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Matching in Bipartite Graphs

An independent set of a graph is a set of pair-wise non-adjacent vertices. A bipartite graph,
(U,V,E), is a graph whose vertex set is U UV and for each edge e = (u,v) € E, u € U
and v € V. In other words, U and V are independent sets and each edge in E' connects a
vertex in U to a vertex in V.

Now consider the following scenario. There is a set of girls and a set of boys. Each
girl likes some boys and dislikes others. What conditions would guarantee that each girl
is paired-up with a boy that she likes and that no two girls are paired-up with the same boy.

We can model this situation using a bipartite graph, (X,Y, F), where each vertex in X
represents a girl, each vertex in Y represents a boy and and edge (g,b) € E means that girl
g likes boy b. We are interested in the conditions that would guarantee a matching that
saturates every vertex in X.

Hall’s theorem gives the necessary and sufficient conditions for the existence of such match-
ings in bipartite graphs.

Example. [Hall’s Theorem] Let G = (X,Y, E) be a bipartite graph. For any set S of
vertices, let Ng(S) be the set of vertices adjacent to vertices in S. Prove that G contains a
matching that saturates every vertex in X iff [Ng(S)| > |S],VS C X. The condition “For
all S C X, |N(S)| > |5]” is called Hall’s condition.

Solution. We prove that Hall’s condition is necessary as follows. Suppose G contains a
matching M that saturates every vertex in X. Let S be a subset of X. Since each vertex
in S is matched under M to a distinct vertex in Ng(S), |[Ng(S)| > |S].

We will now prove the sufficiency of Hall’s conditon, i.e., if |[Ng(S)| > |S|,VS C X then G
contains a matching that saturates every vertex in X. We prove this by induction on the
size of X.

Base Case: |X| = 1. If the only vertex in X is connected to at least one vertex in Y then
clearly a matching exists.

Induction Hypothesis: Assume that Hall’s condition is sufficient when |X| = 7, for all j
such that 1 <57 <k.

Induction Step: We want to prove that the sufficiency of Hall’s condition when |X| = k+1.
Let G = (X,Y, E) be a graph with k + 1 vertices in X such that VS C X, |Ng(S)| > |S|.
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We consider the following two cases.

Case I: For every non-empty proper subset W C X, |[Ng(W)| > |W/|. In this case, we
pair-up an arbitrary vertex x € X with one of its neighbors, say y € Y. Now consider the
subgraph G’ = (X', Y', E’), where X' = X \ {z}, Y =Y \ {y}, and E' = E\ {(z,9)}).
After the removal of y, the neighborhood of any subset, S’ C X’ in G’ is at most one less
than its neighborhood in G. But since |[Ng(S’)| > |S’|, after removal of y, it must be that
|Ng/(S")| > |S’|. Thus, Hall’s condition holds for G’. By induction hypothesis, G’ contains
a matching M’ that saturates every vertex in X’. Hence, M’ U {(x,y)} is a matching that
saturates every vertex in X.

Case II: For some non-empty proper subset W C X, [N(W)| = |W|. For all &' C W,
we have Ng(S') € Ng(W). Hence, Hall’s condition holds for the subgraph induced by
W U N(W). By induction hypothesis, there is a matching M; that matches every vertex
in W to a vertex in Ng(W). Note that M is a perfect matching. Consider the subgraph
G = (X",)Y',E'), where X' = X\ W, Y =Y \ N(W), and E’ consists of all edges
between X’ and Y’. If we can prove that Hall’s condition holds for G’ then by induction
hypothesis, G’ has a matching M, that saturates every vertex in X’. Then, M; U My is
clearly a matching in G that saturates every vertex in X. It now remains to prove that
VT C X' |Ne/(T)| > |T|. Note that N¢(W UT) = Ng(W)U Ng/(T), [IN¢c(W)| = |W|, W
and T are disjoint, and Ng(W) and Ng/(T') are disjoint. Then,

INc(WUT) > |WUT| (follows because VS C X, |Ng(S)| > |5])
[Ne(W)[ + [Ne(T)| = [W[+]T]
W+ N (T)| = [W|+|T]|
[Ne(T)| = [T

This proves the sufficiency of Hall’s condition.

Relations

A binary relation is a set of ordered pairs. For example, let R = {(1,2),(2,3),(5,4)}. Then
since (1,2) € R, we say that 1 is related to 2 by relation R. We denote this by 1 R2.
Similarly, since (4,7) € R, 4 is not related to 7 by relation R, denoted by 4 R 7.

A binary relation R from set A to set B is a subset of the cartesian product A x B.
When A = B, we say that R is a relation on set A.

Example. Let A={1,2,3,4} and B = {a,b,c}. Consider the following relations.

Ry ={(1,1),(1,2),(2,2),(2,3)}

Ry ={(1,2),(2,3),(3,4), (4,1), (4,4)}
Ry = {(1,a),(2,0),(3,b), (4,0)}

Ry ={(a,1),(a,3), (a,4), (¢, 1)}

Rs = {(a,a),(a,b), (1,0)}
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R; and Rs are relations on A. Rj3 is a relation from A to B. R4 is a relation from B to A.
R is not a relation on sets A and B and it is neither a relation from A to B nor a relation
from B to A. It is a relation on AU B.

Below are some more examples of relations.

o If S is a set then “is a subset of “, C is a relation on P(S), the power set of S.
e “is a student in” is a relation from the set of students to the set of courses.
(13 7

e “=" is a relation on Z.

e “has a path in G to” is a relation on V(G), the set of vertices in G.
Example. How many relations are there on a set A of n elements?

Solution. Note that any relation on A is a subset of A x A and since the power set of
A x A contains all subsets of A x A, the number of possible relations on A is the cardinality
of the power set of A x A. Since |A x A| = n?, the cardinality of the power set of A x A is
27° Thus our answer is 27"

Properties of Relations

Let R be a relation defined on set A. We say that R is
o reflezive, if for all z € A, (x,z) € R.
o irreflexive, if for all x € A, (x,z) € R.

o symmetric, if for all z,y € A, (z,y) € R = (y,z) € R.

antisymmetric, if for all z,y € A, r Ry and y Rxr — = =y.
o transitive, if for all z,y,z € A, x Ryand yRz = xz Rz.

Note that the terms symmetric and antisymmetric are not opposites. A relation may be
both symmetric and antisymmetric or can neither be symmetric nor be antisymmetric.

Example. What are the properties of the following relations?

R : equality relation on Z.

Ry : “is a sibling of” relation on the set of all people.
Rs3: “ <7 relation on Z.

Ry : “ <7 relation on Z.

Rs : “|” relation on Z™.

Rg : “|” relation on Z.

R7: “ C7 relation on the power set of a set S.

Rs : {(z,y) €R? : |z —y| < €}, where e = 0.001
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Solution.

Reflexive : Ry, R3, R5, R7, Rg
Irreflexive : Ro, R4
Symmetric : Ry, Ro, Rg
Antisymmetric : Ry, R3, R4, Rs5, R7
Transitive : Ry, R, R4, R5, Rg, Ry

Note that Rg is not reflexive because (0,0) ¢ Rg; it is not antisymmetric because for any
integer a, a| —a and —ala, but a # —a. R is not transitive because x and z could be the
same person. Observe that Rg is an example of a relation that is neither symmetric nor
antisymmetric. 27 is an example of a relation that is symmetric and antisymmetric.



