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Example. The game of NIM is played as follows: Some positive number of sticks are
placed on the ground. Two players take turns, removing one, two or three sticks. The
player to remove the last stick loses.

A winning strategy is a rule for how many sticks to remove when there are n left. Prove
that the first player has a winning strategy iff the number of sticks, n, is not 4k+ 1 for any
k ∈ N.

Solution. We will show that if n = 4k + 1 then player 2 has a strategy that will force a
win for him, otherwise, player 1 has a strategy that will force a win for him.

Let P (n) be the property that if n = 4k+ 1 for some k ∈ N then the first player loses, and
if n = 4k, 4k + 2, or 4k + 3, the first player wins. This exhausts all possible cases for n.
Induction Hypothesis: Assume that for some z ≥ 1, P (j) is true for all j such that 1 ≤ j ≤ z.
Base Case: P (1) is true. The first player has no choice but to remove one stick and lose.
Induction Step: We want to prove P (z + 1). We consider the following four cases.
Case I: z + 1 = 4k + 1, for some k. We have already handled the base case, so we can
assume that z + 1 ≥ 5. Consider what the first player might do to win: he can remove 1,
2, or 3 sticks. If he removes one stick then the remaining number of sticks n = 4k. By
strong induction, the player who plays at this point has a winning strategy. So the player
who played first loses. Similarly, if the first player removes two sticks or three sticks, the
remaining number of sticks is 4(k − 1) + 3 and 4(k − 1) + 2 respectively. Again, the first
player loses (using induction hypothesis). Thus, in this case, the first player loses regardless
of what move he/she makes.
Case II: z + 1 = 4k, or z + 1 = 4k + 2, or z + 1 = 4k + 3. If the first player removes three
sticks in the first case, one stick in the second case, and two sticks in the third case then
the second player sees 4(k− 1) + 1 sticks in the first case and 4k+ 1 sticks in the other two
cases. By induction hypothesis, in each case the second player loses.

Graphs

A graph consists of two sets, a non-empty set, V , of vertices or nodes, and a possibly
empty set, E, of 2-element subsets of V . Such is graph is denoted by G = (V,E). Each
element of E is called an edge. We say that an edge {u, v} ∈ E connects vertices u and
v. Two nodes u and v are adjacent if {u, v} ∈ E. Nodes adjacent to a vertex u are called
neighbors of u. The number of neighbors of a vertex v is called the degree of v and is
denoted by deg(v). The value δ(G) = minv∈V {deg(v)} is the minimum degree of G, the
value ∆(G) = maxv∈V {deg(v)} is the maximum degree of G. An edge that connects a node
to itself is called a loop and multiple edges between the same pair of nodes are called parallel
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edges. Graphs without loops and parallel edges are called simple graphs, otherwise they
are called multigraphs. Unless specified otherwise, we will only deal with simple graphs.

Example. Prove that the sum of degrees of all nodes in a graph is twice the number of
edges.

Solution. Since each edge is incident to exactly two vertices, each edge contributes two to
the sum of degrees of the vertices. The claim follows.

Example. In any graph there are an even number of vertices of odd degree.

Solution. Let Ve and Vo be the set of vertices with even degree and the set of vertices
with odd degree respectively in a graph G = (V,E). Then,∑

v∈V
deg(v) =

∑
v∈Ve

deg(v) +
∑
v∈Vo

deg(v)

The first term on R.H.S. is even since each vertex in Ve has an even degree. From the
previous example, we know that L.H.S. of the above equation is even. Thus the second
term on the R.H.S. must be even. Let |Vo| = `. We want to show that ` is even. Since each
vertex in Vo has odd degree, we have

(2k1 + 1) + (2k2 + 1) + · · ·+ (2k` + 1) is an even number

2(k1 + k2 + · · ·+ k`) + ` is an even number

∴ ` is an even number

This proves the claim.

A walk in G is a non-empty sequence v0e0v1e1 . . . ek−1vk of vertices and edges in G such
that ei = {vi, vi+1} for all i < k. If the vertices in a walk are all distinct, we call it a path
in G. Thus, a path in G is a sequence of distinct vertices v0, v1, v2, . . . vk such that for all i,
0 ≤ i < k, {vi, vi+1} ∈ E. The length of the walk (path) is k, the number of edges in the
walk (resp. path). Note that the length of the walk (path) is one less than the number of
vertices in the walk (path) sequence. If vo = vk, the walk (path) is closed. A closed path is
called a cycle.

The graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A complete
graph is a graph in which there is an edge between every pair of distinct vertices. A graph
G is connected if there is a path in G between its every pair of vertices. A graph H is a
connected component(“island”) of G if (a) H is a subgraph of G, (b) H is connected, and
(c) H is maximal, i.e., H is not contained in any other connected subgraph of G. In short,
H is a connected component of G if H is a maximal subgraph of G that is connected.

We say that H is an induced subgraph of a graph G if the vertex set of H is a subset of the
vertex set of G, and if u and v are vertices in H, then (u, v) is an edge in H iff (u, v) is an
edge in G.



September 24, 2024 Lecture Outline 3

Example. Prove that every graph with n vertices and m edges has at least n −m con-
nected components.

Solution. We will prove this claim by doing induction on m.
Induction Hypothesis: Assume that for some k ≥ 0, every graph with n vertices and k edges
has at least n− k connected components.
Base Case: m = 0. A graph with n vertices and no edges has n connected components as
each vertex itself is a connected component. Hence the claim is true for m = 0.
Induction Step: We want to prove that a graph, G, with n vertices and k + 1 edges has at
least n− (k+ 1) = n− k− 1 connected components. Consider a subgraph G′ of G obtained
by removing any arbitrary edge, say {u, v}, from G. The graph G′ has n vertices and k
edges. By induction hypothesis, G′ has at least n − k connected components. Now add
{u, v} to G′ to obtain the graph G. We consider the following two cases.
Case I: u and v belong to the same connected component of G′. In this case, adding the
edge {u, v} to G′ is not going to change any connected components of G′. Hence, in this
case the number of connected components of G is the same as the number of connected
components of G′ which is at least n− k > n− k − 1.
CaseII: u and v belong to different connected components of G′. In this case, the two
connected components containing u and v become one connected component in G. All
other connected components in G′ remain unchanged. Thus, G has one less connected
component than G′. Hence, G has at least n− k − 1 connected components.


