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Corollary Let G = (V,E) be a planar graph with at least two edges that does not
contain a cycle with 3 vertices. Then |E| ≤ 2|V | − 4.

Proof. We can repeat the same analysis as above, only we can obtain a tighter bound
on the total degree. If G′ is acyclic then f = 1 and the degree of the one face is at least
4 ≥ 4f . Otherwise, there is a cycle on each face’s border, and because the graph has no
cycle with 3 vertices, each cycle must have at least 4 edges, so the total degree is at least
4f .

(because we assumed that G had at least two edges). Otherwise, there is a cycle on
each face’s border, and cycles have at least 3 edges, so the total degree is at least 3f .

Thus,

2|E′| ≥ 4f = 4 · (2 + |E′| − |V |) = 8 + 4|E′| − 4|V |

Re-arranging, 2|E′| ≤ 4|V | − 8, so |E′| ≤ 2|V | − 4, so |E| ≤ 2|V | − 4.

Characterizing Planar Graphs

Example. Let G be a planar graph with minimum degree δ. Then δ ≤ 5.

Proof. Assume for the purpose of contradiction that G = (V,E) is a planar graph with
minimum degree δ > 5. Because δ > 5 and δ is an integer, δ ≥ 6, so

2|E| =
∑
v∈V

deg(v) ≥
∑
v∈V

6 = 6 · |V |

so 2|E| ≥ 6 · |V |. Because G is planar, |E| ≤ 3|V | − 6, so 2 · (3|V | − 6) ≥ 6|V |. But
2 · (3|V | − 6) = 6|V | − 12, so 6|V | − 12 ≥ 6|V | =⇒ −12 ≥ 0, a contradiction.

Example. The graph K5 (the complete graph on 5 vertices) is not planar.

Proof. If K5 were planar, then |E| ≤ 3|V | − 6, But in K5, |V | = 5 and |E| =
(
5
2

)
= 10.

10 > 3 · 5− 6 = 9, so |E| > 3|V | − 6, so K5 is not planar.

Example. The graph K3,3 (the complete bipartite graph where |X| = |Y | = 3, pictured
below) is not planar.
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Proof. Note that K3,3 is bipartite (the left 3 and right 3 vertices in the above drawing
are independent sets). We proved that K3,3 is bipartite, so it does not have any odd-length
cycles; in particular, it does not contain a cycle on three vertices. If K3,3 were planar, by
the second corollary above |E| ≤ 2|V | − 4. But |E| = 9 and |V | = 6, and 9 > 2 · 6− 4 = 8,
so K3,3 cannot be planar.

To characterize all planar graphs, we will need one additional definition:

Definition. A subdivision of a graph G is formed from G by replacing edges with paths,
adding additional vertices as needed.

For example, the graph on the right is a subdivision of the graph on the left:

Theorem (Kuratowski). A graph is planar if and only if it does not contain a subdivision
of K5 or K3,3.

You can show the easier direction of the claim using the fact that K5 and K3,3 are not
planar by observing that subgraphs of planar graphs must be planar and if a graph is not
planar then its subdivisions must also be nonplanar.

The other direction is more difficult, and requires much more advanced graph-theoretic
tools than we have developed so far.

Coloring Planar Graphs

In the 70s, Appel and Haken proved the following remarkable result:

Theorem (Four color). If G is planar, then χ(G) ≤ 4.

The proof is not at all intuitive, and was one of the first proofs to take advantage of com-
puters to check an exhaustive list of cases.

We can, however, prove a weaker version of the theorem:

Example. If G is planar, then χ(G) ≤ 6.
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Proof. We will prove the claim by induction on the number of vertices.

Induction Hypothesis: Assume that χ(G) ≤ 6 for all graphs G on k vertices, for some
k ∈ Z+.

Base Case: When n ≤ 6, the graph can be 6-colored by assigning each vertex in the graph
a different color.

Induction Step: Let G be a planar graph with k + 1 vertices. Above, we proved that
δ(G) ≤ 5, so there must be some vertex v ∈ G such that deg(v) ≤ 5. G − v is a planar
graph on k vertices, so by the Induction Hypothesis it can be colored using 6 colors. Using
this coloring, we obtain a 6-coloring of G by using this coloring, and then coloring v a
different color from all of its neighbors. Because deg(v) ≤ 5, there is always at least one
color that is not used by any of v’s neighbors, so we can always do this. Therefore, G is
6-colorable, so χ(G) ≤ 6.

A fundamental question in graph coloring is: what is the relation between χ(G) and
the size of the largest clique? We now show that simply bounding the size of the largest
clique does not allow us to bound χ(G).

Example. For any k ≥ 1, there exist triangle-free graphs (size of the largest clique is at
most 2) with chromatic number greater than k.

Solution. Let G = (n, p) be a n-vertex graph, in which an edge between any two vertices
is included with a probability of p.

Note that if χ(G) = k then there must be an independent set in G of size dn/ke. Thus, to
show that χ(G) ≥ k, it suffices to show that the largest independent set in G is at most
dn/ke. We will show that with a high probability, for a suitable value of p, G does not have
an independent set of size dn/2ke.
Let I be the random variable denoting the number of independent sets of size dn/2ke in G.
For any set S consisting of dn/2ke vertices, let IS be an indicator random variable that is
1, iff S is an independent set. Thus we have

E[IS ] = Pr[IS = 1]

= (1− p)(
dn/2ke

2 )

≤ (1− p)(
n/2k

2 )

= (1− p)
(n/2k)(n/2k−1)

2

= e−p(
n2

8k2
− n

4k
)(using 1 + x ≤ ex, for all x)

≤ e−p(
n2

16k2
) (for n ≥ 4k)

< 2−
n1+ε

16k2 (1)
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The expected value of I can now be calculated as follows.

I =
∑
S

IS

E[I] =
∑
S

E[IS ]

<
∑
S

2−
n1+ε

16k2 (using (1))

=

(
n

dn/2ke

)
2−

n1+ε

16k2

< 2n × 2−
n1+ε

16k2

= 2n(1−
nε

16k2
)

We want E[I] ≤ 1/2. For this to happen, it suffices that

n(1− nε

16k2
) ≤ −1,which holds if

n− n1+ε

16k2
≤ −1,which holds if

n+ 1 ≤ n1+ε

16k2
,which holds if

2n ≤ n1+ε

16k2
,which holds if

n ≤ n1+ε

32k2
,which holds if

nε ≥ 32k2,which holds if

n ≥ (32k2)1/ε (2)

Thus, we have that for all n ≥ (32k2)
1
ε , E[I] < 1/2. By Markov’s inequality, we have

Pr[I ≥ 1] ≤ E[I] <
1

2

Let T be the random variable denoting the number of triangles. Fix a set of 3 vertices; the
probability that they form a triangle is p3. Summing this over all 3-subsets, we get

E[T ] =

(
n

3

)
p3

<
n3

3!
(nε−1)3

=
n3ε

6

Using Markov’s inequality, we have

Pr[T ≥ n/2] ≤ E[T ]

n/2
<
n3ε/6

n/2
=

1

3n1−3ε
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Setting the last expression to be at most 1/3, we have

1

3n1−3ε
≤ 1/3

ε ≤ 1/3

By plugging ε = 1/3 in (2), we get n ≥ 215k6. Thus, we have that for all n ≥ 215k6, we
have Pr[I ≥ 1] + Pr[T ≥ n/2] < 1. This means that there exists a graph G for which I = 0
and T < n/2. We now alter this graph G by deleting one vertex from each triangle in G.
Let G′ be the resulting triangle-free graph. We remove less than n/2 vertices from G, thus
G′ has at least n/2 vertices. Since G does not have an independent set of size dn/2ke, G′
does not have an independent set of size dn/2ke ≤ d|G′|/ke. Thus χ(G′) > k.

The girth of a graph G, g(G), is the length of the smallest cycle in G. In triangle-free
graphs, g(G) > 3. In 1954 B. Descartes constructively showed that triangle-free graphs can
have high chromatic number, but this construction was complicated and contained many
short cycles. In 1959, Paul Erdős used the probabilistic method to prove the existence of
graphs with arbitrarily high girth and chromatic number.

Example (Erdős 1959) For every g, k > 0, there exists a graph G with χ(G) ≥ k and
g(G) ≥ g.


