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Equivalence Relations

A relation R on a set A is an equivalence relation if and only if it is reflexive, symmetric
and transitive.

Example Let m be a positive integer. Show that the congruent modulo m relation

R = {(a, b) : a ≡ b (mod m)}

is an equivalence relation on the set of integers.
(If m is a positive integer then integers x and y are congruent modulo m, written as x ≡ y
(mod m), if m|(x− y)).

Solution. To show that R is an equivalence relation we need to show that it is reflexive,
symmetric, and transitive. R is reflexive because a− a = 0, and 0 = m · 0. R is symmetric
because if a ≡ b (mod m), it means that a−b = m·k, for some integer k. Thus b−a = m(−k)
and hence (b, a) ∈ R. To show that R is transitive, suppose that that a ≡ b (mod m) and
b ≡ c (mod m). Thus, for some integers q1 and q2, we have a−b = m(q1) and b−c = m(q2).
Adding these two equations, we get a− c = m(q1 + q2) and thus a ≡ c (mod m). Hence R
is transitive.

Example. Suppose that R is the relation on the set of strings of English letters such that
aR b if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence
relation?

Solution. R is reflexive as l(a) = l(a), for any string a, and hence aRa. Next, suppose
that aR b. This means that l(a) = l(b) and hence l(b) = l(a). Thus bR a and hence R is
symmetric. Finally, suppose that aR b and bR c. Thus l(a) = l(b) and l(b) = l(c), which
implies that l(a) = l(c). Hence aR c and R is transitive. Since R is reflexive, symmetric,
and transitive, it is an equivalence relation.

Equivalence Classes

Let R be an equivalence relation on a set A and let a ∈ A. The equivalence class of a,
denoted by [a]R

1, is the set of all elements of A related (by R) to a; that is

[a]R = {x ∈ A | aRx}

If b ∈ [a]R, then b is called the representative of this equivalence class. Any element in a
class can be used as a representative of the class.

1The subscript R in [a]R is dropped when the relation in reference is clear from the context.
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Example. Let R be an equivalence relation on a set A. Then the following statements
for elements a, b ∈ A are equivalent

(i) b ∈ [a] (ii) [a] = [b] (iii) [a] ∩ [b] 6= ∅

Solution. We will prove (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i).
(i) =⇒ (ii): We will prove the claim by showing that when b ∈ [a], [a] ⊆ [b] and [b] ⊆ [a].
Let c be any arbitrary but particular element in [a]. By definition, aR c. Since b ∈ [a], it
means that aR b, which further implies bR a (since R is symmetric). Since R is transitive
and we know that bR a and aR c, we have bR c and thus c ∈ [b]. We have thus proved that
[a] ⊆ [b].

Let d ∈ [b]. By definition, bR d. We also know that aR b. Since R is transitive, aR b
and bR d, we have aRd. Thus, by definition, d ∈ [a]. We have thus proved that [b] ⊆ [a].

(ii) =⇒ (iii): To prove this we just need to show that [a] 6= ∅. Since R is reflexive, we know
that a ∈ [a]. Since [a] = [b] and [a] is non-empty, it follows that [a] ∩ [b] 6= ∅.

(iii) =⇒ (i): Let c ∈ [a] ∩ [b]. Thus aR c and bR c. Since R is symmetric, we have cR b.
Since R is transitive, aR c and cR b, we have aR b. By, definition b ∈ [a].

Example. Let R be an equivalence relation on a set A. Then the set {[a]R | a ∈ A}
is a partition of the set A. Each element of the set is called an equivalence class of R.
Conversely, given a partition {Ai} of the set A, there is an equivalence relation R that has
sets Ai as its equivalence classes.

Solution. Since each element a ∈ A is in its own equivalent class [a], each equivalent
class is non-empty and

⋃
a∈A[a] = A. From the claim in the previous example, for any two

elements a and b in A, [a] and [b] are either equal or disjoint. Thus the equivalent classes
partition the set A.

We now prove the converse. Let R be the relation on A that contains all possible pairs
(x, y), where x and y belong to the same subset Ai in the partition. We want to show that
R is reflexive, symmetric and transitive. R is reflexive as any element a ∈ A is in the same
subset of the partition as itself. Next suppose that aR b. This means that a and b are
in the same subset of the partition of A. Thus, we have bR a and hence R is symmetric.
Finally, suppose that aR b and bR c. This means that a and b are in the same subset of
the partition and so are b and c. This means that a and c are in the same subset of the
partition and hence we have aR c. Thus R is transitive.

Example. If an equivalence relation R is defined by the following set partition on A, then
express R as a set of ordered pairs.

A = {3, 4, 1} ∪ {2}



November 12, 2024 Lecture Outline 3

Solution.

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (1, 4), (3, 1), (3, 4), (4, 3), (4, 1)}

Representing Relations Using Directed Graphs

A directed graph, or digraph G = (V,E) consists of a set V of vertices and a subset E ⊆ V×V
of edges or arcs. An edge of the form (u, u) is represented as an arc from u to itself.

A binary relation R on a set A can be represented as a directed graph in which the
vertices represent the elements of A and for every ordered pair (a, b) ∈ R, there is an
edge from vertex a to vertex b. For example, the digraph corresponding to the relation
R = {(1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 2), (4, 3)} on the set {1, 2, 3, 4} is shown below.
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The directed graph G representing a relation R can be used to determine properties of
the relation R. R is reflexive iff G contains a self-loop at every vertex. R is symmetric iff
for each edge (a, b) (a 6= b) in G, there is also an edge (b, a) in G. R is antisymmetric iff
for any two distinct vertices a, b there are no edges between them or exactly one of (a, b) or
(b, a) is in G. Thus R is antisymmetric iff for any two distinct vertices a and b, both (a, b)
and (b, a) are not present in G. The relation R is transitive iff edge (u,w) always exists
whenever there is an edge (u, v) and (v, w), for some vertex v.

The Probabilistic Method

A tournament graph is a directed graph with exactly one directed edge between any pair of
vertices. Every tournament graph has at least one Hamiltonian path, a path that visits each
vertex exactly once (can be proved using induction). In 1943, Szele used the Probabilistic
Method to show the existence of a tournament graph with a large number of Hamiltonian
paths. Note that there are tournaments in which there is exactly one Hamiltonian path.
For example, the tournament on vertices {1, 2, . . . , n} in which there is a directed edge (i, j)
iff i < j has exactly one Hamiltonian path.

Example. Prove that there is a n-vertex tournament with at least n!
2n−1 distinct Hamil-

tonian paths.
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Solution. Let G = (n, 1/2) be a n-vertex tournament graph, in which an edge between
any two vertices u and v is directed towards u with probability 1

2 and towards v with
probability 1

2 . Let X denote the total number of Hamiltonian paths in G and let Xσ be
an indicator random variable that is 1, iff a permutation σ of the vertices in G yields a
Hamiltonian path. Clearly, X =

∑
σXσ. Applying the Linearity of Expectation, we get

E[X] =
∑
σ

E[Xσ]

=
∑
σ

Pr[Xσ = 1]

=
∑
σ

(
1

2

)n−1
=

n!

2n−1

Since a random orientation of the edges, i.e., a random tournament, yields us the above
number in expectation, there must be an orientation of the edges, i.e., a tournament, in
which the number of Hamiltonian paths is at least n!/2n−1.


