CIS 1600 Recitation 15 Functions and Planar Graphs

December 5-6, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Functions

- $f:A \rightarrow B$
 - Set A: domain
 - Set B: codomain
 - A relation where each element of the domain x ∈ A is related to exactly one element of the codomain f(x) ∈ B

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Range of function $f: A \rightarrow B$

$$\blacktriangleright Ran(f) = \{y \mid y \in B \land \exists x \in A \text{ s.t } y = f(x)\}$$

Injections and Surjections

f : *A* → *B* is **injective** if it maps distinct elements to distinct elements i.e for every x₁ ≠ x₂ in domain, we have f(x₁) ≠ f(x₂)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ $f : A \to B$ is surjective if Ran(f) = B or $\forall y \in B$, $\exists x \in A \ s.t. \ y = f(x)$

Bijections

- $f: A \rightarrow B$ is bijective if it is both injective and surjective
- ▶ Bijection rule: if we can define a bijective function with domain A and codomain B, |A| = |B|

Planar Graphs

A **planar graph** G is a graph with at least one crossing free embedding (edges do not intersect themselves or other edges, except at endpoints)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Euler's Formula

Face: a region of the plane cut off from other regions by edges

Let G be a connected planar graph with n vertices and m edges. For any crossing-free embedding of G,

$$n-m+f=2$$

where f is the number of faces

▶ Corollary: Let G = (V, E) be a planar graph with at least two edges, then $m \le 3n - 6$.

Other Properties of Planar Graphs

▶ The minimum degree in a planar graph is at most 5.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Every planar graph is 4-colorable.