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Operations on Relations

We can take a relation or a pair of relations and produce a new relation. Since a relation R
from set A to set B is a subset of A x B, operations that apply to sets apply to relations.

Example. Let A = {1,2,3} and B = {a,b,c¢,d}. Let Ry = {(1,a),(1,¢),(2,¢),(3,a)}.
Let Re = {(1,b),(1,¢),(1,d),(2,b)}. Then we have
R1U Ry = {(L,a),(1,b),(1,¢),(1,d),(2,0),(2,¢), (3,a)}
RiNRy={(1,¢)
R\ R2 ={(1,0a),(2,¢),(3,a)}
Ry \ R = {(1,b),(1,d),(2,0)}

,C

Example. Let A and B be the set of all students and the set of all courses at a school,
respectively. Suppose R; consists of all ordered pairs (a,b), where a is a student who has
taken course b, and Ra consists of all ordered pairs (a, b), where a is a student who requires
course b to graduate. What are the relations Ry U Ry, R1 N Re, Ry & Ry, R1 \ Ra, and
Ry \ Ry?

Solution. R; U Ry consists of all ordered pairs (a,b), where a is a student who has taken
course b or requires course b to graduate.

R1 N Ry consists of all ordered pairs (a, b), where a is a student who has taken course b and
requires course b to graduate.

R; & Ry consists of all ordered pairs (a, b), where a is a student who has taken course b or
requires course b to graduate, but not both.

R; \ Ry consists of all ordered pairs (a,b), where a is a student who has taken course b but
does not require it to graduate.

Rs \ Ry consists of all ordered pairs (a,b), where a is a student who required course b to
graduate but has not taken it.

Inverse Relation

Let R be a relation from A to B. Then the inverse of R, written R™!, is the relation from
B to A defined by

R~ ={(b,a)|(a,b) € R}
Example. Let A ={a,b,c} and let R = {(a,a), (a,b), (b,a),(c,a)}. Then

Ril = {(CL, a’)v (b’ a’)v (CL, b)? (a, C)}

Note that R and R~! are almost equal.
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Example. A relation R on a set A is symmetric iff R = R~!.

Solution. (== ) Suppose R is symmetric on A. We will prove that R = R~! by showing
that RC R~!and R~' C R. We will prove R C R~! by showing that an arbitrary element
(a,b) € R is also in R~!. Since R is symmetric, (b,a) € R. By definition of R, since
(b,a) € R, it must be that (a,b) € R~!. To prove R~! C R, we will show that an arbitrary
element (a,b) € R™1 is also in R. By definition of R~1, it must be that (b,a) € R. Since R
is symmetric, (a,b) must also be in R.

( <= ) Suppose that R = R~!. Let (a,b) be an arbitrary ordered pair in R. To prove that
R is symmetric we need to show that (b,a) € R. By definition of R™!, (b,a) € R™!. Since
R = R, R must contain (b,a).

Composition of Relations

Let R be a relation from A to B and S be a relation from B to C. The composition of S
with R is the relation from A to C"

SoR={(x,z)| there exists a y € B such that x Ry and y S z}

Example. Let A = {1,2,3,4}, B = {3,4,5,6}, and C = {a,b,c}. Let R and S be
relations from A to B and from B to C, respectively, where

R = {(17 3)’ (3’ 3)7 (374)7 (4’ 5)’ (47 6)}
S =A{(3,b),(4,a),(4,¢),(5,a),(5,b),(6,¢c)}

What is the composite of the relations R and S7?

Solution. SoR={(1,b),(3,a),(3,b),(3,¢),(4,a),(4,b),(4,c)}

Let R be a relation on a set A. The powers R",n =1,2,3,..., are defined recursively by
R'=R and R =R"oR

Observe that R? = Ro R,R®* = R?0c R= (Ro R) o R, and so on.
Example. Let R be a relation on a set A. Then R is transitive iff R™ C R, for all n > 1.

Solution. We first show that if R™ C R, for all n > 1, then R is transitive. Note that if
(a,b) € R and (b,¢) € R then (a,c) € R?. Since R? C R, it must be that (a,c) € R, which
means that R is transitive.

We will prove R is transitive = R"™ C R, for all n > 1, using induction on n.
Induction hypothesis: Assume that if R is transitive then R¥ C R, for some k > 1.
Base Case: The claim holds tivially when n = 1, since R! = R.
Induction Step: We want to prove the claim when n = k& + 1. In other words, we want to

prove that if R is transitive then R¥*1 C R. We will prove this by showing that an arbitrary
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but particular ordered pair (a,b) in RFE*1 is also present in R. By definition, R**! = RFoR.
Since (a,b) € R, there must be a ¢, such that (a,c) € R and (¢,b) € R*. We know by
induction hypothesis that R¥ C R, which means that (¢,b) € R. Since R is transitive, and
(a,c) € R and (¢,b) € R, we have (a,b) € R. This completes the proof.

An independent set S in G is a subset of vertices such that no two vertices in S share
an edge. The independence number of a graph G, denoted by a(G) is the size of the largest
independent set in G.

Example. Let n be the number of vertices in G and m be the number of edges, and let
d= 277” > 1 be the average degree. Then

n
G) > —

(@) =2 55

This is a weaker version of the celebrated Turan’s theorem.

Solution. Construct a random subset S of vertices by placing each vertex in .S indepen-
dently with probability p (to be determined later). Let X be the random variable denoting
the number of vertices in S and let Y be the random variable denoting the number of edges
whose both endpoints are in S. Let Y. be an indicator random variable that is 1 iff both
endpoints of e are in S. By the Linearity of Expectation we have

EX]=np and E}Y]|= ZE[Y@] = ZPF[Ye =1 =mp? = %dpz

Note that the quantity X — Y denotes the number of vertices in S minus the number of
edges with both endpoints in S. By the Linearity of Expectation we get

d d
E[X—Y]an—nQp2:np<l—2p>

This means that there exists a set S such that the number of vertices in S exceeds the
number of edges in S by the above quantity. We now modify set S by deleting an arbitrary

endpoint of each edge. The resulting set S’ has at least np (1 — %p) vertices left and has

no edges between any of its vertices. We want to maximize |S’|, so we set p = 1/d (using
d > 1), giving us |S'| = 5.

For any graph G = (V, E), a set of vertices D C V is called a dominating set if every
vertex in V' \ D is adjacent to a vertex in D.

Example. Prove that any connected graph G = (V, E) with n > 2 vertices and minimum
n(1+In(146))
1

degree 0(G) = §, contains a dominating set of size at most i
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Solution. For each vertex v € V, add it to the set X independently with probability p.
Let Y C V'\ X be the vertices that are not dominated by X, i.e., they are vertices in V' \ X
that are not dominated by X. Then X UY is a dominating set for G. We will now show
that E[X UY] is not too large. Since X and Y are disjoint sets, we have

E[X UY] = E[X] + E[Y] (1)

We consider the following random variables.
X,: random variable that is 1 if vertex v is in X, 0, otherwise.
Y,: random variable that is 1 if vertex v and all of its neighbors are not in X, 0, otherwise.

X = ZXU
~E[X] =) Pr[X, =1]

Plugging the values of E[X] and E[Y] in (1) we get
E[XUY] <np+n(l—p)°*! < np+ne PO+,

The last expression is minimized when
_ In(1+9)
149

Thus, we can find a dominating set of size at most %.



