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Operations on Relations

We can take a relation or a pair of relations and produce a new relation. Since a relation R
from set A to set B is a subset of A×B, operations that apply to sets apply to relations.

Example. Let A = {1, 2, 3} and B = {a, b, c, d}. Let R1 = {(1, a), (1, c), (2, c), (3, a)}.
Let R2 = {(1, b), (1, c), (1, d), (2, b)}. Then we have

R1 ∪R2 = {(1, a), (1, b), (1, c), (1, d), (2, b), (2, c), (3, a)}
R1 ∩R2 = {(1, c)}
R1 \R2 = {(1, a), (2, c), (3, a)}
R2 \R1 = {(1, b), (1, d), (2, b)}

Example. Let A and B be the set of all students and the set of all courses at a school,
respectively. Suppose R1 consists of all ordered pairs (a, b), where a is a student who has
taken course b, and R2 consists of all ordered pairs (a, b), where a is a student who requires
course b to graduate. What are the relations R1 ∪ R2, R1 ∩ R2, R1 ⊕ R2, R1 \ R2, and
R2 \R1?

Solution. R1 ∪R2 consists of all ordered pairs (a, b), where a is a student who has taken
course b or requires course b to graduate.
R1 ∩R2 consists of all ordered pairs (a, b), where a is a student who has taken course b and
requires course b to graduate.
R1 ⊕R2 consists of all ordered pairs (a, b), where a is a student who has taken course b or
requires course b to graduate, but not both.
R1 \R2 consists of all ordered pairs (a, b), where a is a student who has taken course b but
does not require it to graduate.
R2 \ R1 consists of all ordered pairs (a, b), where a is a student who required course b to
graduate but has not taken it.

Inverse Relation

Let R be a relation from A to B. Then the inverse of R, written R−1, is the relation from
B to A defined by

R−1 = {(b, a) | (a, b) ∈ R}

Example. Let A = {a, b, c} and let R = {(a, a), (a, b), (b, a), (c, a)}. Then

R−1 = {(a, a), (b, a), (a, b), (a, c)}

Note that R and R−1 are almost equal.
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Example. A relation R on a set A is symmetric iff R = R−1.

Solution. ( =⇒ ) Suppose R is symmetric on A. We will prove that R = R−1 by showing
that R ⊆ R−1 and R−1 ⊆ R. We will prove R ⊆ R−1 by showing that an arbitrary element
(a, b) ∈ R is also in R−1. Since R is symmetric, (b, a) ∈ R. By definition of R−1, since
(b, a) ∈ R, it must be that (a, b) ∈ R−1. To prove R−1 ⊆ R, we will show that an arbitrary
element (a, b) ∈ R−1 is also in R. By definition of R−1, it must be that (b, a) ∈ R. Since R
is symmetric, (a, b) must also be in R.
(⇐= ) Suppose that R = R−1. Let (a, b) be an arbitrary ordered pair in R. To prove that
R is symmetric we need to show that (b, a) ∈ R. By definition of R−1, (b, a) ∈ R−1. Since
R = R−1, R must contain (b, a).

Composition of Relations

Let R be a relation from A to B and S be a relation from B to C. The composition of S
with R is the relation from A to C:

S ◦R = {(x, z) | there exists a y ∈ B such that xR y and y S z}

Example. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {a, b, c}. Let R and S be
relations from A to B and from B to C, respectively, where

R = {(1, 3), (3, 3), (3, 4), (4, 5), (4, 6)}
S = {(3, b), (4, a), (4, c), (5, a), (5, b), (6, c)}

What is the composite of the relations R and S?

Solution. S ◦R = {(1, b), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)}

Let R be a relation on a set A. The powers Rn, n = 1, 2, 3, . . . , are defined recursively by

R1 = R and Rn+1 = Rn ◦R

Observe that R2 = R ◦R,R3 = R2 ◦R = (R ◦R) ◦R, and so on.

Example. Let R be a relation on a set A. Then R is transitive iff Rn ⊆ R, for all n ≥ 1.

Solution. We first show that if Rn ⊆ R, for all n ≥ 1, then R is transitive. Note that if
(a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R2. Since R2 ⊆ R, it must be that (a, c) ∈ R, which
means that R is transitive.

We will prove R is transitive =⇒ Rn ⊆ R, for all n ≥ 1, using induction on n.
Induction hypothesis: Assume that if R is transitive then Rk ⊆ R, for some k ≥ 1.
Base Case: The claim holds tivially when n = 1, since R1 = R.
Induction Step: We want to prove the claim when n = k + 1. In other words, we want to

prove that if R is transitive then Rk+1 ⊆ R. We will prove this by showing that an arbitrary
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but particular ordered pair (a, b) in Rk+1 is also present in R. By definition, Rk+1 = Rk ◦R.
Since (a, b) ∈ Rk+1, there must be a c, such that (a, c) ∈ R and (c, b) ∈ Rk. We know by
induction hypothesis that Rk ⊆ R, which means that (c, b) ∈ R. Since R is transitive, and
(a, c) ∈ R and (c, b) ∈ R, we have (a, b) ∈ R. This completes the proof.

An independent set S in G is a subset of vertices such that no two vertices in S share
an edge. The independence number of a graph G, denoted by α(G) is the size of the largest
independent set in G.

Example. Let n be the number of vertices in G and m be the number of edges, and let
d = 2m

n ≥ 1 be the average degree. Then

α(G) ≥ n

2d

This is a weaker version of the celebrated Turán’s theorem.

Solution. Construct a random subset S of vertices by placing each vertex in S indepen-
dently with probability p (to be determined later). Let X be the random variable denoting
the number of vertices in S and let Y be the random variable denoting the number of edges
whose both endpoints are in S. Let Ye be an indicator random variable that is 1 iff both
endpoints of e are in S. By the Linearity of Expectation we have

E[X] = np and E[Y ] =
∑
e

E[Ye] =
∑
e

Pr[Ye = 1] = mp2 =
nd

2
p2

Note that the quantity X − Y denotes the number of vertices in S minus the number of
edges with both endpoints in S. By the Linearity of Expectation we get

E[X − Y ] ≥ np− nd

2
p2 = np

(
1− dp

2

)
This means that there exists a set S such that the number of vertices in S exceeds the
number of edges in S by the above quantity. We now modify set S by deleting an arbitrary

endpoint of each edge. The resulting set S′ has at least np
(

1− dp
2

)
vertices left and has

no edges between any of its vertices. We want to maximize |S′|, so we set p = 1/d (using
d ≥ 1), giving us |S′| = n

2d .

For any graph G = (V,E), a set of vertices D ⊆ V is called a dominating set if every
vertex in V \D is adjacent to a vertex in D.

Example. Prove that any connected graph G = (V,E) with n ≥ 2 vertices and minimum

degree δ(G) = δ, contains a dominating set of size at most n(1+ln(1+δ))
1+δ .
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Solution. For each vertex v ∈ V , add it to the set X independently with probability p.
Let Y ⊆ V \X be the vertices that are not dominated by X, i.e., they are vertices in V \X
that are not dominated by X. Then X ∪ Y is a dominating set for G. We will now show
that E[X ∪ Y ] is not too large. Since X and Y are disjoint sets, we have

E[X ∪ Y ] = E[X] + E[Y ] (1)

We consider the following random variables.
Xv: random variable that is 1 if vertex v is in X, 0, otherwise.
Yv: random variable that is 1 if vertex v and all of its neighbors are not in X, 0, otherwise.

X =
∑
v

Xv

∴ E[X] =
∑
v

Pr[Xv = 1]

= np

Y =
∑
v

Yv

∴ E[Y ] =
∑
v

Pr[Yv = 1]

=
∑
v

(1− p)deg(v)+1

≤
∑
v

(1− p)δ+1

= n(1− p)δ+1

Plugging the values of E[X] and E[Y ] in (1) we get

E[X ∪ Y ] ≤ np+ n(1− p)δ+1 ≤ np+ ne−p(δ+1),

The last expression is minimized when

p =
ln(1 + δ)

1 + δ

Thus, we can find a dominating set of size at most n(1+ln(1+δ))
1+δ .


