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Introduction to Probability

Probability theory has many applications in engineering, medicine, etc. It has also found
many useful applications in computer science, such as cryptography, networking, game the-
ory etc. Many algorithms are randomized and we need probability theory to analyze them.
In this course, our goal is to understand how to describe uncertainty using probabilistic
arguments. To do this we first have to define a probabilistic model.

A probabilistic model is a mathematical description of a random process or an experi-
ment. In a random process exactly one outcome from a set of outcomes is sure to occur but
no outcome can be predicted with certainty. For example, tossing a coin is an experiment.
Below are definitions of entities associated with the probabilistic model.

• The sample space of a random process or experiment is the set of all possible out-
comes. The sample space is often denoted by Ω. Since we are going to study discrete
probability Ω will be finite or countably infinite (such as integers and not real num-
bers).

• The probability space is a sample space together with a probability distribution in
which a probability is assigned to each outcome ω ∈ Ω, such that

– 0 ≤ Pr[ω] ≤ 1

–
∑

ω∈Ω Pr[ω] = 1

In an experiment we are usually interested in the probability with an event occurs. For
example, when tossing a coin we may be interested in knowing the probability that the
result is heads. Below we define formally what an event is and what does it mean to
calculate the probability of an event.

• A subset of the sample space is called an event.

• For any event, A ⊆ Ω, the probability of A is defined as

Pr[A] =
∑
ω∈A

Pr[ω]

We are now ready to work through some problems. Before we proceed, keep in mind
that probability is a slippery topic; it is very easy to make mistakes. Solving the problem
systematically is the key to avoid mistakes. The following four-step process that is described
in the notes by Lehman and Leighton is a way to systematically solve the problem at hand.
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(a) Define the sample space, Ω, of the experiment, i.e., find the set of all possible outcomes
of the experiment.

(b) Define the probability distribution.

(c) Find the event of interest, A, i.e., find the subset of outcomes, A ⊆ Ω that are of
interest.

(d) Compute the probability of A by adding up the probabilities of the outcomes in A.

Example. On flipping a fair coin what is the probability that the result is heads?

Solution. Ω = {H,T},Pr[H] = Pr[T ] = 1/2, A = {H},Pr[A] = 1/2.

Example. Consider a biased coin in which the probability of heads is 1/3. Suppose we
flip the coin twice. What is the probability that we obtain one tails and one heads?

Solution. Ω = {HH,HT, TH, TT}. The probability distribution is given by

Pr[HH] =
1

3
× 1

3
=

1

9

Pr[HT ] =
1

3
× 2

3
=

2

9

Pr[TH] =
2

3
× 1

3
=

2

9

Pr[TT ] =
2

3
× 2

3
=

4

9

Note that the assigned probabilities form a valid probability distribution. Event A =
{HT, TH}. The probability of the event A is given by

Pr[A] = Pr[HT ] + Pr[TH] =
4

9

Example. We roll two dice. Compute the probability that the two numbers are equal
when (i) two dice are distinct, (ii) the dice are indistinguishable.

Solution. (a) Each outcome of the experiment can be denoted by an ordered pair (ω1, ω2), 1 ≤
ω1, ω2 ≤ 6, where ω1 and ω2 are the numbers on dice 1 and dice 2 respectively. Note that
|Ω| = 36 and each outcome is equally likely. The event that the two numbers are equal
is given by A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. The probability that A occurs is
given by

Pr[A] =
|A|
|Ω|

=
6

36
=

1

6

(b) When the die are indistinguishable, the order of the two numbers is not important,
hence each outcome of the experiment can be denoted by a 2-set {ω1, ω2}, 1 ≤ ω1, ω2 ≤ 6,
where ω1 and ω2 are the numbers on the two die. Note that |Ω| = 21. Each outcome of
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the form {ω1, ω2}, ω1 6= ω2 occurs with a probability of 2
36 = 1

18 and outcomes of the form
{ω, ω} occur with the probability of 1

36 . The event that the two numbers are equal is given
by A = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}. The probability that A occurs is given
by

Pr[A] = 6× 1

36
=

1

6

Example. Suppose we throw m distinct balls into n distinct bins. Assume that there
is no bound on the number of balls that a bin contains. What is the probability that a
particular bin, say bin 1, contains all the m balls?

Solution. Each outcome can be represented by a m-tuple (ω1, ω2, . . . , ωm), where ωi

denotes the bin that contains the ith ball. Note that |Ω| = nm and each outcome is equally
likely. Since there is only one way in which all balls can be in bin 1, the probability of this
event is 1

nm .

Example. What is the probability of rolling a six-sided die six times and having all the
numbers 1 through 6 result (in any order)?

Solution. Each element in Ω can be represented by (ω1, ω2, . . . , ω6), where ωi is the
number that results on the ith roll of the die. Using the multiplication rule we get |Ω| = 66.
Let A ⊆ Ω be the set of outcomes in which the numbers of the rolls are different. By
multiplication rule |A| = 6!. Since each outcome is equally likely, the desired probability is
given by

|A|
|Ω|

=
6!

66
=

5

324

Example. On “Let’s Make a Deal” show, there are three doors. There is a prize behind
one of the doors and goats behind the other two. The contestant chooses a door. Then the
host opens a different door behind which there is a goat. The contestant is then given a
choice to either switch doors or to stay put. The contestant wins the prize if and only if
the contestant chooses the door with the prize behind it. Is it to the contestant’s benefit
to switch doors?

Solution. Each outcome of the sample space can be denoted by a 3-tuple (ω1, ω2, ω3),
where ω1 denotes the door hiding the prize, ω2 denotes the door chosen by the contestant
initially, and ω3 is the door chosen by the host. Now, lets assign probabilities to each of the
outcomes1. There are two types of outcomes, those in which ω1 = ω2 and those in which
ω1 6= ω2. It is easy to verify that there are 6 outcomes of each type. Each outcome of the
first type occurs with a probability of 1

3 ×
1
3 ×

1
2 = 1

18 . If the outcome is of the second type
then there is only one choice for ω3, i.e., there is only one choice of door for the host. Each
outcome of the second type occurs with a probability 1

3 ×
1
3 × 1 = 1

9 . The event in which

1We are making the following assumptions:(i) the prize is equally likely to be behind any of the doors,
(ii) the contestant is equally likely to choose any of the three doors, (iii) the host opens any of the possible
doors with equal probability
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the contestant switches doors and wins is the set of all outcomes in which ω1 6= ω2. Since
the size of this set is 6 and each outcome occurs with a probability of 1

9 the probability of
the contestant winning the prize by switching is 6

9 = 2
3 . Thus, it is to contestant’s benefit

to switch.

Inclusion-Exclusion Formula

For two events A and B we have

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B].

For three events A, B, and C, we have

Pr[A∪B∪C] = Pr[A] + Pr[B] + Pr[C]−Pr[A∩B]−Pr[B∩C]−Pr[A∩C] + Pr[A∩B∩C].

For events A1, A2, . . . , An in some probability space, let S1 = {(i1)|1 ≤ i1 ≤ n}, S2 =
{(i1, i2)|1 ≤ i1 < i2 ≤ n}, and more generally let Sp = {(i1, i2, . . . , ip)|1 ≤ i1 < i2 < . . . ≤
ip ≤ n}. Then we have

Pr[∪ni=1Ai] =
∑
i∈S1

Pr[Ai]−
∑

(i1,i2)∈S2

Pr[Ai1∩Ai2 ]+
∑

(i1,i2,i3)∈S3

Pr[Ai1∩Ai2∩Ai3 ]−· · ·+(−1)n−1 Pr[∩nx=1Ax]

Note that there are 2n−1 non-empty subsets of a set of n events. To compute the probability
of the intersection of every such subset is not possible when n is large. In such cases we
have to approximate the probability of a union of n events. The successive terms of the
above formula actually give an overestimate and underestimate respectively of the actual
probability. In many situations the upper-bound given by the first term itself is quite useful.
It is called the union-bound and is given by

Pr[∪ni=1Ai] ≤
n∑

i=1

Pr[Ai]

Note that when the events are pairwise disjoint, the inequality in the above expression
becomes an equality.

Example. Consider three flips of a fair coin. What is the probability that result is heads
on the first flip or the third flip?

Solution. Let H1 and H2 denote the events that the first flip results in heads and the
third flip results in heads respectively. By the inclusion-exclusion formula, we have

Pr[H1 ∪H2] = Pr[H1] + Pr[H2]− Pr[H1 ∩H2]

=
1

2
+

1

2
− 1

4

=
3

4
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Example. When three dice are rolled what is the probability that one of the dice results
in 4?

Solution. Let Fi, i ∈ {1, 2, 3} be the event that the ith dice results in a 4. We are
interested in Pr[F1 ∪ F2 ∪ F3]. By inclusion-exclusion formula we have

Pr[F1∪F2∪F3] = Pr[F1]+Pr[F2]+Pr[F3]−Pr[F1∩F2]−Pr[F1∩F3]−Pr[F2∩F3]+Pr[F1∩F2∩F3]

Since the events F1, F2, F3 are mutually independent we can rewrite the above expression
as

Pr[F∪F2 ∪ F3] = Pr[F1] + Pr[F2] + Pr[F3]− Pr[F1] Pr[F2]− Pr[F1] Pr[F3]− Pr[F2] Pr[F3]

+ Pr[F1] Pr[F2] Pr[F3]

=
1

6
+

1

6
+

1

6
−
(

1

6
× 1

6

)
−
(

1

6
× 1

6

)
−
(

1

6
× 1

6

)
+

(
1

6
× 1

6
× 1

6

)
=

91

216

An easier way to solve this is as follows. Let Fi be the complement of event Fi, i = 1, 2, 3.

Pr[F1 ∪ F2 ∪ F3] = 1− Pr[F1 ∩ F2 ∩ F3] = 1− (5/6)3 =
91

216

Example. A coin is tossed 10 times. What is the probability that eight or more heads
turn up?

Solution. Let Ei denote the event that exactly i heads turn up. We are interested in
Pr[E8 ∪ E9 ∪ E10]. Since the events Ei are disjoint, we have

Pr[E8 ∪ E9 ∪ E10] = Pr[E8] + Pr[E9] + Pr[E10]

Note that Pr[Ei] =
(

10
i

)
/210. Hence, we have

Pr[E8 ∪ E9 ∪ E10] =
1

210

((
10

8

)
+

(
10

9

)
+

(
10

10

))
=

56

210

Example. (Birthday Paradox) Suppose there are k people in a room and n days in
a year. We are interested in the probability that there are at least two people in the room
with the same birthday. What is the smallest value of k for which this probability is at
least 1/2? Assume that it is equally likely for a person to be born on any of the n days of
the year.

Solution. Let B be the event that at least two people in the room have the same birthday.
We are interested in Pr[B].

Pr[B] = 1− Pr[B]

= 1− P (n, k)

nk
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For n = 365, the smallest value of k for which the RHS is at least 1/2 is 23. If k = 40 then
Pr[B] = 0.89, and if k = 60 then Pr[B] = 0.994. This means that if there are 60 people
then it is almost certain that there exists two among them sharing the same birthday. To
illustrate how good our model is, consider the set of presidents of the United States of
America. Through Bill Clinton, 41 people belong to this set. The chances of two of them
sharing the same birthday is at least 89%. Indeed, James Polk (11th president) and Warren
Harding (29th president) are both born on Nov. 2.

Conditional Probability

We now introduce a very important concept of conditional probability. Conditional prob-
ability allows us to calculate the probability of an event when some partial information
about the result of an experiment is known. As we shall see conditional probability is often
a convenient way to calculate probabilities even when no information about the result of
an experiment is available.

Suppose we want to calculate the probability of event A given that event B has already
occured. We denote this by Pr[A|B] (read as “the probability of A given B”). Since we
know that event B has occured our sample space reduces to the outcomes in B. Is this a
valid probability space? No, because the sum of probabilities of the outcomes in B is less
than 1. How do we change the probabilities so that this is a valid probability distribution
while making sure that the relative probabilities of outcomes in B do not change? We do
this by scaling the probability of all sample points in B by 1

Pr[B] . Thus for each sample
point ω ∈ B,

Pr[ω|B] =
Pr[ω]

Pr[B]

To calculate Pr[A|B] we just sum up the probabilities of sample points in A ∩B. Thus we
get

Pr[A|B] =
∑

ω∈A∩B
Pr[ω|B] =

∑
ω∈A∩B

Pr[ω]

Pr[B]
=

Pr[A ∩B]

Pr[B]

In order to avoid division by 0, we only define Pr[A|B] when Pr[B] > 0. Conditional
probabilities can sometimes get tricky. To avoid pitfalls, it is best to use the above math-
ematical definition of conditional probability. Note that the R.H.S. of the above equation
are unconditional probabilities.


