CIS 1600 Recitation 11 Hall's Theorem, Relations

November 14-15, 2024

Hall's Theorem

- ▶ Let G = (X, Y, E) be a bipartite graph. For any set S of vertices, let $N_G(S)$ be the set of vertices adjacent to vertices in S.
- ▶ G contains a matching that saturates every vertex in X iff $|N_G(S)| \ge |S|, \forall S \subseteq X$. (Hall's condition)

Relations

- A binary relation is a set of ordered pairs.
- ► For example, $R = \{(1,2), (2,3), (5,4)\}$
- ▶ $(1,2) \in R$: 1 is related to 2 by relation R, we denote this by 1R2.
- A binary relation R from set A to B is a subset of the Cartesian product A × B.

Properties of Relation

- ▶ Reflexive: for all $x \in A$, $(x, x) \in R$.
- ► Irreflexive: for all $x \in A, (x, x) \notin R$.
- Symmetric: for all $x, y \in A, (x, y) \in R \implies (y, x) \in R$.
- Antisymmetric: for all $x, y \in A, (x, y) \in R$ and $(y, x) \in R \implies x = y$.
- ► Transitive: for all $x, y, z \in A$, $(x, y) \in R$ and $(y, z) \in R \implies (x, z) \in R$.
- Symmetric and antisymmetric are not opposites.