Mathematical Foundations of Computer Science Lecture Outline September 17, 2024

Example. Recall that for any set A, $\mathcal{P}(A)$ denotes the power set of A. Let $S = \{x_1, x_2, \dots, x_n\}$. Prove using induction that for all positive integers n, $|\mathcal{P}(S)| = 2^n$.

Solution. We will prove the claim using induction on n.

Induction Hypothesis: Assume that the claim is true when n = k, for some integer $k \ge 1$. In other words, assume that if $S = \{x_1, x_2, \dots, x_k\}$, then $|\mathcal{P}(S)| = 2^k$.

<u>Base Case</u>: n = 1. When $S = \{x_1\}$, there are exactly two subsets of S, namely \emptyset and S, itself. Thus the claim is true when n = 1.

Induction Step: We want to prove that the claim is true when n = k + 1. In other words, we want to show that if $S = \{x_1, x_2, \ldots, x_k, x_{k+1}\}$, then $|\mathcal{P}(S)| = 2^{k+1}$. Let $S' = \{x_1, x_2, \ldots, x_k\}$. The set of all subsets of S can be partitioned into S_1 and S_2 , where $S_1 \subset \mathcal{P}(S)$ contains subsets of S that does not contain x_{k+1} , and $S_2 \subset S$ contains subsets of S that contains $S_2 \subset S$ contains subsets of S that contains $S_2 \subset S$ contains subsets of S that contains $S_2 \subset S$ contains subsets of S that contains $S_2 \subset S$ contains

$$|\mathcal{P}(S)| = |S_1| + |S_2| \tag{1}$$

Note that S_1 contains all subsets of $\mathcal{P}(S')$. By the induction hypothesis, we have $|S_1| = |\mathcal{P}(S')| = 2^k$. We will now compute $|S_2|$. Observe that each set in S_2 is of the form $\{x_{k+1}\} \cup X$, where X is a subset of S'. By induction hypothesis, we know that there are 2^k subsets of S' and hence $|S_2| = 2^k$. Plugging in the values for $|S_1|$ and $|S_2|$ in (1), we get

$$|\mathcal{P}(S)| = 2^k + 2^k = 2^{k+1}$$

Example Let A_1, A_2, \ldots, A_n be sets (where $n \geq 2$). Suppose for any two sets A_i and A_j either $A_i \subseteq A_j$ or $A_j \subseteq A_i$. Prove by induction that one of these n sets is a subset of all of them.

Solution. We will prove the claim using induction on n.

Induction Hypothesis: Assume that the claim is true when n = k, for some integer $k \ge 2$. In other words, assume that if we have sets A_1, A_2, \ldots, A_k , where for any two sets A_i and A_j , either $A_i \subseteq A_j$ or $A_j \subseteq A_i$ then one of the k sets is a subset of all of the k sets.

Base Case: n = 2. We have two sets A_1, A_2 and we know that $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$. Without loss of generality assume that $A_1 \subseteq A_2$. Then A_1 is a subset of A_1 and is also a subset of A_2 , so the claim holds when n = 2.

Induction Step: We want to prove the claim when n = k + 1. That is, we are given a set

 $S = \{A_1, A_2, \dots, A_{k+1}\}$ of with the property that for every pair of sets $A_i \in S$ and $A_j \in S$, either $A_i \subseteq A_j$ or $A_j \subseteq A_i$. We want to show that there is a set in S that is a subset of all k+1 sets in S. Let $S' = S \setminus \{A_{k+1}\}$. By induction hypothesis, there is a set $A_p \in S'$ that is a subset of all sets in S'. We now consider the following two cases.

Case 1: $A_p \subseteq A_{k+1}$. Then it follows that A_p is a subset of all sets in S.

Case 2: $A_{k+1} \subseteq A_p$. Since A_p is a subset of all sets in S' and $A_{k+1} \subseteq A_p$, it follows that A_{k+1} is a subset of all sets in S.

Example. For all $n \ge 1$, prove that n lines separate the plane into $(n^2 + n + 2)/2$ regions. Assume that no two of these lines are parallel and no three pass through a common point.

Solution. Let P(n) be the property that n lines, such that no two of them are parallel and no three of them pass through a common point, separate the plane into $(n^2 + n + 2)/2$ regions. We will prove the claim by induction on n.

Induction Hypothesis: Assume that P(k) is true for some integer k > 0.

Base Case: P(1) is true since one line divides the plane into 2 regions which is also given by $(1^2 + 1 + 2)/2$.

Induction Step: To prove that P(k+1) is true. Consider a set S of k+1 lines such that no two of them are parallel and no three of them pass through a common point. Remove any line ℓ from the set S. Let S' be the resulting set of k lines. By induction hypothesis, the k lines in S' divide the plane into $(k^2 + k + 2)/2$ regions. Now we add the line ℓ to the set S' to obtain the set S. Line ℓ intersects exactly once with each of the k lines in S'. These intersections divide the line ℓ into k+1 line segments. Each of these line segments passes through a region and hence k+1 additional regions are created. Hence, the total number of regions formed by k+1 lines is given by

$$\frac{k^2 + k + 2}{2} + k + 1 = \frac{k^2 + 3k + 4}{2} = \frac{k^2 + 2k + 1 + k + 3}{2} = \frac{(k+1)^2 + (k+1) + 2}{2}$$

Thus P(k+1) is correct and this completes the proof.

Example. Let n be a non-negative integer. Show that any $2^n \times 2^n$ region with one central square removed can be tiled using L-shaped pieces, where the pieces cover three squares at a time (Figure 1).

Solution. (Attempt 1) Let R_n denote a $2^n \times 2^n$ region. Let P(n) be the property that R_n with one central square removed can be tiled using L-shaped pieces.

Induction Hypothesis: Assume that P(k) is true for some $k \geq 0$.

<u>Base Case</u>: We want to prove that P(0) is true. This is true because a 1×1 region with one central square removed requires 0 tiles.

Induction Step: We want to prove that P(k+1) is true, i.e., region R_{k+1} with one central square removed can be tiled using L-shaped pieces.

 R_{k+1} can be divided into four regions of size $2^k \times 2^k$. Note that the four central corners of

Figure 1: A L-tile and an L-tiling of a $2^2 \times 2^2$ region without a square.

 R_{k+1} can be covered using one L-shaped tile and one square hole (Figure 2). Each of the four remaining regions has one hole and is of the size $2^k \times 2^k$. By induction hypothesis, these regions can be covered using L-shaped pieces. Thus, since the four disjoint regions can be covered using L-shaped tiles, R_{k+1} without a central square can also be covered using L-shaped tiles.

Figure 2: Illustration of the two proof attempts.

Our use of induction hypothesis is incorrect as we have assumed that region R_k without a central square (not a corner square) can be covered using L-shaped tiles.

Surprisingly, we can get around this obstacle by proving the following stronger claim.

"For all positive integers n, any R_n region with any one square removed can be L-tiled."

Let P(n) be the property that R_n without one square can be L-tiled.

Induction Hypothesis: Assume that P(k) is true for some k.

Base Case: We want to prove that P(0) is true. This is true because a 1×1 region with one square removed requires 0 tiles.

Induction Step: We want to prove that P(k+1) is true, i.e., region R_{k+1} without one square

that is located anywhere can be L-tiled. Divide R_{k+1} into four R_k regions. One of the four R_k regions that does not have one square can be L-tiled (using induction hypothesis). Each of the other three R_k regions without the corner square that is located at the center of R_{k+1} can be L-tiled (using induction hypothesis). By using one more L-tile we can cover the three central squares of R_{k+1} .

Strong Induction.

For any property P, if P(0) and $\forall n \in \mathbb{N}$, $P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$, then $\forall n \in \mathbb{N}$, P(n).

Example. Prove that if n is an integer greater than 1 then either n is a prime or it can be written as a product of primes.

Solution. Let P(n) be "n can be written as a product of primes".

Induction Hypothesis: Assume that P(j) is true for $1 < j \le k$.

Base Case: We want to show that P(2) is true. This is clearly true as 2 is a prime.

Induction Step: We want to show that P(k+1) is true.

Case I: k + 1 is prime. In this case we are done.

Case II: k + 1 is composite. Then,

$$k+1=a\times b$$
, for some a and b s.t. $2\leq a\leq b< k+1$

By induction hypothesis, a is a prime or it can be written as a product of primes. The same applies to b. Since $k + 1 = a \times b$, it can be written as a product of primes, namely those primes in the factorization of a and those in the factorization of b.

Example. Prove that, for any positive integer n, if x_1, x_2, \ldots, x_n are n distinct real numbers, then no matter how the parenthesis are inserted into their product, the number of multiplications used to compute the product is n-1.

Solution. Let P(n) be the property that "If x_1, x_2, \ldots, x_n are n distinct real numbers, then no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is n-1".

Induction Hypothesis: Assume that P(j) is true for all j such that $1 \le j \le k$.

Base Case: P(1) is true, since x_1 is computed using 0 multiplications.

Induction Step: We want to prove P(k+1). Consider the product of k+1 distinct factors, $x_1, x_2, \ldots, x_{k+1}$. When parentheses are inserted in order to compute the product of factors, some multiplication must be the final one. Consider the two terms, of this final multiplication. Each one is a product of at most k factors. Suppose the first and the second term in the final multiplication contain f_k and s_k factors. Clearly, $1 \leq f_k, s_k \leq k$. Thus, by induction hypothesis, the number of multiplications to obtain the first term of the final multiplication is $f_k - 1$ and the number of multiplications to obtain the second term of the

final multiplication is $s_k - 1$. It follows that the number of multiplications to compute the product of $x_1, x_2, \ldots, x_k, x_{k+1}$ is

$$(f_k - 1) + (s_k - 1) + 1 = f_k + s_k - 1 = k + 1 - 1 = k$$