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Recall that a tournament is a directed graph with exactly one directed edge between any
pair of vertices. A tournament G = (V,E) is called k-dominated if for every set of k vertices
v1, v2, . . . , vk, there exists another vertex u ∈ V such that (u, vi) ∈ E, for i = 1, 2, . . . , k.

Example. Prove that for any positive integer k, if n is large enough then there is a
k-dominated tournament on n vertices. For sufficiently large values of k, n = k22k suffices.

Solution. Note that for k = 1, a tournament on three vertices that is a directed 3-cycle is
1-dominated. We assume k ≥ 2 for the rest of the proof. Construct a random tournament
G in which an edge between any two vertices u and v is directed towards u with probability
1
2 and towards v with probability 1

2 . The bad event for our random process is that G is
not k-dominated. We will calculate the probability of this bad event as follows. Let S be a
fixed set of k vertices in G. The probability that a vertex u outside of S does not dominate
set S is given by 1 − (1/2)k. Thus the probability that S is not dominated by any of the
n − k vertices outside of S is given by (1 − 1/2k)n−k. Since there are
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set S, the probability of some set of k vertices in G not being dominated is at most(
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If the above expression is less than 1, it means that the probability of the random tourna-
ment G being k-dominated is strictly larger than 0, which means that such a tournament
exists. We will now show that if n/ lnn > k2k then the expression (1) is less than 1.(
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Note that for large values of k, n > k22k satisfies the inequality n/ lnn > k2k. This is
because when n = k22k, we have

n

lnn
=

k22k

ln(k22k)
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Note that for the last term to be larger than k2k, it must be that

ln(k22k) < k ⇒ k22k < ek ⇒ k2 <
(e

2

)k

which is true for sufficiently large values of k.

Planar Graphs

In previous lectures, we have sometimes thought of graphs as looking like this:

In reality, however, a graph G = (V,E) is nothing more than a finite non-empty set
of vertices V and an associated set of edges E; while these drawings help capture some of
the properties of a graph, they are not equal to the original graph. Indeed, there are often
many ways to draw the same graph:

All of these pictures represent the same graph — they have the same vertex set and
edge set — and yet in some sense each are different. In today’s lecture we are going to
study embeddings, which are a mathematical way to describe representations of graphs, like
the ones shown above.

Graph Embeddings

With this motivation in mind, we can now define what an embedding is.

Definition. An embedding of a graph G = (V,E) is a collection of points and curves in a
plane satisfying the following criteria:

• Each vertex v ∈ V is assigned exactly one point p(v) in the plane. If we have two
vertices u, v ∈ V where u 6= v, p(u) 6= p(v).

• Each edge {u, v} ∈ E is assigned to a curve in the plane with endpoints p(u) and p(v),
and the curve cannot pass through any other points p(w) for another vertex w ∈ V .
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The above pictures are depictions of multiple different embeddings of the same graph in
the plane.

In graph theory, it turns out that there is an interesting class of embeddings that have a
number of special properties that we are going to explore today:

Definition. An embedding is crossing-free if all curves are simple (do not cross themselves)
and the curves associated with any two distinct edges e and e′ do not intersect except at
their endpoints.

Here are three embeddings of the same graph in the plane, one of which is crossing-free and
two of which are not:

Definition. Given a crossing-free embedding of a graph, a face is a region of the plane
that is cut off from the other faces by edges. For example, the following graph has 3 faces:

where two of the faces are the two enclosed regions and the third face is the rest of the
plane that is not part of the other two faces. We call this face the unbounded face, and all
of the other faces are bounded.

Warning: Some of the concepts touched upon today, particularly those related to curves,
simple curves, and curve crossings in the plane are not going to be spelled out in full
detail. To do so would require much of a course on topology. Instead, we will rely on intu-
itive notions of what curves look like in a plane, and omit the detailed topological reasoning.

Planar Graphs

With these definitions in mind, we can get to the main focus of today’s lecture.

Definition. A planar graph G = (V,E) is a graph that has at least one crossing-free
embedding in the plane.

Theorem (Euler’s Formula). Let G be a connected planar graph with n vertices and m
edges. For any crossing-free embedding of G,

n−m + f = 2
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where f is the number of faces.

Proof. We will prove the claim using induction on m. Because in the claim G is connected,
we know that m ≥ n− 1, so this will be our base case.
Induction Hypothesis: Assume that the property holds for any graph G with k edges, for
some integer k ≥ n− 1.
Base Case: When m = n − 1, G is a tree. Fix a particular crossing-free embedding for G,
and let f be the number of faces. Observe that, in order for a graph to have a bounded
face, the edges forming the outer border of this face must form a cycle (otherwise they
would not fully enclose the face). This means that, because G is acyclic, there cannot be
any bounded faces in the embedding, so f = 1, which means that

n−m + f = n− (n− 1) + 1 = 2

Induction Step: Let G be a connected planar graph with n vertices and k+ 1 edges, and fix
a particular crossing-free embedding for G. Let f be the number of faces in the embedding.
Because G is connected and has k + 1 ≥ n edges, it is not a tree, so it must have a cycle C.
Let e be any edge in C, and consider what happens when we remove the edge e from G to
create a new graph G′. We can turn our crossing-free embedding for G into a crossing-free
embedding for G′ by removing the line segment corresponding to e. Because G′ has k edges,
we can apply the induction hypothesis, which states that n − k + f ′ = 2, where f ′ is the
number of faces in G′’s embedding.

When we add e back to G′, we split a face in the embedding into two faces, so G has
f = f ′ + 1 faces. That means that

n− (k + 1) + (f ′ + 1) = n− k + f ′ = 2

which is the desired result.

Corollary. Let G be a connected planar graph, and let f and f ′ be the number of faces
in two different crossing-free embeddings of G. Then f = f ′.

Proof. From Euler’s Formula, f = 2 + m− n and f ′ = 2 + m− n, so f = f ′.

Definition. We define the degree of a face in a crossing-free embedding to be the number
of edge “sides” that the face is touching. For example, in the below graph the degree of
the right enclosed face is 8, because both sides of e touch G.

e

Example. Let G = (V,E) be a planar graph. The sum of the degrees of all of the faces in
any crossing-free embedding of G is 2|E|.
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Proof. Each edge in the graph either lies on the border between two faces or lies entirely
within one face. In either case, both sides of the edge touch one of the faces, so each edge
contributes two to the sum of degrees of the faces. The claim follows.

Using the above definition and proposition, we can prove some other corollaries to Eu-
ler’s formula:

Corollary. Let G = (V,E) be a planar graph with at least two edges. Then |E| ≤ 3|V |−6.

Proof. If G is not connected, label the connected components of G C1, . . . , Ck, and for
each i ∈ [1..k − 1], add an edge between some vertex of Ci and some vertex of Ci+1. Let
the resulting graph be G′ = (V,E′). Because we added edges, |E′| ≥ E.

G′ is still planar (see if you can convince yourself why), so we can fix a crossing-free
embedding E for it. By Euler’s formula f = 2 + |E′| − |V |. If we consider the total degree
of all of the faces in E , from our above result it is equal to 2|E′|. On the other hand, if G′

is acyclic then f = 1 and the degree of the one face is at least 4 ≥ 3f (because we assumed
that G had at least two edges). Otherwise, there is a cycle on each face’s border, and cycles
have at least 3 edges, so the total degree is at least 3f .

Thus,
2|E′| ≥ 3f = 3 · (2 + |E′| − |V |) = 6 + 3|E′| − 3|V |

Re-arranging, |E′| ≤ 3|V | − 6, so |E| ≤ 3|V | − 6.


