CIS 1600 Recitation Guide - Week 13

Topics Covered: Planar Graphs, Functions

Problem 1: Prove that in any connected planar graph with minimum degree 3, there are at least $\frac{n}{2}+2$ faces

Solution:

Euler's Formula tells us that the number of faces in a connected planar graph is $f = 2 - n + m$. From Handshaking Lemma, we know that $m \geq \frac{3n}{2}$ $\frac{3n}{2}$. This gives the following:

$$
f = 2 - n + m
$$

$$
\geq 2 - n + \frac{3n}{2}
$$

$$
= 2 + \frac{n}{2}
$$

Problem 2: Let $m, n \geq 2$. Define:

 $f : [1..m] \times [1..n] \rightarrow [2..(m+n)]$ by $f(x,y) = x+y$.

Is f an injection? Is f a surjection? Is f a bijection? Prove your answers.

Solution:

- f is not injective. In order to show this, we will provide two elements $(a, b), (c, d) \in [1..m] \times$ $[1..n]$ such that $(a, b) \neq (c, d)$ but $f(a, b) = f(c, d)$. To this end, consider $(1, 2)$ and $(2, 1)$. Clearly, $(1, 2) \neq (2, 1)$. However, since $f(1, 2) = 3 = f(2, 1)$, they both map onto the same element in the codomain, and we conclude that f cannot be injective.
- f is surjective. To prove surjectivity, we must show that $\forall z \in [2..(m+n)], \exists x \in [1..m], y \in$ $[1..n]$ such that $f(x, y) = z$. Intuitively, we want to show that everything in the codomain of f is mapped to by at least one element from the domain. One way to do this is to consider any z in the codomain, i.e., any $z \in [2..(m+n)]$, and consider the following cases:

Case 1: $2 \leq z \leq m+1$.

In this case, let $y = 1$. Clearly, $1 \in [1..n]$. Then we need $x = z - 1$, by definition of f. Substituting into the fact that $2 \leq z \leq m+1$, we see that $1 \leq x \leq m$, meaning x will always be an element of [1..m]. Thus, we know that $(x, 1) \in [1..m] \times [1..n]$, and we have found an element of the domain, namely $(x, 1)$, such that $f(x, 1) = z$.

Case 2: $m + 1 < z < m + n$.

In this case, let $x = m$. Clearly, $m \in [1..m]$. Then we need $y = z - m$, by definition of f. As above, by substituting into the fact that $m + 1 < z \le m + n$, we see that $1 < y \le n$, meaning y will always be an element of [1..n]. As above, we know that $(m, y) \in [1..m] \times [1..n]$, and we have found an element of the domain, namely (m, y) , such that $f(m, y) = z$.

In both cases, we have found an element of the domain (x, y) such that $f(x, y) = z$, so we know that f is surjective.

• f is not bijective because a bijection must be both injective and surjective, and f is not injective.