
Mathematical Foundations of Computer Science

Lecture Outline
August 27, 2024

Introduction to Logic

A proposition is a statement to which it is possible to assign a value of either true or false.
For example, “2 + 2 = 4” and “Donald Knuth is a faculty at Rutgers-Camden” are propo-
sitions, whereas “What time is it?”, x2 < x + 40 are not propositions.

We can construct compound propositions from simpler propositions by using some of the
following connectives. Let p and q be arbitrary propositions.

Negation: p̃ (read as “not p”) is the proposition that is true when p is false and vice-versa.

Conjunction: p ∧ q (read as “p and q”) is the proposition that is true when both p and q
are true.

Disjunction: p ∨ q (read as “p or q”) is the proposition that is true when at least one of
p or q is true.

Exclusive Or: p ⊕ q (read as “p exclusive-or q”) is the proposition that is true when
exactly one of p and q is true is false otherwise.

Implication: p→ q (read as “p implies q”) is the proposition that is false when p is true
and q is false and is true otherwise.

The implication q → p is called the converse of the implication p → q. The implication
¬p → ¬q is called the inverse of p → q. The implication ¬q → ¬p is the contrapositive of
p→ q. p only if q means “if not q then not p”, or equivalently if p then q.

Biconditional: p↔ q (read as “p if, and only if, q”) is the proposition that is true if p and q
have the same truth values and is false otherwise. “If and only if” is often abbreviated as iff.

The following truth table makes the above definitions precise.

p q ¬p p ∧ q p ∨ q p⊕ q p→ q q → p p↔ q

T T F T T F T T T

T F F F T T F T F

F T T F T T T F F

F F T F F F T T T

Necessary and Sufficient Conditions: For propositions p and q,
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p is a sufficient condition for q means that p→ q.
p is a necessary condition for q means that ¬p → ¬q, or equivalently q → p.
Why is p ∧ q not the correct answer?

Thus p is a necessary and sufficient condition for q means “p iff q”.

Logical Equivalence

Two compound propositions are logically equivalent if they always have the same truth
value. Two statement p and q can be proved to be logically equivalent either with the aid
of truth tables or using a sequence of previously derived logically equivalent statements.

Example. Show that p→ q ≡ ¬p ∨ q ≡ ¬q → ¬p.

Solution. The truth table below proves the above equivalence.

p q ¬p ¬q p→ q ¬p ∨ q ¬q → ¬p
T T F F T T T

T F F T F F F

F T T F T T T

F F T T T T T

Example. Show that p ≡ ¬p→ C and p→ q ≡ (p ∧ ¬q)→ C.

p q ¬p ¬q p→ q p ∧ ¬q C ¬p→ C (p ∧ ¬q)→ C

T T F F T F F T T

T F F T F T F T F

F T T F T F F F T

F F T T T F F F T

The above equivalence forms the basis of proofs by contradiction.

The logic of Quantified Statements

Consider the statement x < 15. We can denote such a statement by P (x), where P denotes
the predicate “is less than 15” and x is the variable. This statement P (x) becomes a
proposition when x is assigned a value. In the above example, P (8) is true while P (18) is
false.

Another way to convert the statement P (x) into a proposition is through quantifica-
tion. The two types of quantification that we will study are universal quantification and
existential quantification. Using universal quantifier ∀ (“for all”) alongside P (x) means
that the statement P (x) is true for all elements in the domain of x. Thus the proposition
∀x ∈ D,P (x) is true when P (x) is true for all x ∈ D and is false if there is an element
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x′ ∈ D for which P (x′) is false. Using existential quantifier ∃ (“there exists”) alongside
P (x) means that there exists an element in the domain of x for which P (x) is true. Thus
the proposition ∃x ∈ D,P (x) is true if there is an x′ ∈ D for which P (x′) is true and is
false if P (x) is false for all x ∈ D.

Examples of propositions using quatifiers are as follows.

1. ∀x ∈ Z, x3 + 1 is composite.
2. ∀x ∈ Z, x is even → x + 1 is odd.
3. ∃x ∈ N, x2 6> x.
4. ∃x ∈ Z, 2|x and 2|x + 1.
5. ∀x ∈ Z∃y ∈ Z, x + y = 0.
6. ∃x ∈ Z∀y ∈ Z, x > y.

Sometimes it helps (in proofs) to consider the negation of a proposition. Verify the following
equivalence.

¬(∀x ∈ D,P (x)) ≡ ∃x ∈ D,¬P (x)

¬(∃x ∈ D,P (x)) ≡ ∀x ∈ D,¬P (x)

Proofs

We will illustrate some proof techniques by proving some properties about numbers. Before
we do that let’s go through some basic definitions given below.

An integer n is even iff n = 2k for some integer k. An integer is odd iff n = 2k+ 1 for some
integer k. Symbolically,

n is even ↔ ∃ an integer k s.t. n = 2k

n is odd ↔ ∃ an integer k s.t. n = 2k + 1

An integer n is prime iff n > 1 and for all positive integers r and s, if n = r · s, then r = 1
or s = 1. Otherwise n is composite.

Given any real number x, the floor of x, denoted by bxc, is defined as follows

bxc = n↔ n ≤ x < n + 1, where n is an integer

Given any real number x, the ceiling of x, denoted by dxe, is defined as follows

dxe = n↔ n− 1 < x ≤ n, where n is an integer

A real number is rational iff it can be expressed as a ratio of two integers with a non-zero
denominator. A real number that is not rational is irrational. More formally,

r is rational↔ ∃ integers a and b such that r = a/b and b 6= 0.
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Example. Prove the following: If the sum of two integers is even then so is their difference.

Solution. Let m and n be particular but arbitrarily chosen integers such that m + n is
even. By definition of even, we have m + n = 2k, for some integer k. Then

m = 2k − n

Now m− n can be written as follows.

m− n = 2k − n− n

= 2(k − n)

Since k and n are integers, k − n is an integer, 2(k − n) is even and hence m− n is even.

Example. Prove that, for all integers n, if n is odd then n2 + n + 1 is odd.

Solution. Since n is odd n = 2k + 1 for some integer k. Then,

n2 + n + 1 = (2k + 1)2 + 2k + 1 + 1

= 4k2 + 4k + 1 + 2k + 2

= 4k2 + 6k + 2 + 1

= 2(2k2 + 3k + 1) + 1

Since k is an integer, p = 2k2+3k+1 is an integer and n2+n+1 is odd, since n2+n+1 = 2p+1
where p is an integer.

Example. Let x be an integer. If x > 1, then x3 + 1 is composite.

Solution. Let x be an arbitrary but specific integer such that x > 1. We can rewrite
x3 + 1 as (x + 1)(x2 − x + 1). Note that since x is an integer both (x + 1) and (x2 − x + 1)
are integers. Hence (x + 1)|x3 + 1 and (x2 − x + 1)|x3 + 1. We now need to show that
x + 1 > 1 and x2 − x + 1 > 1. Since x > 1, clearly, x + 1 > 1. x2 − x + 1 > 1 by the
following reasoning.

x > 1

x2 > x (Multiplying both sides by x.)

x2 − x > 0 (Subtracting both sides by x.)

x2 − x + 1 > 1 (Adding 1 to both sides.)

We can also argue that x2−x+ 1 > 1 by showing that x+ 1 < x3 + 1. Since x > 1 we have
x2 > x and hence x2 > 1. Multiplying both sides by x again we get x3 > x. This means
that x + 1 < x3 + 1 and since (x + 1)|x3 + 1, we conclude that x3 + 1 is composite.

Note: One student asked the question that why can’t we write x3 + 1 as x3(1 + 1
x3 ). The

reason is that for an integer x > 1, (1 + 1
x3 ) is not an integer and the proof breaks down.


