Mathematical Foundations of Computer Science Lecture Outline November 7, 2024

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p that we flip repeatedly until it lands on heads. What is the distribution of the number of flips? This is an example of a geometric distribution. It arises in situations where we perform a sequence of independent trials until the first success where each trial succeeds with a probability p .

Note that the sample space Ω consists of all sequences that end in H and have exactly one H. That is

 $\Omega = \{H, TH, TTH, TTTH, TTTTH, \ldots\}$

For any $\omega \in \Omega$ of length i, $Pr[\omega] = (1 - p)^{i-1}p$.

Definition. A *geometric random variable X* with parameter p is given by the following distribution for $i = 1, 2, \ldots$:

$$
\Pr[X = i] = (1 - p)^{i - 1}p
$$

We can verify that the geometric random variable admits a valid probability distribution as follows:

$$
\sum_{i=1}^{\infty} (1-p)^{i-1}p = p \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{p}{1-p} \sum_{i=1}^{\infty} (1-p)^{i} = \frac{p}{1-p} \cdot \frac{1-p}{1-(1-p)} = 1
$$

Note that to obtain the second-last term we have used the fact that $\sum_{i=1}^{\infty} c^i = \frac{c}{1-c}$, $|c| < 1$.

Let's now calculate the expectation of a geometric random variable, X . We can do this in

several ways. One way is to use the definition of expectation.

$$
\mathbf{E}[X] = \sum_{i=0}^{\infty} i \Pr[X = i]
$$

\n
$$
= \sum_{i=0}^{\infty} i(1-p)^{i-1}p
$$

\n
$$
= \frac{p}{1-p} \sum_{i=0}^{\infty} i(1-p)^{i}
$$

\n
$$
= \left(\frac{p}{1-p}\right) \left(\frac{1-p}{(1-(1-p))^{2}}\right) \quad \left(\because \sum_{i=0}^{\infty} kx^{k} = \frac{x}{(1-x)^{2}}, \text{ for } |x| < 1.\right)
$$

\n
$$
= \left(\frac{p}{1-p}\right) \left(\frac{1-p}{p^{2}}\right)
$$

\n
$$
= \frac{1}{p}
$$

Another way to compute the expectation is to note that X is a random variable that takes on non-negative integer values. From a theorem proved earlier we know that if X takes on only non-negative integer values then

$$
\mathbf{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]
$$

Using this result we can calculate the expectation of the geometric random variable X . For the geometric random variable X with parameter p ,

$$
\Pr[X \ge i] = \sum_{j=i}^{\infty} (1-p)^{j-1} p = (1-p)^{i-1} p \sum_{j=0}^{\infty} (1-p)^j = (1-p)^{i-1} p \times \frac{1}{1 - (1-p)} = (1-p)^{i-1}
$$

Therefore

$$
\mathbf{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{1}{1-p} \sum_{i=1}^{\infty} (1-p)^{i} = \frac{1}{1-p} \cdot \frac{1-p}{1-(1-p)} = \frac{1}{p}
$$

Memoryless Property. For a geometric random variable X with parameter p and for $n > 0$,

$$
\Pr[X = n + k \,|\, X > k] = \Pr[X = n]
$$

November 7, 2024 Lecture Outline 3

Solution.

$$
\Pr[X = n + k | X > k] = \frac{\Pr[X = n + k \cap X > k]}{\Pr[X > k]} \\
= \frac{\Pr[X = n + k]}{\Pr[X > k]} \\
= \frac{(1 - p)^{n + k - 1}p}{(1 - p)^k} \\
= (1 - p)^{n - 1}p \\
= \Pr[X = n]
$$

Definition: Conditional Expectation. The following is the definition of conditional expectation.

$$
\mathbf{E}[Y | Z = z] = \sum_{y} y \Pr[Y = y | Z = z],
$$

where the summation is over all possible values y that the random variable Y can assume.

Example. For any random variables X and Y ,

$$
\mathbf{E}[X] = \sum_{y} \Pr[Y = y] \mathbf{E}[X | Y = y]
$$

Solution.

$$
\mathbf{E}[X] = \sum_{x} x \cdot \Pr[X = x]
$$

= $\sum_{x} x \cdot \sum_{y} \Pr[X = x \cap Y = y]$ (By Law of Total Probability)
= $\sum_{x} x \cdot \sum_{y} (\Pr[X = x | Y = y] \cdot \Pr[Y = y])$
= $\sum_{y} \Pr[Y = y] \cdot \sum_{x} (x \cdot \Pr[X = x | Y = y])$
= $\sum_{y} \Pr[Y = y] \cdot \mathbf{E}[X | Y = y]$

We can also calculate the expectation of a geometric random variable X using the memoryless property of the geometric random variable. Let Y be a random variable that is 0 , if the first flip results in tails and that is 1, if the first flip is a heads. Using conditional expectation we have

$$
\mathbf{E}[X] = \Pr[Y = 0] \mathbf{E}[X|Y = 0] + \Pr[Y = 1] \mathbf{E}[X|Y = 1]
$$

= (1 - p)($\mathbf{E}[X] + 1$) + p · 1 (using the memoryless property)
 $\therefore p\mathbf{E}[X] = 1$
 $\mathbf{E}[X] = \frac{1}{p}$

Binomial Distributions

Consider an experiment in which we perform a sequence of n coin flips in which the probability of obtaining heads is p . How many flips result in heads?

If X denotes the number of heads that appear then

$$
\Pr[X=j] = \binom{n}{j} p^j (1-p)^{n-j}
$$

Definition. A *binomial* random variable X with parameters n and p is defined by the following probability distribution on $j = 0, 1, 2, \ldots, n$:

$$
\Pr[X=j] = \binom{n}{j} p^j (1-p)^{n-j}
$$

We can verify that the above is a valid probability distribution using the binomial theorem as follows

$$
\sum_{j=1}^{n} {n \choose j} p^{j} (1-p)^{n-j} = (p + (1-p))^{n} = 1
$$

What is the expectation of a binomial random variable X ? We can calculate $\mathbf{E}[X]$ is two ways. We first calculate it directly from the definition.

$$
\mathbf{E}[X] = \sum_{j=0}^{n} j \binom{n}{j} p^{j} (1-p)^{n-j}
$$
\n
$$
= \sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^{j} (1-p)^{n-j}
$$
\n
$$
= \sum_{j=1}^{n} j \frac{n!}{j!(n-j)!} p^{j} (1-p)^{n-j}
$$
\n
$$
= \sum_{j=1}^{n} \frac{n!}{(j-1)!(n-j)!} p^{j} (1-p)^{n-j}
$$
\n
$$
= np \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!(n-1) - (j-1))!} p^{j-1} (1-p)^{(n-1)-(j-1)}
$$
\n
$$
= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k} (1-p)^{(n-1)-k}
$$
\n
$$
= np \sum_{k=0}^{n-1} {n-1 \choose k} p^{k} (1-p)^{(n-1)-k}
$$
\n
$$
= np
$$
\n
$$
= np
$$

The last equation follows from the binomial expansion of $(p + (1 - p))^{n-1}$.

November 7, 2024 **Lecture Outline** 5

We can obtain the result in a much simpler way by using the linearity of expectation. Let $X_i, 1 \leq i \leq n$ be the indicator random variable that is 1 if the *i*th flip results in heads and is 0 otherwise. We have $X = \sum_{i=1}^{n} X_i$. By the lineartity of expectation we have

$$
\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i] = \sum_{i=1}^{n} p = np
$$

What is the variance of the binomial random variable X? Since $X = \sum_{i=1}^{n} X_i$, and X_1, X_2, \ldots, X_n are independent we have

$$
Var[X] = \sum_{i=1}^{n} Var[X_i]
$$

=
$$
\sum_{i=1}^{n} E[X_i^2] - E[X_i]^2
$$

=
$$
\sum_{i=1}^{n} (p - p^2)
$$

=
$$
np(1 - p)
$$

Coupon Collector's Problem.

We are trying to collect n different coupons that can be obtained by buying cereal boxes. The objective is to collect at least one coupon of each of the n types. Assume that each cereal box contains exactly one coupon and any of the n coupons is equally likely to occur. How many cereal boxes do we expect to buy to collect at least one coupon of each type?

Solution. Let the random variable X denote the number of cereal boxes bought until we have at least one coupon of each type. We want to compute $\mathbf{E}[X]$. Let X_i be the random variable denoting the number of boxes bought to get the ith new coupon. Clearly,

$$
X = X_1 + X_2 + X_3 + \ldots + X_n
$$

Using the linearity of expectation we have

$$
\mathbf{E}[X] = \mathbf{E}[X_1] + \mathbf{E}[X_2] + \mathbf{E}[X_3] + \ldots + \mathbf{E}[X_n]
$$
\n(1)

What is the distribution of random variable X_i ? Observe that the probability of obtaining the ith new coupon is given by

$$
p_i = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}
$$

Thus the random variable $X_i, 1 \leq i \leq n$ is a geometric random variable with parameter p_i .

$$
\mathbf{E}[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}
$$

Combining this with equation (1) we get

$$
\mathbf{E}[X] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{2} + \frac{n}{1} = n \sum_{i=1}^{n} \frac{1}{i}
$$

The summation $\sum_{i=1}^{n} \frac{1}{i}$ $\frac{1}{i}$ is known as the *harmonic number* $H(n)$ and $H(n) = \ln n + c$, for some constant $c < 1$.

Hence the expected number of boxes needed to collect n coupons is about $nH(n) < n(\ln n +$ 1).

Example. How many reflexive relations are there on a set A of size n ?

Solution. We know that $R \subseteq A \times A$. The procedure of constructing a reflexive relation R is as follows:

Step 1: From $A \times A$, include in R all ordered pairs of the form (a, a) . Step 2: For every ordered pair in $A \times A$ of the form (a, b) , where $a \neq b$, choose whether to include it in R or not.

There is one way to do Step 1 and $2^{n(n-1)}$ ways to do Step 2. By the multiplication rule, the number of reflexive relations on a set n elements is $2^{n(n-1)}$.

Equivalence Relations

A relation R on a set A is an *equivalence relation* if and only if it is reflexive, symmetric and transitive.