CIS 1600
Recitation Guide - Week 11

Topics Covered: Relations, Hall’s Theorem

Problem 1:

Consider a normal chessboard (an 8 x 8 grid). In each row and in each column there are exactly n
pieces, where 0 < n < 8. Prove that we can pick 8 pieces such that no two of them are in the same
row or column.

Solution:

We construct a bipartite graph G as follows. Let X be the set of rows modeled as vertices. Let Y
be the set of columns modeled as vertices. Let E be the set of edges such that if a piece exists in
row ¢ and column j, then there is an edge between z; € X and y; € Y. Note that the graph must
be bipartite because no edges exist between two vertices in X or two vertices in Y.

The question asks us to find a matching: can we match each of the 8 rows to a unique column?
Note that this would mean that we could pick 8 edges (in our matching) that are not in the same
row or same column.

We must prove the existence of such a perfect matching. First, note that the size of our two
bipartite sets X and Y are the same since there are exactly 8 rows and 8 columns; in other words,
|X| = |Y| = 8. Hence, if we can find a matching that saturates X, then it must also saturate
Y (and so is a perfect matching). To prove the existence of this matching, we show that Hall’s
Condition is satisfied, that is that |[Ng(5)| > |S],VS C X.

Consider an arbitrary but particular subset A C X (of the rows). Recall that there are n pieces in
each row and n pieces in each column. Thus, there must be n|A| edges from A to Ng(A). We also
know that each column in Ng(A) has at most n edges back to A, meaning that there are at most
n|Ng(A)| edges from Ng(A) to A. This means that n|A| < n|Ng(A)|, meaning that |A| < |[Ng(A)|.
This satisfies Hall’s Condition, leading us to prove the existence of our matching.



Problem 2:

Define an equivalence relation R on the set {1,2,3,...,100} with the restriction that there are
exactly 2 equivalence classes. Find an R such that it maximizes the size of the relation, and then
show that the size is maximized.

Solution:

WLOG, let us label the two equivalence classes A and B, such that |A| = a and |B| = 100 —a. We
know that since R is an equivalence relation, R = (A x A) U (B x B).

Hence |R| = |A|-|A|+|B|-|B| = a?+ (100 — a)? = 2a% —200a -+ 10000 = 2(a? — 100a +250) + 9500 =
2(a—50)2+9500. In order to maximize |A|, we seek to maximize 2(a—50)2. Note that the extremal
values 1 and 99 maximize it. Hence, we can set |A| = 99 and |B| = 1 to maximize the cardinality
of the equivalence relation.



Problem 3:

Consider a set A with n > 1 elements. We color independently each of the elements of A red with
probability % and blue with probability % Let R be the “is the same color as” relation on A, ie. if
a is the same color as b, then (a,b) € R.

2)
b)

Is R an equivalence relation? If so, what are its equivalence classes?

Calculate the expected value of |R|.

Solution:

a)

R is an equivalence relation:
e Reflexive: Va € A, a must be the same color as itself, so aRa.

e Symmetric: given aRb, then a must be the same color as b, so b and a must be both
blue or both red. Therefore b must be the same color as a, so bRa.

e Transitive: given aRb and bRc, then a must be the same color as b, and b must be the
same color as c. Since b only has one color, then a and ¢ must be the same color.

Since every element in an equivalence class defined by R must be related by R, then each
element in such an equivalence class has the same color. Therefore, R determines two equiv-
alence classes of A: in one equivalence class we have all the blue elements and in the other
equivalence class we have all the red elements. These determine a partition of A based on
color.

The elements of R are ordered pairs (z,y) where x,y € A. The sample space is all the possible
cardinalities of R.

First we examine the case x # y. For the pair (z,y) to be in R both = and y must be
colored with the same color. Using the independence, the probability that they are both red
is (é)(%) = %. Similarly, the probability that they are both blue is (%)(%) = %. Since these
are disjoint, the probability that they are colored with the same color is (1/9) + (4/9) = 5/9,

so the probability that (z,y) € R is 5/9. Note that there are n(n—1) such (z,y) where z # y.

Next we examine the case z = y. In this case, (z,y) € R must be true, by reflexivity, so the
probability that (z,y) € R is 1. Note that there are n such (x,y) where x = y.

Now define for each (z,y) € Ax A an indicator random variable X , that is 1 when (z,y) € R
and 0 otherwise. We have E(X, ,) = Pr[(z,y) € R] which equals 5/9 when x # y and 1 when



x = y. By linearity of expectation, where we let the sum range over all (z,y) € A x A:
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