
CIS 1600

Recitation Guide - Week 11

Topics Covered: Relations, Hall’s Theorem

Problem 1:
Consider a normal chessboard (an 8× 8 grid). In each row and in each column there are exactly n
pieces, where 0 < n ≤ 8. Prove that we can pick 8 pieces such that no two of them are in the same
row or column.

Solution:

We construct a bipartite graph G as follows. Let X be the set of rows modeled as vertices. Let Y
be the set of columns modeled as vertices. Let E be the set of edges such that if a piece exists in
row i and column j, then there is an edge between xi ∈ X and yj ∈ Y . Note that the graph must
be bipartite because no edges exist between two vertices in X or two vertices in Y .

The question asks us to find a matching: can we match each of the 8 rows to a unique column?
Note that this would mean that we could pick 8 edges (in our matching) that are not in the same
row or same column.

We must prove the existence of such a perfect matching. First, note that the size of our two
bipartite sets X and Y are the same since there are exactly 8 rows and 8 columns; in other words,
|X| = |Y | = 8. Hence, if we can find a matching that saturates X, then it must also saturate
Y (and so is a perfect matching). To prove the existence of this matching, we show that Hall’s
Condition is satisfied, that is that |NG(S)| ≥ |S|,∀S ⊆ X.

Consider an arbitrary but particular subset A ⊆ X (of the rows). Recall that there are n pieces in
each row and n pieces in each column. Thus, there must be n|A| edges from A to NG(A). We also
know that each column in NG(A) has at most n edges back to A, meaning that there are at most
n|NG(A)| edges from NG(A) to A. This means that n|A| ≤ n|NG(A)|, meaning that |A| ≤ |NG(A)|.
This satisfies Hall’s Condition, leading us to prove the existence of our matching.
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Problem 2:
Define an equivalence relation R on the set {1, 2, 3, . . . , 100} with the restriction that there are
exactly 2 equivalence classes. Find an R such that it maximizes the size of the relation, and then
show that the size is maximized.

Solution:

WLOG, let us label the two equivalence classes A and B, such that |A| = a and |B| = 100− a. We
know that since R is an equivalence relation, R = (A×A) ∪ (B ×B).

Hence |R| = |A| · |A|+ |B| · |B| = a2+(100−a)2 = 2a2−200a+10000 = 2(a2−100a+250)+9500 =
2(a−50)2+9500. In order to maximize |A|, we seek to maximize 2(a−50)2. Note that the extremal
values 1 and 99 maximize it. Hence, we can set |A| = 99 and |B| = 1 to maximize the cardinality
of the equivalence relation.
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Problem 3:

Consider a set A with n ≥ 1 elements. We color independently each of the elements of A red with
probability 1

3 and blue with probability 2
3 . Let R be the “is the same color as” relation on A, ie. if

a is the same color as b, then (a, b) ∈ R.

a) Is R an equivalence relation? If so, what are its equivalence classes?

b) Calculate the expected value of |R|.

Solution:

a) R is an equivalence relation:

• Reflexive: ∀a ∈ A, a must be the same color as itself, so aRa.

• Symmetric: given aRb, then a must be the same color as b, so b and a must be both
blue or both red. Therefore b must be the same color as a, so bRa.

• Transitive: given aRb and bRc, then a must be the same color as b, and b must be the
same color as c. Since b only has one color, then a and c must be the same color.

Since every element in an equivalence class defined by R must be related by R, then each
element in such an equivalence class has the same color. Therefore, R determines two equiv-
alence classes of A: in one equivalence class we have all the blue elements and in the other
equivalence class we have all the red elements. These determine a partition of A based on
color.

b) The elements of R are ordered pairs (x, y) where x, y ∈ A. The sample space is all the possible
cardinalities of R.

First we examine the case x ̸= y. For the pair (x, y) to be in R both x and y must be
colored with the same color. Using the independence, the probability that they are both red
is (13)(

1
3) =

1
9 . Similarly, the probability that they are both blue is (23)(

2
3) =

4
9 . Since these

are disjoint, the probability that they are colored with the same color is (1/9) + (4/9) = 5/9,
so the probability that (x, y) ∈ R is 5/9. Note that there are n(n−1) such (x, y) where x ̸= y.

Next we examine the case x = y. In this case, (x, y) ∈ R must be true, by reflexivity, so the
probability that (x, y) ∈ R is 1. Note that there are n such (x, y) where x = y.

Now define for each (x, y) ∈ A×A an indicator random variable Xx,y that is 1 when (x, y) ∈ R
and 0 otherwise. We have E(Xx,y) = Pr[(x, y) ∈ R] which equals 5/9 when x ̸= y and 1 when
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x = y. By linearity of expectation, where we let the sum range over all (x, y) ∈ A×A:

E
[
|R|

]
= E

[∑
x,y

Xx,y

]
=

∑
x,y

E[Xx,y]

=
∑
x ̸=y

E[Xx,y] +
∑
x

E[Xx,x]

=
5

9
· n(n− 1) + 1 · n

=
n(5n+ 4)

9
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