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Hamiltonian Graphs and Eulerian Graphs

A Hamiltonian cycle in a graph G is a cycle in which each vertex of G appears exactly
once. A graph is Hamiltonian if it contains a Hamiltonian cycle.

An Eulerian circuit is a closed walk in which each edge appears exactly once. A con-
nected graph is Eulerian if it contains an Eulerian circuit.

To determine whether a graph is Hamiltonian or not is significantly harder than deter-
mining whether a graph is Eulerian or not.

Example. For any integer n ≥ 3, let G be a simple graph on n vertices, and assume that
all vertices in G are of degree at least n/2. Prove that G has a Hamiltonian cycle.

Solution. Assume for contradiction that G does not have a Hamiltonian cycle. Add new
edges to G one-by-one, until we come to a point where adding an edge, say (x, y), creates a
Hamiltonian cycle. Let G′ be the graph in which all vertices have degree at least n/2 and
G′ does not have a Hamiltonian cycle, but adding (x, y) will make G′ Hamiltonian. Since
adding edge (x, y) creates a Hamiltonian cycle in G′, it must be that G′ has a Hamiltonian
path that begins at x and ends at y. Let the path be x = v1, v2, . . . , vn−1, vn = y. We
now apply the pigeon-hole principle as follows. Let the pigeons be the edges incident on
the vertices x and y, and let the holes be the (n − 1) edges of the form (vi, vi+1), where
1 ≤ i ≤ n−1. An edge (pigeon) of the form (x, vi) is assigned to the “hole” (vi−1, vi) and an
edge (pigeon) of the form (y, vi) is assigned to the “hole” (vi, vi+1). Since deg(x) ≥ n/2 and
deg(y) ≥ n/2 and at most one edge incident on x (or y) is assigned to a hole, by the pigeon-
hole principle, there must be i such that 3 ≤ i ≤ n− 1 and there is an edge (x, vi) and an
edge (y, vi−1) (see figure below). Note that since the edge (x, y) does not exist in G′, the hole
corresponding to (v1, v2) only has one edge, namely (x, v2). Similarly, the hole (vn−1, vn)
will only contain the edge (y, vn−1). But this would mean that xv2v3 · · · vi−1yvn−1vn−2 · · · vi
is a Hamiltonian cycle, a contradiction.
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Example. If δ(G) ≥ 2 then G contains a cycle.
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Solution. Let P be a longest path (actually, any maximal path suffices) in G and let u
be an endpoint of P . Since P cannot be extended, every neighbor of u is a vertex in P .
Since deg(u) ≥ 2, u has a neighbor v ∈ P via an edge that is not in P . The edge {u, v}
completes the cycle with the portion of P from v to u.

The following theorem gives us a necessary and sufficient condition for a connected
graph to be Eulerian.

Example. Prove that a connected graph G is Eulerian iff every vertex in G has even
degree.

Solution. Necessity: To prove that “if G is Eulerian then every vertex in G has even
degree”. Let C denote the Eulerian circuit in G. Each passage of C through a vertex uses
two incident edges and the first edge is paired with the last at the first vertex. Hence every
vertex has even degree.

Sufficiency: To prove that “if every vertex in G has even degree then G is Eulerian”. We
will prove this using induction on the number of edges, m.
Induction Hypothesis: Assume that the property holds for any graph G with j edges, for
all j such that 0 ≤ j ≤ k.
Base Case: m = 0. In this case G has only one vertex and that itself forms a Eulerian
circuit.
Induction Step: We want to prove that the property holds when G has n vertices and k+ 1
edges. Since G has at least one edge and because G is connected and every vertex of G has
even degree, δ(G) ≥ 2. From the result of the previous problem, G contains a cycle, say C.
Let G′ be the graph obtained from G by removing the edges in E(C). Since C has either
0 or 2 edges at every vertex of G, each vertex in G′ also has even degree. However, G′

may not be connected. By induction hypothesis, each connected component of G′ has an
Eulerian circuit. We can now construct an Eulerian circuit of G as follows. Traverse C, but
when a component of G′ is entered for the first time, we detour along the Eulerian circuit
of that component. The circuit ends at the vertex where we began the detour. When we
complete the traversal of C, we have completed an Eulerian circuit of G.

Alternative Proof for the Sufficiency Condition: Let G be a graph with all degrees
even and let

W = v0e0 . . . el−1vl

be the longest walk in G using no edge more than once. Since W cannot be extended all
edges incident on vl are part of W . Since all vertices in G have even degree it must be that
vl = v0. Thus W is a closed walk. If W is Eulerian then we are done. Otherwise, there
must be an edge in E[G] \ E[W ] that is incident on some vertex in W . Let this edge be
e = {u, vi}. Then the walk

ueviei . . . el−1vle0v0e1 . . . ei−1vi

is longer than W , a contradiction.


