# Mathematical Foundations of Computer Science Lecture Outline November 12, 2024

## **Equivalence Relations**

A relation R on a set A is an *equivalence relation* if and only if it is reflexive, symmetric and transitive.

**Example** Let m be a positive integer. Show that the *congruent modulo* m relation

$$R = \{(a, b) : a \equiv b \pmod{m}\}$$

is an equivalence relation on the set of integers.

(If m is a positive integer then integers x and y are congruent modulo m, written as  $x \equiv y \pmod{m}$ , if m|(x-y)).

**Solution.** To show that R is an equivalence relation we need to show that it is reflexive, symmetric, and transitive. R is reflexive because a - a = 0, and  $0 = m \cdot 0$ . R is symmetric because if  $a \equiv b \pmod{m}$ , it means that  $a-b = m \cdot k$ , for some integer k. Thus b-a = m(-k) and hence  $(b, a) \in R$ . To show that R is transitive, suppose that that  $a \equiv b \pmod{m}$  and  $b \equiv c \pmod{m}$ . Thus, for some integers  $q_1$  and  $q_2$ , we have  $a-b = m(q_1)$  and  $b-c = m(q_2)$ . Adding these two equations, we get  $a - c = m(q_1 + q_2)$  and thus  $a \equiv c \pmod{m}$ . Hence R is transitive.

**Example.** Suppose that R is the relation on the set of strings of English letters such that a R b if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

**Solution.** R is reflexive as l(a) = l(a), for any string a, and hence a R a. Next, suppose that a R b. This means that l(a) = l(b) and hence l(b) = l(a). Thus b R a and hence R is symmetric. Finally, suppose that a R b and b R c. Thus l(a) = l(b) and l(b) = l(c), which implies that l(a) = l(c). Hence a R c and R is transitive. Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

#### Equivalence Classes

Let R be an equivalence relation on a set A and let  $a \in A$ . The equivalence class of a, denoted by  $[a]_R^1$ , is the set of all elements of A related (by R) to a; that is

$$[a]_R = \{x \in A \mid a R x\}$$

If  $b \in [a]_R$ , then b is called the *representative* of this equivalence class. Any element in a class can be used as a representative of the class.

<sup>&</sup>lt;sup>1</sup>The subscript R in  $[a]_R$  is dropped when the relation in reference is clear from the context.

Lecture Outline

**Example.** Let R be an equivalence relation on a set A. Then the following statements for elements  $a, b \in A$  are equivalent

(i)  $b \in [a]$  (ii) [a] = [b] (iii)  $[a] \cap [b] \neq \emptyset$ 

**Solution.** We will prove (i)  $\Longrightarrow$  (ii), (ii)  $\Longrightarrow$  (iii), and (iii)  $\Longrightarrow$  (i). (i)  $\Longrightarrow$  (ii): We will prove the claim by showing that when  $b \in [a]$ ,  $[a] \subseteq [b]$  and  $[b] \subseteq [a]$ . Let c be any arbitrary but particular element in [a]. By definition, a R c. Since  $b \in [a]$ , it means that a R b, which further implies b R a (since R is symmetric). Since R is transitive and we know that b R a and a R c, we have b R c and thus  $c \in [b]$ . We have thus proved that  $[a] \subseteq [b]$ .

Let  $d \in [b]$ . By definition, b R d. We also know that a R b. Since R is transitive, a R b and b R d, we have a R d. Thus, by definition,  $d \in [a]$ . We have thus proved that  $[b] \subseteq [a]$ .

(ii)  $\implies$  (iii): To prove this we just need to show that  $[a] \neq \emptyset$ . Since R is reflexive, we know that  $a \in [a]$ . Since [a] = [b] and [a] is non-empty, it follows that  $[a] \cap [b] \neq \emptyset$ .

(iii)  $\implies$  (i): Let  $c \in [a] \cap [b]$ . Thus a R c and b R c. Since R is symmetric, we have c R b. Since R is transitive, a R c and c R b, we have a R b. By, definition  $b \in [a]$ .

**Example.** Let R be an equivalence relation on a set A. Then the set  $\{[a]_R | a \in A\}$  is a partition of the set A. Each element of the set is called an *equivalence class* of R. Conversely, given a partition  $\{A_i\}$  of the set A, there is an equivalence relation R that has sets  $A_i$  as its equivalence classes.

**Solution.** Since each element  $a \in A$  is in its own equivalent class [a], each equivalent class is non-empty and  $\bigcup_{a \in A} [a] = A$ . From the claim in the previous example, for any two elements a and b in A, [a] and [b] are either equal or disjoint. Thus the equivalent classes partition the set A.

We now prove the converse. Let R be the relation on A that contains all possible pairs (x, y), where x and y belong to the same subset  $A_i$  in the partition. We want to show that R is reflexive, symmetric and transitive. R is reflexive as any element  $a \in A$  is in the same subset of the partition as itself. Next suppose that aRb. This means that a and b are in the same subset of the partition of A. Thus, we have bRa and hence R is symmetric. Finally, suppose that aRb and bRc. This means that a and b are in the same subset of the partition and bRc. This means that a and b are in the same subset of the partition and bRc. This means that a and c are in the same subset of the partition and bRc. This means that a and c are in the same subset of the partition and hence we have aRc. Thus R is transitive.

**Example.** If an equivalence relation R is defined by the following set partition on A, then express R as a set of ordered pairs.

$$A = \{3, 4, 1\} \cup \{2\}$$

Lecture Outline

#### Solution.

## $R = \{(1,1), (2,2), (3,3), (4,4), (1,3), (1,4), (3,1), (3,4), (4,3), (4,1)\}$

#### **Representing Relations Using Directed Graphs**

A directed graph, or digraph G = (V, E) consists of a set V of vertices and a subset  $E \subseteq V \times V$  of edges or arcs. An edge of the form (u, u) is represented as an arc from u to itself.

A binary relation R on a set A can be represented as a directed graph in which the vertices represent the elements of A and for every ordered pair  $(a, b) \in R$ , there is an edge from vertex a to vertex b. For example, the digraph corresponding to the relation  $R = \{(1,2), (1,3), (2,1), (2,2), (2,4), (3,2), (4,3)\}$  on the set  $\{1,2,3,4\}$  is shown below.



The directed graph G representing a relation R can be used to determine properties of the relation R. R is reflexive iff G contains a self-loop at every vertex. R is symmetric iff for each edge (a, b)  $(a \neq b)$  in G, there is also an edge (b, a) in G. R is antisymmetric iff for any two distinct vertices a, b there are no edges between them or exactly one of (a, b) or (b, a) is in G. Thus R is antisymmetric iff for any two distinct vertices a and b, both (a, b)and (b, a) are not present in G. The relation R is transitive iff edge (u, w) always exists whenever there is an edge (u, v) and (v, w), for some vertex v.

## The Probabilistic Method

A tournament graph is a directed graph with exactly one directed edge between any pair of vertices. Every tournament graph has at least one Hamiltonian path, a path that visits each vertex exactly once (can be proved using induction). In 1943, Szele used the Probabilistic Method to show the existence of a tournament graph with a large number of Hamiltonian paths. Note that there are tournaments in which there is exactly one Hamiltonian path. For example, the tournament on vertices  $\{1, 2, ..., n\}$  in which there is a directed edge (i, j) iff i < j has exactly one Hamiltonian path.

**Example.** Prove that there is a *n*-vertex tournament with at least  $\frac{n!}{2^{n-1}}$  distinct Hamiltonian paths.

Lecture Outline

**Solution.** Let G = (n, 1/2) be a *n*-vertex tournament graph, in which an edge between any two vertices u and v is directed towards u with probability  $\frac{1}{2}$  and towards v with probability  $\frac{1}{2}$ . Let X denote the total number of Hamiltonian paths in G and let  $X_{\sigma}$  be an indicator random variable that is 1, iff a permutation  $\sigma$  of the vertices in G yields a Hamiltonian path. Clearly,  $X = \sum_{\sigma} X_{\sigma}$ . Applying the Linearity of Expectation, we get

$$\mathbf{E}[X] = \sum_{\sigma} \mathbf{E}[X_{\sigma}]$$
$$= \sum_{\sigma} \Pr[X_{\sigma} = 1]$$
$$= \sum_{\sigma} \left(\frac{1}{2}\right)^{n-1}$$
$$= \frac{n!}{2^{n-1}}$$

Since a random orientation of the edges, i.e., a random tournament, yields us the above number in expectation, there must be an orientation of the edges, i.e., a tournament, in which the number of Hamiltonian paths is at least  $n!/2^{n-1}$ .