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Matching in Bipartite Graphs

An independent set of a graph is a set of pair-wise non-adjacent vertices. A bipartite graph,
(U, V,E), is a graph whose vertex set is U ∪ V and for each edge e = (u, v) ∈ E, u ∈ U
and v ∈ V . In other words, U and V are independent sets and each edge in E connects a
vertex in U to a vertex in V .

Now consider the following scenario. There is a set of girls and a set of boys. Each
girl likes some boys and dislikes others. What conditions would guarantee that each girl
is paired-up with a boy that she likes and that no two girls are paired-up with the same boy.

We can model this situation using a bipartite graph, (X,Y,E), where each vertex in X
represents a girl, each vertex in Y represents a boy and and edge (g, b) ∈ E means that girl
g likes boy b. We are interested in the conditions that would guarantee a matching that
saturates every vertex in X.
Hall’s theorem gives the necessary and sufficient conditions for the existence of such match-
ings in bipartite graphs.

Example. [Hall’s Theorem] Let G = (X,Y,E) be a bipartite graph. For any set S of
vertices, let NG(S) be the set of vertices adjacent to vertices in S. Prove that G contains a
matching that saturates every vertex in X iff |NG(S)| ≥ |S|, ∀S ⊆ X. The condition “For
all S ⊆ X, |N(S)| ≥ |S|” is called Hall’s condition.

Solution. We prove that Hall’s condition is necessary as follows. Suppose G contains a
matching M that saturates every vertex in X. Let S be a subset of X. Since each vertex
in S is matched under M to a distinct vertex in NG(S), |NG(S)| ≥ |S|.

We will now prove the sufficiency of Hall’s conditon, i.e., if |NG(S)| ≥ |S|,∀S ⊆ X then G
contains a matching that saturates every vertex in X. We prove this by induction on the
size of X.

Base Case: |X| = 1. If the only vertex in X is connected to at least one vertex in Y then
clearly a matching exists.
Induction Hypothesis: Assume that Hall’s condition is sufficient when |X| = j, for all j
such that 1 ≤ j ≤ k.
Induction Step: We want to prove that the sufficiency of Hall’s condition when |X| = k+1.
Let G = (X,Y,E) be a graph with k + 1 vertices in X such that ∀S ⊆ X, |NG(S)| ≥ |S|.
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We consider the following two cases.
Case I: For every non-empty proper subset W ⊂ X, |NG(W )| > |W |. In this case, we
pair-up an arbitrary vertex x ∈ X with one of its neighbors, say y ∈ Y . Now consider the
subgraph G′ = (X ′, Y ′, E′), where X ′ = X \ {x}, Y ′ = Y \ {y}, and E′ = E \ {(x, y)}).
After the removal of y, the neighborhood of any subset, S′ ⊆ X ′ in G′ is at most one less
than its neighborhood in G. But since |NG(S′)| > |S′|, after removal of y, it must be that
|NG′(S′)| ≥ |S′|. Thus, Hall’s condition holds for G′. By induction hypothesis, G′ contains
a matching M ′ that saturates every vertex in X ′. Hence, M ′ ∪ {(x, y)} is a matching that
saturates every vertex in X.
Case II: For some non-empty proper subset W ⊂ X, |N(W )| = |W |. For all S′ ⊆ W ,
we have NG(S′) ⊆ NG(W ). Hence, Hall’s condition holds for the subgraph induced by
W ∪ N(W ). By induction hypothesis, there is a matching M1 that matches every vertex
in W to a vertex in NG(W ). Note that M1 is a perfect matching. Consider the subgraph
G′ = (X ′, Y ′, E′), where X ′ = X \ W , Y ′ = Y \ N(W ), and E′ consists of all edges
between X ′ and Y ′. If we can prove that Hall’s condition holds for G′ then by induction
hypothesis, G′ has a matching M2 that saturates every vertex in X ′. Then, M1 ∪M2 is
clearly a matching in G that saturates every vertex in X. It now remains to prove that
∀T ⊆ X ′, |NG′(T )| ≥ |T |. Note that NG(W ∪ T ) = NG(W ) ∪NG′(T ), |NG(W )| = |W |, W
and T are disjoint, and NG(W ) and NG′(T ) are disjoint. Then,

|NG(W ∪ T )| ≥ |W ∪ T | (follows because ∀S ⊆ X, |NG(S)| ≥ |S|)
|NG(W )|+ |NG′(T )| ≥ |W |+ |T |

|W |+ |NG′(T )| ≥ |W |+ |T |
|NG′(T )| ≥ |T |

This proves the sufficiency of Hall’s condition.

Relations

A binary relation is a set of ordered pairs. For example, let R = {(1, 2), (2, 3), (5, 4)}. Then
since (1, 2) ∈ R, we say that 1 is related to 2 by relation R. We denote this by 1R 2.
Similarly, since (4, 7) 6∈ R, 4 is not related to 7 by relation R, denoted by 4 6R 7.

A binary relation R from set A to set B is a subset of the cartesian product A × B.
When A = B, we say that R is a relation on set A.

Example. Let A = {1, 2, 3, 4} and B = {a, b, c}. Consider the following relations.

R1 = {(1, 1), (1, 2), (2, 2), (2, 3)}
R2 = {(1, 2), (2, 3), (3, 4), (4, 1), (4, 4)}
R3 = {(1, a), (2, a), (3, b), (4, c)}
R4 = {(a, 1), (a, 3), (a, 4), (c, 1)}
R5 = {(a, a), (a, b), (1, c)}
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R1 and R2 are relations on A. R3 is a relation from A to B. R4 is a relation from B to A.
R5 is not a relation on sets A and B and it is neither a relation from A to B nor a relation
from B to A. It is a relation on A ∪B.

Below are some more examples of relations.

• If S is a set then “is a subset of “, ⊆ is a relation on P(S), the power set of S.

• “is a student in” is a relation from the set of students to the set of courses.

• “=” is a relation on Z.

• “has a path in G to” is a relation on V (G), the set of vertices in G.

Example. How many relations are there on a set A of n elements?

Solution. Note that any relation on A is a subset of A × A and since the power set of
A×A contains all subsets of A×A, the number of possible relations on A is the cardinality
of the power set of A×A. Since |A×A| = n2, the cardinality of the power set of A×A is
2n

2
. Thus our answer is 2n

2
.

Properties of Relations

Let R be a relation defined on set A. We say that R is

• reflexive, if for all x ∈ A, (x, x) ∈ R.

• irreflexive, if for all x ∈ A, (x, x) 6∈ R.

• symmetric, if for all x, y ∈ A, (x, y) ∈ R =⇒ (y, x) ∈ R.

• antisymmetric, if for all x, y ∈ A, xR y and y Rx =⇒ x = y.

• transitive, if for all x, y, z ∈ A, xR y and y R z =⇒ xR z.

Note that the terms symmetric and antisymmetric are not opposites. A relation may be
both symmetric and antisymmetric or can neither be symmetric nor be antisymmetric.

Example. What are the properties of the following relations?

R1 : equality relation on Z.
R2 : “is a sibling of” relation on the set of all people.

R3 : “ ≤ ” relation on Z.
R4 : “ < ” relation on Z.
R5 : “|” relation on Z+.

R6 : “|” relation on Z.
R7 : “ ⊆ ” relation on the power set of a set S.

R8 : {(x, y) ∈ R2 : |x− y| < ε}, where ε = 0.001
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Solution.

Reflexive : R1, R3, R5, R7, R8

Irreflexive : R2, R4

Symmetric : R1, R2, R8

Antisymmetric : R1, R3, R4, R5, R7

Transitive : R1, R3, R4, R5, R6, R7

Note that R6 is not reflexive because (0, 0) 6∈ R6; it is not antisymmetric because for any
integer a, a| − a and −a|a, but a 6= −a. R2 is not transitive because x and z could be the
same person. Observe that R6 is an example of a relation that is neither symmetric nor
antisymmetric. R1 is an example of a relation that is symmetric and antisymmetric.


