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Example. Recall that for any set A, P(A) denotes the power set of A. Let S =
{x1, x2, . . . , xn}. Prove using induction that for all positive integers n, |P(S)| = 2n.

Solution. We will prove the claim using induction on n.
Induction Hypothesis: Assume that the claim is true when n = k, for some integer k ≥ 1.

In other words, assume that if S = {x1, x2, . . . , xk}, then |P(S)| = 2k.
Base Case:n = 1. When S = {x1}, there are exactly two subsets of S, namely ∅ and S,
itself. Thus the claim is true when n = 1.
Induction Step: We want to prove that the claim is true when n = k + 1. In other

words, we want to show that if S = {x1, x2, . . . , xk, xk+1}, then |P(S)| = 2k+1. Let
S′ = {x1, x2, . . . , xk}. The set of all subsets of S can be partitioned into S1 and S2,
where S1 ⊂ P(S) contains subsets of S that does not contain xk+1, and S2 ⊂ S contains
subsets of P(S) that contains xk+1. Thus we have

|P(S)| = |S1|+ |S2| (1)

Note that S1 contains all subsets of P(S′). By the induction hypothesis, we have |S1| =
|P(S′)| = 2k. We will now compute |S2|. Observe that each set in S2 is of the form
{xk+1} ∪X, where X is a subset of S′. By induction hypothesis, we know that there are
2k subsets of S′ and hence |S2| = 2k. Plugging in the values for |S1| and |S2| in (1), we get

|P(S)| = 2k + 2k = 2k+1

Example Let A1, A2, . . . , An be sets (where n ≥ 2). Suppose for any two sets Ai and Aj

either Ai ⊆ Aj or Aj ⊆ Ai. Prove by induction that one of these n sets is a subset of all of
them.

Solution. We will prove the claim using induction on n.
Induction Hypothesis: Assume that the claim is true when n = k, for some integer k ≥ 2.
In other words, assume that if we have sets A1, A2, . . . , Ak, where for any two sets Ai and
Aj , either Ai ⊆ Aj or Aj ⊆ Ai then one of the k sets is a subset of all of the k sets.
Base Case: n = 2. We have two sets A1, A2 and we know that A1 ⊆ A2 or A2 ⊆ A1.
Without loss of generality assume that A1 ⊆ A2. Then A1 is a subset of A1 and is also a
subset of A2, so the claim holds when n = 2.
Induction Step: We want to prove the claim when n = k + 1. That is, we are given a set
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S = {A1, A2, . . . , Ak+1} of with the property that for every pair of sets Ai ∈ S and Aj ∈ S,
either Ai ⊆ Aj or Aj ⊆ Ai. We want to show that there is a set in S that is a subset of all
k + 1 sets in S. Let S′ = S \ {Ak+1}. By induction hypothesis, there is a set Ap ∈ S′ that
is a subset of all sets in S′. We now consider the following two cases.
Case 1 : Ap ⊆ Ak+1. Then it follows that Ap is a subset of all sets in S.
Case 2 : Ak+1 ⊆ Ap. Since Ap is a subset of all sets in S′ and Ak+1 ⊆ Ap, it follows that
Ak+1 is a subset of all sets in S.

Example. For all n ≥ 1, prove that n lines separate the plane into (n2 +n+2)/2 regions.
Assume that no two of these lines are parallel and no three pass through a common point.

Solution. Let P (n) be the property that n lines, such that no two of them are parallel
and no three of them pass through a common point, separate the plane into (n2 +n+ 2)/2
regions. We will prove the claim by induction on n.

Induction Hypothesis: Assume that P (k) is true for some integer k > 0.
Base Case: P (1) is true since one line divides the plane into 2 regions which is also given
by (12 + 1 + 2)/2.
Induction Step: To prove that P (k+ 1) is true. Consider a set S of k+ 1 lines such that no
two of them are parallel and no three of them pass through a common point. Remove any
line ` from the set S. Let S′ be the resulting set of k lines. By induction hypothesis, the k
lines in S′ divide the plane into (k2 + k + 2)/2 regions. Now we add the line ` to the set
S′ to obtain the set S. Line ` intersects exactly once with each of the k lines in S′. These
intersections divide the line ` into k + 1 line segments. Each of these line segments passes
through a region and hence k + 1 additional regions are created. Hence, the total number
of regions formed by k + 1 lines is given by

k2 + k + 2

2
+ k + 1 =

k2 + 3k + 4

2
=

k2 + 2k + 1 + k + 3

2
=

(k + 1)2 + (k + 1) + 2

2

Thus P (k + 1) is correct and this completes the proof.

Example. Let n be a non-negative integer. Show that any 2n×2n region with one central
square removed can be tiled using L-shaped pieces, where the pieces cover three squares at
a time (Figure 1).

Solution. (Attempt 1) Let Rn denote a 2n × 2n region. Let P (n) be the property that
Rn with one central square removed can be tiled using L-shaped pieces.
Induction Hypothesis: Assume that P (k) is true for some k ≥ 0.
Base Case: We want to prove that P (0) is true. This is true because a 1 × 1 region with
one central square removed requires 0 tiles.
Induction Step: We want to prove that P (k + 1) is true, i.e., region Rk+1 with one central
square removed can be tiled using L-shaped pieces.
Rk+1 can be divided into four regions of size 2k × 2k. Note that the four central corners of
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Figure 1: A L-tile and an L-tiling of a 22 × 22 region without a square.

Rk+1 can be covered using one L-shaped tile and one square hole (Figure 2). Each of the
four remaining regions has one hole and is of the size 2k × 2k. By induction hypothesis,
these regions can be covered using L-shaped pieces. Thus, since the four disjoint regions
can be covered using L-shaped tiles, Rk+1 without a central square can also be covered
using L-shaped tiles.

Figure 2: Illustration of the two proof attempts.

Our use of induction hypothesis is incorrect as we have assumed that region Rk without a
central square (not a corner square) can be covered using L-shaped tiles.

Surprisingly, we can get around this obstacle by proving the following stronger claim.

“For all positive integers n, any Rn region with any one square removed can be L-tiled.”

Let P (n) be the property that Rn without one square can be L-tiled.
Induction Hypothesis: Assume that P (k) is true for some k.
Base Case: We want to prove that P (0) is true. This is true because a 1 × 1 region with
one square removed requires 0 tiles.
Induction Step: We want to prove that P (k+1) is true, i.e., region Rk+1 wthout one square
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that is located anywhere can be L-tiled. Divide Rk+1 into four Rk regions. One of the
four Rk regions that does not have one square can be L-tiled (using induction hypothesis).
Each of the other three Rk regions without the corner square that is located at the center
of Rk+1 can be L-tiled (using induction hypothesis). By using one more L-tile we can cover
the three central squares of Rk+1.

Strong Induction.

For any property P , if P (0) and ∀n ∈ N, P (0)∧ P (1)∧ P (2)∧ · · · ∧ P (k)→ P (k + 1), then
∀n ∈ N, P (n).

Example. Prove that if n is an integer greater than 1 then either n is a prime or it can
be written as a product of primes.

Solution. Let P (n) be “n can be written as a product of primes”.
Induction Hypothesis: Assume that P (j) is true for 1 < j ≤ k.
Base Case: We want to show that P (2) is true. This is clearly true as 2 is a prime.
Induction Step: We want to show that P (k + 1) is true.
Case I: k + 1 is prime. In this case we are done.
Case II: k + 1 is composite. Then,

k + 1 = a× b, for some a and b s.t. 2 ≤ a ≤ b < k + 1

By induction hypothesis, a is a prime or it can be written as a product of primes. The
same applies to b. Since k + 1 = a × b, it can be written as a product of primes, namely
those primes in the factorization of a and those in the factorization of b.

Example. Prove that, for any positive integer n, if x1, x2, . . . , xn are n distinct real
numbers, then no matter how the parenthesis are inserted into their product, the number
of multiplications used to compute the product is n− 1.

Solution. Let P (n) be the property that “If x1, x2, . . . , xn are n distinct real numbers,
then no matter how the parentheses are inserted into their product, the number of multi-
plications used to compute the product is n− 1”.
Induction Hypothesis: Assume that P (j) is true for all j such that 1 ≤ j ≤ k.
Base Case: P (1) is true, since x1 is computed using 0 multiplications.
Induction Step: We want to prove P (k + 1). Consider the product of k + 1 distinct fac-
tors, x1, x2, . . . , xk+1. When parentheses are inserted in order to compute the product of
factors, some multiplication must be the final one. Consider the two terms, of this final
multiplication. Each one is a product of at most k factors. Suppose the first and the second
term in the final multiplication contain fk and sk factors. Clearly, 1 ≤ fk, sk ≤ k. Thus,
by induction hypothesis, the number of multiplications to obtain the first term of the final
multiplication is fk − 1 and the number of multiplications to obtain the second term of the
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final multiplication is sk − 1. It follows that the number of multiplications to compute the
product of x1, x2, . . . , xk, xk+1 is

(fk − 1) + (sk − 1) + 1 = fk + sk − 1 = k + 1− 1 = k


