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Example. In the experiment where we roll one die let X be the random variable denoting
the number that appears on the top face. What is Var[X]?

Solution. From the definition of variance, we have

Var[X] = E[X2]−E[X]2

=
1

6
(1 + 4 + 9 + 16 + 25 + 36)−

(
1

6
(1 + 2 + 3 + 4 + 5 + 6)

)2

=
91

6
− 49

4

=
35

12

Example. In the hat-check problem that we did in one of the earlier lectures, what is the
variance of the random variable X that denotes the number of people who get their own
hat back?

Solution. We can express X as

X = X1 + X2 + · · ·+ Xn

where Xi is the random variable that denotes that is 1 if the ith person receives his/her own
hat back and 0 otherwise. We already know from an earlier lecture that E[X] = 1. If n = 1
then E[X2] = E[X2

1 ] = Pr[X1 = 1] = 1. In this case, Var[X] = E[X2]−E[X]2 = 1− 1 = 0,
as expected. If n ≥ 2, E[X2] can be calculated as follows.

E[X2] =
n∑

i=1

E[X2
i ] + 2

∑
i<j

E[Xi ·Xj ]

=
n∑

i=1

E[X2
i ] + 2

∑
i<j

1 · Pr[Xi = 1 ∩Xj = 1]

=

n∑
i=1

1

n
+ 2

(
n(n− 1)

2

)(
1

n(n− 1)

)
= n · 1

n
+ 1

= 2
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Var[X] is given by

Var[X] = E[X2]−E[X]2 = 2− 1 = 1

Note that like the expectation, the variance is independent of n. This means that it is not
likely for many people to get their own hat back even if n is large.

Theorem. If X and Y are independent real-valued random variables then

Var[X + Y ] = Var[X] + Var[Y ] and E[X · Y ] = E[X] ·E[Y ]

Note that the converse of the above statement is not true as illustrated by the following
example. Let Ω = {a, b, c}, with all three outcomes equally likely. Let X and Y be
random variables defined as follows: X(a) = 1, X(b) = 0, X(c) = −1 and Y (a) = 0, Y (b) =
1, Y (c) = 0. Note that X and Y are not independent since

Pr[X = 0 ∧ Y = 0] = 0, but Pr[X = 0] · Pr[Y = 0] =
1

3
· 2

3
=

2

9
6= 0.

Note that E[X] = 0 and E[Y ] = 1/3. Also,

E[XY ] =
∑
x

∑
y

xy Pr[X = x ∩ Y = y] =
∑
x

∑
y

xy Pr[X = x] Pr[Y = y |X = x]

Observe that when x = 0 or y = 0, the summand is clearly 0 and when x 6= 0 and
y 6= 0,Pr[Y = y |X = x] = 0. This is because Pr[Y = 1 |X = 1] = 0 = Pr[Y = 1 |X = −1].
Thus we have

E[XY ] = 0 = E[X]E[Y ]

It is also easy to verify that Var[X + Y ] = Var[X] + Var[Y ].

Theorem. If X1, X2, · · · , Xn are random variables that are mutually independent then

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi]

Theorem. If X1, X2, · · · , Xn are random variables that are pairwise independent then

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]

Example (Chebyshev’s Inequality). Let X be a random variable. Show that for any
a > 0,

Pr[|X −E[X]| ≥ a] ≤ Var[X]

a2
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Solution. The inequality that we proved in the earlier homework is called Markov’s in-
equality. We will use it to prove the above tail bound called Chebyshev’s inequality.

Pr[|X −E[X]| ≥ a] = Pr[(X −E[X])2 ≥ a2]

≤ E[(X −E[X])2]

a2
(using Markov’s Inequality)

=
Var[X]

a2

Example. Use Chebyshev’s inequality to bound the probability of obtaining at least 3n/4
heads in a sequence of n fair coin flips.

Solution. Let X denote the random variable denoting the total number of heads that
result in n flips of a fair coin. For 1 ≤ i ≤ n, let Xi be a random variable that is 1, if the
ith flip results in Heads, 0, otherwise. Thus,

X = X1 + X2 + · · ·+ Xn

By the linearity of expectation, E[X] = n/2. Since the random variables Xis are indepen-
dent, we have

Var[X] =

n∑
i=1

Var[Xi] =

n∑
i=1

(1/2− 1/4) =
n

4

Using Chebyshev’s inequality, we get

Pr[X ≥ 3n/4] = Pr[X − n/2 ≥ n/4]

= Pr[X −E[X] ≥ n/4]

=
1

2
· Pr[|X −E[X]| ≥ n/4]

≤ 1

2
· Var[X]

n2/16

=
2

n

Probability Distributions

Tossing a coin is an experiment with exactly two outcomes: heads (“success”) with a
probability of, say p, and tails (“failure”) with a probability of 1− p. Such an experiment
is called a Bernoulli trial. Let Y be a random variable that is 1 if the experiment succeeds
and is 0 otherwise. Y is called a Bernoulli or an indicator random variable. For such a
variable we have

E[Y ] = p · 1 + (1− p) · 0 = p = Pr[Y = 1]

Thus for a fair coin if we consider heads as ”success” then the expected value of the corre-
sponding indicator random variable is 1/2.
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A sequence of Bernoulli trials means that the trials are independent and each has a prob-
ability p of success. We will study two important distributions that arise from Bernoulli
trials: the geometric distribution and the binomial distribution.

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability p
that we flip repeatedly until it lands on heads. What is the distribution of the number
of flips? This is an example of a geometric distribution. It arises in situations where we
perform a sequence of independent trials until the first success where each trial succeeds
with a probability p.

Note that the sample space Ω consists of all sequences that end in H and have exactly one
H. That is

Ω = {H,TH, TTH, TTTH, TTTTH, . . .}

For any ω ∈ Ω of length i, Pr[ω] = (1− p)i−1p.

Definition. A geometric random variable X with parameter p is given by the following
distribution for i = 1, 2, . . . :

Pr[X = i] = (1− p)i−1p

We can verify that the geometric random variable admits a valid probability distribution
as follows:

∞∑
i=1

(1− p)i−1p = p

∞∑
i=1

(1− p)i−1 =
p

1− p

∞∑
i=1

(1− p)i =
p

1− p
· 1− p

1− (1− p)
= 1

Note that to obtain the second-last term we have used the fact that
∑∞

i=1 c
i = c

1−c , |c| < 1.

Let’s now calculate the expectation of a geometric random variable, X. We can do this in
several ways. One way is to use the definition of expectation.

E[X] =
∞∑
i=0

iPr[X = i]

=
∞∑
i=0

i(1− p)i−1p

=
p

1− p

∞∑
i=0

i(1− p)i

=

(
p

1− p

)(
1− p

(1− (1− p))2

) (
∵
∞∑
i=0

kxk =
x

(1− x)2
, for |x| < 1.

)

=

(
p

1− p

)(
1− p

p2

)
=

1

p
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Another way to compute the expectation is to note that X is a random variable that takes
on non-negative integer values. From a theorem proved earlier we know that if X takes on
only non-negative integer values then

E[X] =

∞∑
i=1

Pr[X ≥ i]

Using this result we can calculate the expectation of the geometric random variable X. For
the geometric random variable X with parameter p,

Pr[X ≥ i] =
∞∑
j=i

(1−p)j−1p = (1−p)i−1p
∞∑
j=0

(1−p)j = (1−p)i−1p× 1

1− (1− p)
= (1−p)i−1

Therefore

E[X] =
∞∑
i=1

Pr[X ≥ i] =
∞∑
i=1

(1− p)i−1 =
1

1− p

∞∑
i=1

(1− p)i =
1

1− p
· 1− p

1− (1− p)
=

1

p


