
CIS 1600

Recitation Guide - Week 9

Topics Covered: Variance, Markov’s Inequality, Bipartite Graphs

Problem 1:

A 10 digit number with no zeroes is chosen by independently and randomly selecting each digit (1
- 9).

a) Let N be the number of digits missing from the 10 digit number. For example, if the number
is 1231452832, then we are missing the digits 6, 7, 9 so N = 3. Find E[N ] and Var[N ].

b) Using Markov’s Inequality, what is the lower bound of the probability that less than 6 digits
are missing?

Solution:

a) Define Ω = {x1x2...x10 | xi ∈ [1..9]}. Note that we have a uniform probability distribution,
and |Ω| = 910, as we have 9 choices for each xi.

Let N be a random variable that represents the number of digits missing from the 10-digit
number. Let Ni be an indicator random variable that is 1 if digit i is missing and 0 otherwise,
for 1 ≤ i ≤ 9. Notice that N =

∑9
i=1Ni.

Additionally, note that Pr[Ni = 1] =
(
8
9

)10
, because the 10 digits are selected independently,

and for each, there is an 8
9 chance that i is NOT the digit selected.

E[N ] = E

[
9∑

i=1

Ni

]

=
9∑

i=1

E[Ni] (by Linearity of Expectation)

=
9∑

i=1

Pr[Ni = 1]

= 9 ·
(
8

9

)10

≈ 2.772

In order to calculate the variance, we have to compute E[N2]. Notice that

E[N2] = E[(N1 +N2 + . . .+N9)
2]

= E

 9∑
i=1

N2
i +

∑
i ̸=j

Ni ·Nj


=

9∑
i=1

E[N2
i ] +

∑
i ̸=j

E[Ni ·Nj ] (by Linearity of Expectation)
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where there are 9 · 8 = 72 terms of the form Ni ·Nj , i ̸= j.

This expansion will yield 92 = 81 total terms because each term consists of an indicator
from the first sum and an indicator from the second sum. Observe that each term of the
form N2

i , i ∈ [1..9] comes from choosing Ni from the first sum and then choosing Ni from
the second sum. Because there are 9 indicators, there must be 9 of these terms. This leaves
81− 9 = 72 terms of the form Ni ·Nj where i, j ∈ [1..9], i ̸= j.

We can once again apply independence of the 10 digits to argue that Pr[Ni ·Nj = 1] =
(
7
9

)10
,

since each digit can be any of the 7 digits that aren’t i or j.

Note that

E[N2
i ] = E[Ni] = Pr[Ni = 1] =

(
8

9

)10

and further

E[Ni ·Nj ] = Pr[Ni = 1 ∩Nj = 1] =

(
7

9

)10

Thus,

E[N2] = 9

(
8

9

)10

+ 72

(
7

9

)10

Finally,

Var[N ] = E[N2]− E[N ]2

= 9

(
8

9

)10

+ 72

(
7

9

)10

− 81

(
8

9

)20

≈ 0.9232

b) We are looking to lower-bound Pr[N < 6]. Note that Markov’s Inequality gives information
about upper bounds on the probability that N is large. However, we also know that Pr[N <
6] = 1−Pr[N ≥ 6]. Also, keep in mind we can apply Markov’s Inequality becauseN represents
the number of missing digits, so N is a non-negative random variable. We begin from the
information that Markov’s Inequality guarantees us:

Pr[N ≥ a] ≤ E[N ]

a
(Markov’s Inequality)

Pr[N ≥ 6] ≤ E[N ]

6
(a = 6)

Pr[N ≥ 6] ≤ 2.772

6
(E[N ] ≈ 2.772)

Solving for lower bound,

Pr[N < 6] = 1− Pr[N ≥ 6]

≥ 1− 2.772

6
= 0.5381

2



Problem 2:

Prove that a graph is bipartite if and only if it has no odd length cycles.

Solution:

(=⇒)

First let us prove that if a graph is bipartite, then it has no odd cycles. Let G = (U, V,E) be a
bipartite graph, where U is the set of vertices being assigned one color, V is the set of vertices of
the other color, and E is the set of edges of G . Suppose for the sake of contradiction that it has
some odd cycle C of length 2k+ 1 and let C = x1, x2, . . . x2k+1, x1, where xi is the ith vertex in C.
WLOG, let x1 be in U .

Note that the ith vertex in C is in U if i is odd, and in V if i is even, by the nature of bipartite
graphs. Thus, x2k+1 must be in U . However, there is an edge between x2k+1 and x1, which is also
in U , by definition of the cycle. This is a contradiction to the fact that G is bipartite, since two
vertices in U share an edge.

(⇐=)

Now let us prove that if a graph has no odd cycles, then it is a bipartite graph. Let P (m) be the
following property:

If G is a graph with m edges and no odd cycles, then it is bipartite.

We wish to prove P (m), for m ∈ N. We proceed by induction on m.

Base Case: m = 0. The graph is bipartite – any partition of the vertices U , V will suffice.

Induction Hypothesis: Assume that P (k) holds for some k ∈ N.

Induction Step: Let G be a graph with k + 1 edges and no odd length cycles. Let us consider two
different cases.

Case 1: The graph is acyclic

We have a forest! Let us select an arbitrary edge e = {x, y} where y is a leaf. Let G′ = G \ {e}.
Note that G′ is also a forest, so by the induction hypothesis, we have that G′ is bipartite. Let
G′ = (U ′, V ′, E′).

We want to now show that we can express G = (U, V,E). Now let us consider what happens when
we add e to G′. Assume W.L.O.G. that x ∈ U ′. Then let U = U ′ \ {y} and V = V ′ ∪ {y}. In
other words, keep the partitions from G′ and fix y into V ′. Since y was an isolated vertex in G′, the
change in the partition that it belongs to does not affect the bipartiteness of the graph. Further, e
crosses the partition U, V as needed.

Case 2: The graph has at least one even cycle

Select an arbitrary edge e = {x, y} that belongs to a cycle C. Note that C is an even-length cycle
because there are no odd-length cycles in G. Let G′ = G \ {e}. Since G had no odd cycles, and we
only removed an edge to create G’, G′ has no odd cycles. So by the induction hypothesis, we have
that G′ is bipartite. Let G′ = (U ′, V ′, E′).

We want to now show that we can express G = (U, V,E). Now let us consider what happens when
we add e to G′. Note that when we removed e from C, we created an odd length path P from x to
y in G′. Therefore, x and y must be in different partition in G′. W.L.O.G. let x ∈ U ′ and y ∈ V ′.
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Therefore we can simply let U = U ′ and V = V ′, and observe that e crosses the partition U, V as
required, so G is bipartite.

Alternate Solution ( ⇐= ):

We first prove a lemma.

Lemma 1. Any closed walk of odd length contains an odd length cycle.

Proof. We prove this by induction on the length of the closed walk l. As we have that there are no
self-loops, we prove for l ≥ 3. When l = 3, we have that our closed loop must be an odd cycle, as
we have no self-loops. Now, assume for a fixed odd integer k that for all odd integers j such that
3 ≤ j ≤ k, any odd length closed walk of length j includes an odd length cycle. Consider an odd
length closed walk of length k+ 2, which we denote v1 − v2 − · · · − vk+2 − v1. If this closed walk is
a cycle, we are done. Otherwise, there is some repeated vertex vi = vw, where 1 < i < w < k + 2,
Then, note that we can split this walk into two closed walks v1 − · · · − vi − vw+1 − · · · − vk+2 − v1
and vi − vi+1 − . . . vw−1 − vw. We know one of these must have odd length, and both must have
length at least 3. Therefore, by our inductive hypothesis, we know that it must contain an odd
cycle.

Now, consider a graph G = (V,E) with no odd length closed walks. Note that this is at least as
strong as assuming we have no odd length cycles. Note that it suffices to show that each connected
component of G is bipartite, so without loss of generality we can assume G is connected. Fix a
vertex x ∈ V . Then, we notice that we can partition the vertex set V into disjoint sets R,B, where
R = {y ∈ V |d(x, y) is even} and B = {y ∈ V |d(x, y) is odd}, where d(u, v) denotes the length of
the shortest path between u and v. We now show that R,B is a valid coloring.

Note that x ∈ R, as d(x, x) = 0. We note that x can share no edge with any other vertex in R,
as that would yield an odd length shortest path. Now, assume for contradiction that there exist
y, z ∈ R such that {y, z} ∈ E. Then, we consider the shortest paths x ⇝ y and x ⇝ z, both of
which we know have even length. Note that the path x ⇝ y − z ⇝ x constitutes a closed walk of
odd length, a contradiction, as per our lemma. Similarly, assume that there exist y, z,∈ B such
that {y, z} ∈ E. Note that, again, the path x⇝ y − z ⇝ x is a closed walk of odd length, another
contradiction. As such, coloring all vertices in R red and all vertices in B blue is a valid coloring,
and thus our graph is bipartite.
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