Mathematical Foundations of Computer Science Lecture Outline November 12, 2024

Equivalence Relations

A relation R on a set A is an *equivalence relation* if and only if it is reflexive, symmetric and transitive.

Example Let m be a positive integer. Show that the *congruent modulo* m relation

$$
R = \{(a, b) : a \equiv b \pmod{m}\}
$$

is an equivalence relation on the set of integers.

(If m is a positive integer then integers x and y are congruent modulo m, written as $x \equiv y$ $(mod m),$ if $m|(x-y)).$

Solution. To show that R is an equivalence relation we need to show that it is reflexive, symmetric, and transitive. R is reflexive because $a - a = 0$, and $0 = m \cdot 0$. R is symmetric because if $a \equiv b \pmod{m}$, it means that $a - b = m \cdot k$, for some integer k. Thus $b-a = m(-k)$ and hence $(b, a) \in R$. To show that R is transitive, suppose that that $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Thus, for some integers q_1 and q_2 , we have $a-b = m(q_1)$ and $b-c = m(q_2)$. Adding these two equations, we get $a - c = m(q_1 + q_2)$ and thus $a \equiv c \pmod{m}$. Hence R is transitive.

Example. Suppose that R is the relation on the set of strings of English letters such that a R b if and only if $l(a) = l(b)$, where $l(x)$ is the length of the string x. Is R an equivalence relation?

Solution. R is reflexive as $l(a) = l(a)$, for any string a, and hence a R a. Next, suppose that a R b. This means that $l(a) = l(b)$ and hence $l(b) = l(a)$. Thus b R a and hence R is symmetric. Finally, suppose that $a R b$ and $b R c$. Thus $l(a) = l(b)$ and $l(b) = l(c)$, which implies that $l(a) = l(c)$. Hence a R c and R is transitive. Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Equivalence Classes

Let R be an equivalence relation on a set A and let $a \in A$. The *equivalence class of a*, denoted by $[a]_R^1$, is the set of all elements of A related (by R) to a; that is

$$
[a]_R = \{ x \in A \mid a \, R \, x \}
$$

If $b \in [a]_R$, then b is called the *representative* of this equivalence class. Any element in a class can be used as a representative of the class.

¹The subscript R in $[a]_R$ is dropped when the relation in reference is clear from the context.

Example. Let R be an equivalence relation on a set A. Then the following statements for elements $a, b \in A$ are equivalent

(i) $b \in [a]$ (ii) $[a] = [b]$ (iii) $[a] \cap [b] \neq \emptyset$

Solution. We will prove (i) \implies (ii), (ii) \implies (iii), and (iii) \implies (i). (i) \implies (ii): We will prove the claim by showing that when $b \in [a]$, $[a] \subseteq [b]$ and $[b] \subseteq [a]$. Let c be any arbitrary but particular element in [a]. By definition, $a R c$. Since $b \in [a]$, it means that $a R b$, which further implies $b R a$ (since R is symmetric). Since R is transitive and we know that $b R a$ and $a R c$, we have $b R c$ and thus $c \in [b]$. We have thus proved that $[a] \subseteq [b]$.

Let $d \in [b]$. By definition, $b R d$. We also know that $a R b$. Since R is transitive, $a R b$ and $b R d$, we have a R d. Thus, by definition, $d \in [a]$. We have thus proved that $[b] \subseteq [a]$.

(ii) \implies (iii): To prove this we just need to show that $[a] \neq \emptyset$. Since R is reflexive, we know that $a \in [a]$. Since $[a] = [b]$ and $[a]$ is non-empty, it follows that $[a] \cap [b] \neq \emptyset$.

(iii) \implies (i): Let $c \in [a] \cap [b]$. Thus a R c and b R c. Since R is symmetric, we have c R b. Since R is transitive, a R c and c R b, we have a R b. By, definition $b \in [a]$.

Example. Let R be an equivalence relation on a set A. Then the set $\{[a]_R | a \in A\}$ is a partition of the set A . Each element of the set is called an *equivalence class* of R . Conversely, given a partition $\{A_i\}$ of the set A, there is an equivalence relation R that has sets A_i as its equivalence classes.

Solution. Since each element $a \in A$ is in its own equivalent class [a], each equivalent class is non-empty and $\bigcup_{a \in A} [a] = A$. From the claim in the previous example, for any two elements a and b in A , $[a]$ and $[b]$ are either equal or disjoint. Thus the equivalent classes partition the set A.

We now prove the converse. Let R be the relation on A that contains all possible pairs (x, y) , where x and y belong to the same subset A_i in the partition. We want to show that R is reflexive, symmetric and transitive. R is reflexive as any element $a \in A$ is in the same subset of the partition as itself. Next suppose that $a R b$. This means that a and b are in the same subset of the partition of A. Thus, we have $b R a$ and hence R is symmetric. Finally, suppose that $a R b$ and $b R c$. This means that a and b are in the same subset of the partition and so are b and c . This means that a and c are in the same subset of the partition and hence we have $a R c$. Thus R is transitive.

Example. If an equivalence relation R is defined by the following set partition on A , then express R as a set of ordered pairs.

$$
A = \{3, 4, 1\} \cup \{2\}
$$

Solution.

$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (1, 4), (3, 1), (3, 4), (4, 3), (4, 1)\}\$

Representing Relations Using Directed Graphs

A directed graph, or digraph $G = (V, E)$ consists of a set V of vertices and a subset $E \subseteq V \times V$ of edges or arcs. An edge of the form (u, u) is represented as an arc from u to itself.

A binary relation R on a set A can be represented as a directed graph in which the vertices represent the elements of A and for every ordered pair $(a, b) \in R$, there is an edge from vertex a to vertex b . For example, the digraph corresponding to the relation $R = \{(1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 2), (4, 3)\}\$ on the set $\{1, 2, 3, 4\}$ is shown below.

The directed graph G representing a relation R can be used to determine properties of the relation R. R is reflexive iff G contains a self-loop at every vertex. R is symmetric iff for each edge (a, b) $(a \neq b)$ in G, there is also an edge (b, a) in G. R is antisymmetric iff for any two distinct vertices a, b there are no edges between them or exactly one of (a, b) or (b, a) is in G. Thus R is antisymmetric iff for any two distinct vertices a and b, both (a, b) and (b, a) are not present in G. The relation R is transitive iff edge (u, w) always exists whenever there is an edge (u, v) and (v, w) , for some vertex v.

The Probabilistic Method

A tournament graph is a directed graph with exactly one directed edge between any pair of vertices. Every tournament graph has at least one Hamiltonian path, a path that visits each vertex exactly once (can be proved using induction). In 1943, Szele used the Probabilistic Method to show the existence of a tournament graph with a large number of Hamiltonian paths. Note that there are tournaments in which there is exactly one Hamiltonian path. For example, the tournament on vertices $\{1, 2, \ldots, n\}$ in which there is a directed edge (i, j) iff $i < j$ has exactly one Hamiltonian path.

Example. Prove that there is a *n*-vertex tournament with at least $\frac{n!}{2^{n-1}}$ distinct Hamiltonian paths.

Solution. Let $G = (n, 1/2)$ be a *n*-vertex tournament graph, in which an edge between any two vertices u and v is directed towards u with probability $\frac{1}{2}$ and towards v with probability $\frac{1}{2}$. Let X denote the total number of Hamiltonian paths in G and let X_{σ} be an indicator random variable that is 1, iff a permutation σ of the vertices in G yields a Hamiltonian path. Clearly, $X = \sum_{\sigma} X_{\sigma}$. Applying the Linearity of Expectation, we get

$$
\mathbf{E}[X] = \sum_{\sigma} \mathbf{E}[X_{\sigma}]
$$

$$
= \sum_{\sigma} \Pr[X_{\sigma} = 1]
$$

$$
= \sum_{\sigma} \left(\frac{1}{2}\right)^{n-1}
$$

$$
= \frac{n!}{2^{n-1}}
$$

Since a random orientation of the edges, i.e., a random tournament, yields us the above number in expectation, there must be an orientation of the edges, i.e., a tournament, in which the number of Hamiltonian paths is at least $n!/2^{n-1}$.