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Example. In the experiment where we roll one die let X be the random variable denoting
the number that appears on the top face. What is Var[X]?

Solution. From the definition of variance, we have

Var[X] = E[X?] - E[X]?
1 1 2
= 6(1+4+9+16+25+36)—(6(1+2+3+4+5+6)>
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Example. In the hat-check problem that we did in one of the earlier lectures, what is the
variance of the random variable X that denotes the number of people who get their own
hat back?

Solution. We can express X as
X:X1+X2+—|—Xn

where X is the random variable that denotes that is 1 if the ith person receives his/her own
hat back and 0 otherwise. We already know from an earlier lecture that E[X] =1. If n =1
then E[X?] = E[X?] = Pr[X; = 1] = 1. In this case, Var[X] = E[X?| -E[X]?=1-1=0,
as expected. If n > 2, E[X?] can be calculated as follows.

E[X?] = zn: E[X?] +2 Z E[X; - X|]
=1 i<j

= Y E[X7]+2) 1-Pr[X;=1nX; =1]
i=1 i<j

- Lo () ()

i=1

1

= n-—+1
n

= 2



2 Lecture Outline October 31, 2024

Var[X] is given by
Var[X] = E[X?| - E[X]?=2-1=1
Note that like the expectation, the variance is independent of n. This means that it is not

likely for many people to get their own hat back even if n is large.

Theorem. If X and Y are independent real-valued random variables then
Var[X + Y] = Var[X] + Var[Y] and E[X - Y] = E[X] - E[Y]

Note that the converse of the above statement is not true as illustrated by the following
example. Let Q@ = {a,b,c}, with all three outcomes equally likely. Let X and Y be
random variables defined as follows: X (a) =1, X(b) =0,X(c) = -1 and Y(a) =0,Y (b) =
1,Y(c) = 0. Note that X and Y are not independent since

Pr[X=0AY =0]=0, but Pr[X =0]-Pr[Y =0] =
Note that E[X] =0 and E[Y] = 1/3. Also,

E[XY] :ZZ:L‘yPr[X:xﬁY:y] :ZZaijr[X:x]Pr[Y:y|X:x]
x Yy z Yy

Observe that when = 0 or y = 0, the summand is clearly 0 and when  # 0 and
y# 0,Pr[Y =y| X =2] =0. This is because Pr[Y = 1| X =1]=0=Pr[Y = 1| X = —1].
Thus we have

E[XY]=0=E[X]E[Y]

It is also easy to verify that Var[X + Y] = Var[X]| + Var[Y].

Theorem. If Xi, X5, - -, X, are random variables that are mutually independent then
n n
E HXi] = [ Elxi]
i=1 i=1
Theorem. If X, X5, -, X, are random variables that are pairwise independent then
Var

> Xl-] = Var[X;]
=1 i=1

Example (Chebyshev’s Inequality). Let X be a random variable. Show that for any
a >0,

Pr[|X — E[X]| > a] < Vang]

a
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Solution. The inequality that we proved in the earlier homework is called Markov’s in-
equality. We will use it to prove the above tail bound called Chebyshev’s inequality.

Example. Use Chebyshev’s inequality to bound the probability of obtaining at least 3n/4
heads in a sequence of n fair coin flips.

Solution. Let X denote the random variable denoting the total number of heads that
result in n flips of a fair coin. For 1 < i < n, let X; be a random variable that is 1, if the
1th flip results in Heads, 0, otherwise. Thus,

X:X1+X2+—|—Xn

By the linearity of expectation, E[X] = n/2. Since the random variables X;s are indepen-

dent, we have
n

Var[X] = " Var[X;] = > (1/2—1/4) = %
=1

i=1
Using Chebyshev’s inequality, we get
Pr[X >3n/4] = Pr[X —n/2 > n/4]
= Pr[X — E[X] > n/4]

-Pr{X — E[X]| > n/4]

1

2

1 Var[X]
2 n2/16
2

n
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Probability Distributions

Tossing a coin is an experiment with exactly two outcomes: heads (“success”) with a
probability of, say p, and tails (“failure”) with a probability of 1 — p. Such an experiment
is called a Bernoulli trial. Let Y be a random variable that is 1 if the experiment succeeds
and is 0 otherwise. Y is called a Bernoulli or an indicator random variable. For such a
variable we have

EY|=p-1+4(1—p)-0=p="Pr[Y =1]

Thus for a fair coin if we consider heads as ”success” then the expected value of the corre-
sponding indicator random variable is 1/2.
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A sequence of Bernoulli trials means that the trials are independent and each has a prob-
ability p of success. We will study two important distributions that arise from Bernoulli
trials: the geometric distribution and the binomial distribution.

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p
that we flip repeatedly until it lands on heads. What is the distribution of the number
of flips? This is an example of a geometric distribution. It arises in situations where we
perform a sequence of independent trials until the first success where each trial succeeds
with a probability p.

Note that the sample space €2 consists of all sequences that end in H and have exactly one
H. That is
Q={H,TH,TTH,TTTH,TTTTH,...}

For any w € Q of length i, Prjw] = (1 — p)~!p.

Definition. A geometric random variable X with parameter p is given by the following
distribution for ¢ =1,2,...:

PrX =i = (1-p)"'p

We can verify that the geometric random variable admits a valid probability distribution
as follows:

0 [e'e} P S8 P 1 P
1—p)ilp= 1-p)t=-L-SN"1-pi= =1
=1 =1 i=1

Note that to obtain the second-last term we have used the fact that > o0, ¢! = =&, || < 1.

1—c’

Let’s now calculate the expectation of a geometric random variable, X. We can do this in
several ways. One way is to use the definition of expectation.

E[X] = ZiPr[X:i]
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Another way to compute the expectation is to note that X is a random variable that takes
on non-negative integer values. From a theorem proved earlier we know that if X takes on
only non-negative integer values then

E[X] = iPr[X > 4]

Using this result we can calculate the expectation of the geometric random variable X. For
the geometric random variable X with parameter p,

o

PrX >4 = Y (1=pV'p = (1-p)'pD_(1-p) = (1-p)"'px
Jj=t =0

1

T—0=p (1-p)"

Therefore
> 1

BIX] =D PriX 2 =) (1) =y D (=0 =y =,




