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The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p
that we flip repeatedly until it lands on heads. What is the distribution of the number
of flips? This is an example of a geometric distribution. It arises in situations where we
perform a sequence of independent trials until the first success where each trial succeeds
with a probability p.

Note that the sample space Ω consists of all sequences that end in H and have exactly one
H. That is

Ω = {H,TH, TTH, TTTH, TTTTH, . . .}

For any ω ∈ Ω of length i, Pr[ω] = (1− p)i−1p.

Definition. A geometric random variable X with parameter p is given by the following
distribution for i = 1, 2, . . . :

Pr[X = i] = (1− p)i−1p

We can verify that the geometric random variable admits a valid probability distribution
as follows:

∞∑
i=1

(1− p)i−1p = p
∞∑
i=1

(1− p)i−1 =
p

1− p

∞∑
i=1

(1− p)i =
p

1− p
· 1− p

1− (1− p)
= 1

Note that to obtain the second-last term we have used the fact that
∑∞

i=1 c
i = c

1−c , |c| < 1.

Let’s now calculate the expectation of a geometric random variable, X. We can do this in
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several ways. One way is to use the definition of expectation.

E[X] =
∞∑
i=0

iPr[X = i]

=
∞∑
i=0

i(1− p)i−1p

=
p

1− p

∞∑
i=0

i(1− p)i

=

(
p

1− p

)(
1− p

(1− (1− p))2

) (
∵
∞∑
i=0

kxk =
x

(1− x)2
, for |x| < 1.

)

=

(
p

1− p

)(
1− p

p2

)
=

1

p

Another way to compute the expectation is to note that X is a random variable that takes
on non-negative integer values. From a theorem proved earlier we know that if X takes on
only non-negative integer values then

E[X] =

∞∑
i=1

Pr[X ≥ i]

Using this result we can calculate the expectation of the geometric random variable X. For
the geometric random variable X with parameter p,

Pr[X ≥ i] =
∞∑
j=i

(1−p)j−1p = (1−p)i−1p
∞∑
j=0

(1−p)j = (1−p)i−1p× 1

1− (1− p)
= (1−p)i−1

Therefore

E[X] =
∞∑
i=1

Pr[X ≥ i] =
∞∑
i=1

(1− p)i−1 =
1

1− p

∞∑
i=1

(1− p)i =
1

1− p
· 1− p

1− (1− p)
=

1

p

Memoryless Property. For a geometric random variable X with parameter p and for
n > 0,

Pr[X = n + k |X > k] = Pr[X = n]
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Solution.

Pr[X = n + k |X > k] =
Pr[X = n + k ∩X > k]

Pr[X > k]

=
Pr[X = n + k]

Pr[X > k]

=
(1− p)n+k−1p

(1− p)k

= (1− p)n−1p

= Pr[X = n]

Definition: Conditional Expectation. The following is the definition of conditional
expectation.

E[Y |Z = z] =
∑
y

y Pr[Y = y |Z = z],

where the summation is over all possible values y that the random variable Y can assume.

Example. For any random variables X and Y ,

E[X] =
∑
y

Pr[Y = y]E[X |Y = y]

Solution.

E[X] =
∑
x

x · Pr[X = x]

=
∑
x

x ·
∑
y

Pr[X = x ∩ Y = y] (By Law of Total Probability)

=
∑
x

x ·
∑
y

(Pr[X = x|Y = y] · Pr[Y = y])

=
∑
y

Pr[Y = y] ·
∑
x

(x · Pr[X = x|Y = y])

=
∑
y

Pr[Y = y] ·E[X|Y = y]

We can also calculate the expectation of a geometric random variable X using the mem-
oryless property of the geometric random variable. Let Y be a random variable that is 0,
if the first flip results in tails and that is 1, if the first flip is a heads. Using conditional
expectation we have

E[X] = Pr[Y = 0]E[X|Y = 0] + Pr[Y = 1]E[X|Y = 1]

= (1− p)(E[X] + 1) + p · 1 (using the memoryless property)

∴ pE[X] = 1

E[X] =
1

p
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Binomial Distributions

Consider an experiment in which we perform a sequence of n coin flips in which the prob-
ability of obtaining heads is p. How many flips result in heads?

If X denotes the number of heads that appear then

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

Definition. A binomial random variable X with parameters n and p is defined by the
following probability distribution on j = 0, 1, 2, . . . , n:

Pr[X = j] =

(
n

j

)
pj(1− p)n−j

We can verify that the above is a valid probability distribution using the binomial theorem
as follows

n∑
j=1

(
n

j

)
pj(1− p)n−j = (p + (1− p))n = 1

What is the expectation of a binomial random variable X? We can calculate E[X] is two
ways. We first calculate it directly from the definition.

E[X] =

n∑
j=0

j

(
n

j

)
pj(1− p)n−j

=
n∑

j=0

j
n!

j!(n− j)!
pj(1− p)n−j

=
n∑

j=1

j
n!

j!(n− j)!
pj(1− p)n−j

=
n∑

j=1

n!

(j − 1)!(n− j)!
pj(1− p)n−j

= np
n∑

j=1

(n− 1)!

(j − 1)!((n− 1)− (j − 1))!
pj−1(1− p)(n−1)−(j−1)

= np

n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk(1− p)(n−1)−k

= np
n−1∑
k=0

(
n− 1

k

)
pk(1− p)(n−1)−k

= np

The last equation follows from the binomial expansion of (p + (1− p))n−1.
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We can obtain the result in a much simpler way by using the linearity of expectation. Let
Xi, 1 ≤ i ≤ n be the indicator random variable that is 1 if the ith flip results in heads and
is 0 otherwise. We have X =

∑n
i=1Xi. By the lineartity of expectation we have

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

p = np

What is the variance of the binomial random variable X? Since X =
∑n

i=1Xi, and
X1, X2, . . . , Xn are independent we have

Var[X] =

n∑
i=1

Var[Xi]

=

n∑
i=1

E[X2
i ]−E[Xi]

2

=

n∑
i=1

(p− p2)

= np(1− p)

Coupon Collector’s Problem.

We are trying to collect n different coupons that can be obtained by buying cereal boxes.
The objective is to collect at least one coupon of each of the n types. Assume that each
cereal box contains exactly one coupon and any of the n coupons is equally likely to occur.
How many cereal boxes do we expect to buy to collect at least one coupon of each type?

Solution. Let the random variable X denote the number of cereal boxes bought until we
have at least one coupon of each type. We want to compute E[X]. Let Xi be the random
variable denoting the number of boxes bought to get the ith new coupon. Clearly,

X = X1 + X2 + X3 + . . . + Xn

Using the linearity of expectation we have

E[X] = E[X1] + E[X2] + E[X3] + . . . + E[Xn] (1)

What is the distribution of random variable Xi? Observe that the probability of obtaining
the ith new coupon is given by

pi =
n− (i− 1)

n
=

n− i + 1

n

Thus the random variable Xi, 1 ≤ i ≤ n is a geometric random variable with parameter pi.

E[Xi] =
1

pi
=

n

n− i + 1
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Combining this with equation (1) we get

E[X] =
n

n
+

n

n− 1
+

n

n− 2
+ · · ·+ n

2
+

n

1
= n

n∑
i=1

1

i

The summation
∑n

i=1
1
i is known as the harmonic number H(n) and H(n) = lnn + c, for

some constant c < 1.

Hence the expected number of boxes needed to collect n coupons is about nH(n) < n(lnn+
1).

Example. How many reflexive relations are there on a set A of size n?

Solution. We know that R ⊆ A × A. The procedure of constructing a reflexive relation
R is as follows:

Step 1: From A×A, include in R all ordered pairs of the form (a, a).
Step 2: For every ordered pair in A×A of the form (a, b), where a 6= b, choose
whether to include it in R or not.

There is one way to do Step 1 and 2n(n−1) ways to do Step 2. By the multiplication rule,
the number of reflexive relations on a set n elements is 2n(n−1).

Equivalence Relations

A relation R on a set A is an equivalence relation if and only if it is reflexive, symmetric
and transitive.


