

AlIDiff Xy < X5 Xy < X5
x1 == 1 \
¢ A’
x, #1 x222\ Xy < 2 X, =2
x3 # 1 X3 =2 ) yﬁ
X, #F1 X4 =2
| X5 = 2 }‘/ X5 < 2 X = 2
— /‘
Conflict cut after first UIP

Learned clause: =[x, = 2] V =[xz = 2] V =[lxg = 2] V =[x, = 2]

/

AlIDiff ¥<9 AlIDiff
— N
~b{x3¢2 X3 =3 x&SS x3 =3

v

X4 F 2 X4 =3 X4 <3 X4 =3

i
1




LCG Example

AlIDiff X2 < X5

x1=1
y
x, #1 Xy =2
x3 # 1 X3 =2
xXg # 1 M Xy =2
X522

Backtrack to asserting level!
Learned clause: =[x, = 2]V =[xz = 2] V —[xg = 2] V =[x, = 2]



LCG Example

AlIDiff X2 < X5

x1=1
y
x, #1 Xy = 2 Xy #F 2
x3 # 1 X3 =2
xXg # 1 M Xy =2
X522

Propagate from learned clause
Learned clause: =[x, = 2]V =[xz = 2] V —[xg = 2] V =[x, = 2]



Explanation Deletion

Explanation clauses are needed for immediate unit
propagation and for generating learned clauses

But when we backtrack past the explanations, may not
need them anymore

Can delete from formula



Lazy Boolean Variable Creation

Many of the boolean variables are never actually used
Idea: create boolean variables when we need them
Array encoding: initially only create [x < i] variables
Create [x = i] variables on demand
Don'tforgettoadd clause: [x =il © [x S iJA-[x <i—1]
List encoding: create both types of variables on demand!
When creating [x < i], add clauses:
[x < i] = [x < iqext], Where iy ext IS NEXt-higher existing bnd
[x < iprev] = [x < i], Where iy is Next-lower existing bnd



Lazy Variable Tradeoffs

List encoding has fewer variables, so it can succeed on
large domains where array encoding fails

Array encoding interacts better with clause learning
This is significant!

List encoding is trickier to implement
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