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The Binomial Theorem

A binomial is a sum of two terms, such as a+ b. The binomial theorem gives an expression
for (a + b)n where a and b are real numbers and n is a positive integer.

Theorem. For any real numbers a and b and non-negative integer n

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk

Proof. Observe that each term in the expansion of (a + b)n is of the form an−kbk, k =
0, 1, 2, . . . , n. How many terms are there of the form an−kbk? This is the same number of
times as there are orderings of n−k a’s and k b’s. This is equal to

(
n
k

)
. Thus the coefficient

of like terms of the form an−kbk is
(
n
k

)
. This proves the theorem.

Example. Prove that 2n =
∑n

k=0

(
n
k

)
Solution. Last week we proved this claim using a counting argument in which we showed
that L.H.S. and R.H.S. count the number of subsets of a set of n elements. Now we will
prove this using the binomial theorem as follows.

2n = (1 + 1)n

=

n∑
k=0

(
n

k

)
(1)n−k(1)k

=

n∑
k=0

(
n

k

)
= R.H.S.

Example. Let n be a positive integer. Then, for all x prove that (1 +x)n =
∑n

k=0

(
n
k

)
xk.

Solution. Using the binomial theorem we get

(1 + x)n =
n∑

k=0

(
n

k

)
1n−kxk =

n∑
k=0

(
n

k

)
xk
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Example. Prove that(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . . + (−1)n

(
n

n

)
= 0

Solution. One way to solve this problem is by substituting x = −1 in the previous
example. When x = −1 the above equation becomes

0n = 0 =
n∑

k=0

(
n

k

)
(−1)k.

A combinatorial proof of the claim was presented earlier.

The Pigeonhole Principle

If k+ 1 or more objects are distributed among k bins then there is at least one bin that has
two or more objects. For example, the pigeon hole principle can be used to conclude that
in any group of thirteen people there are at least two who are born in the same month.

Example. There are n pairs of socks. How many socks must you pick without looking to
ensure that you have at least one matching pair?

Solution. The pigeonhole principle can be applied by letting n bins correspond to the n
pairs of socks. If we select n + 1 socks and put each one in the box corresponding to the
pair it belongs to then there must be at least one box containing a matched pair.

The Generalized Pigeonhole Principle

If n objects are placed into k boxes, then there is at least one box containing at least dn/ke
objects.

Proof: We will prove the contrapositive. That is, we will show that if each box contains
at most dn/ke − 1 objects then the total number of objects is not equal to n. Assume that
each box contains at most dn/ke − 1 objects. Then, the total number of objects is at most

k
(⌈n

k

⌉
− 1
)
< k

(n
k

+ 1− 1
)

= n

Thus we have shown that the total number of objects is less than n. This completes the
proof.

Using the generalized pigeonhole principle we can conclude that among 100 people, there
are at least d100/12e = 9 who are born in the same month.
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Example. Suppose each point in the plane is colored either red or blue. Show that there
always exist two points of the same color that are exactly one feet apart.

Solution. Consider an equilateral triangle with the length of each side being one feet.
The three corners of the triangle are colored red or blue. By pigeonhole principle, two of
these three points must have the same color.

Example. Given a sequence of n integers, show that there exists a subsequence of con-
secutive integers whose sum is a multiple of n.

Solution. Let x1, x2, . . . , xn be the sequence of n integers. Consider the following n sums.

x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn

If any of these n sums is divisible by n, then we are done. Otherwise, each of the n sums
have a non-zero remainder when divided by n. There are at most n − 1 different possible
remainders: 1, 2, . . . n− 1. Since there are n sums, by the pigeonhole principle, at least two
of the n sums have the same remainder when divided by n. Let p and q, p < q, be integers
such that for some integers c1 and c2,

x1 + x2 + · · ·+ xp = c1n + r and x1 + x2 + · · ·+ xq = c2n + r

Subtracting the two sums, we get

xp+1 + · · ·+ xq = (c2 − c1)n

Hence, xp+1 + · · ·+ xq is divisible by n.

Example. Show that in any group of six people there are either three mutual friends or
three mutual strangers.

Solution. Consider one of the six people, say A. The remaining five people are either
friends of A or they do not know A. By the pigeonhole principle, at least d5/2e = 3 of the
five people are either friends of A or are unacquainted with A. In the former case, if any
two of the three people are friends then these two along with A would be mutual friends,
otherwise the three people would be strangers to each other. The proof for the latter case,
when three or more people are unacquainted with A, proceeds in the same manner.

Example. A chess master who has 11 weeks to prepare for a tournament decides to play
at least one game every day but, in order not to tire himself, he decides not to play more
than 12 games during any calendar week. Show that there exists consecutive days during
which the chess master will have played exactly 21 games.
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Solution. Let ai, 1 ≤ i ≤ 77, be the total number of games that the chess master has
played during the first i days. Note that the sequence of numbers a1, a2, . . . , a77 is a strictly
increasing sequence. We have

1 ≤ a1 < a2 < . . . < a77 ≤ 11× 12 = 132

Now consider the sequence a1 + 21, a2 + 21, . . . , a77 + 21. We have

22 ≤ a1 + 21 < a2 + 21 < . . . < a77 + 21 ≤ 153

Clearly, this sequence is also a strictly increasing sequence. The numbers a1, a2, . . . , a77, a1+
21, a2+21, . . . , a77+21 (154 in all) belong to the set {1, 2, . . . , 153}. By the pigeonhole prin-
ciple there must be two numbers out of the 154 numbers that must be the same. Since no two
numbers in a1, a2, . . . , a77 are equal and no two numbers in a1 +21, a2 +21, . . . , a77 +21 are
equal there must exist i and j such that ai = aj+21. Hence during the days j+1, j+2, . . . , i,
exactly 21 games must have been played.

Benjamin Judd suggested the following nice proof in class. For 1 ≤ i ≤ 77, let gi denote
the number of games played by the chessmaster on day i. Consider the number of games
played by the chessmaster during each day of the first three weeks: g1, g2, . . . , g21. By the
constraints described in the question, we have

gi ≥ 1, i = 1, 2, . . . , 21 and

21∑
i=1

gi ≤ 36 (1)

We know that in the sequence of positive integers g1, g2, . . . , g21, there must be a sub-
sequence S : gl, gl+1, gl+2, . . . , gk, 1 ≤ l < k ≤ 21 of consecutive integers whose sum is
divisible by 21 (we proved this earlier in the lecture). Combining this with (1), we conclude
that the sum of the numbers in S must be exactly 21. This means that during the days
l, l + 1, l + 2, . . . , k, the chessmaster played exactly 21 games.

Example. Prove that every sequence of n2 + 1 distinct real numbers, x1, x2, . . . , xn2+1,
contains a subsequence of length n+1 that is either strictly increasing or strictly decreasing.

Solution. We will prove this as follows. We suppose that there is no strictly increasing
subsequence of length n+ 1 and show that there must be a strictly decreasing subsequence
of length n + 1. Let mk, k = 1, 2, . . . , n2 + 1, be the length of the longest increasing
subsequence that begins with xk. Since there is no increasing subsequence of length n + 1,
for k = 1, 2, . . . , n2 + 1, we have 1 ≤ mk ≤ n. Using the generalized pigeonhole principle,
we conclude that n + 1 of the numbers m1,m2, . . . ,mn2+1 are equal. Let

mk1 = mk2 = · · · = mkn+1

where 1 ≤ k1 < k2 < · · · < kn+1 ≤ n2 + 1. We will now argue that xk1 > xk2 > · · · > xkn+1 ,
which will complete the proof as we will have a decreasing subsequence of length n + 1.
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Assume for contradiction that this is not the case, which means that there is a i, 1 ≤ i ≤
n + 1, such that xki < xki+1

. Then, since ki < ki+1, we could take a longest increasing
subsequence starting with xki+1

and put xki in front to obtain an increasing subsequence
that begins with xki . This implies that mki > mki+1

, which is a contradiction. Hence, for
all i = 1, 2, . . . , n, xki > xki+1

. Thus, we have a decreasing subsequence of length n + 1.
Similarly, we can show that if there is no decreasing subsequence of length n+ 1 then there
must be an increasing sequence of length n + 1.


