
CIS 160

Exam 2 Solutions
November 15, 2018

1. AJ decides to choose one of three biased coins (coin A, coin B, coin C) and flip the
chosen coin once. Coin A shows heads with probability 5

15 , coin B shows heads with
probability 3

15 , and coin C shows heads with probability 1
15 . Suppose that AJ chooses coin

A with probability 1
4 , coin B with probability 1

4 and coin C with probability 1
2 . What is

the probability that AJ chose coin C, given that the coin flip resulted in heads? You do
not need to simplify your answer.

Solution. We consider the following events.

H: event that AJ’s coin flip results in heads.
A: event that AJ picked coin A.
B: event that AJ picked coin B.
C: event that AJ picked coin C.

We want to find Pr[C |H].

Pr[C |H] =
Pr[C ∩H]

Pr[H]

=
Pr[C] Pr[H |C]

Pr[A ∩H] + Pr[B ∩H] + Pr[C ∩H]

=
(1/2)(1/15)

Pr[A] Pr[H |A] + Pr[B] Pr[H |B] + Pr[C] Pr[H |C]

=
1/30

(1/4)(5/15) + (1/4)(3/15) + (1/2)(1/15)

=
1/2

5/2

=
1

5
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2. Answer the following questions. No justification is required. No partial credit will be
given for incorrect answers.

a. Find the flaw or state there is none.
Claim: For every non-negative integer n, 5n = 0.

Base Case: n = 0. We see 5(0) = 0 and our claim holds in this case.

Induction Hypothesis: Assume that for some integer k, 5j = 0 for every integer j,
0 ≤ j ≤ k.

Induction Step: Now, we want to prove that 5(k+1) = 0. First, we write k+1 = i+j
where i and j are non-negative integers less than k + 1. We then note:

5(k + 1) = 5(i + j)

= 5i + 5j

= 0 + 0 (By the IH)

= 0

Thus our claim is proven by induction.

Solution. The flaw is when k = 0. We see there is no way to write k + 1 = 1 as the
sum of two non-negative integers less than 1.

b. I shuffle a standard deck of 52 cards thoroughly so that every possible ordering is
equally likely. Let E denote the event that the top card is a spade. Let F denote the
event that the 3rd card from the top is a spade. We can show that Pr[E] = 1/4. Is
Pr[F ] larger than, equal to, or smaller than 1/4?

Solution. Pr[F ] = 1/4. The location does not matter.

c. Let Ω = {a, b, c, d, e} be a uniform sample space. Let A be the event given by {a, b, c}.
Give an example of an event B such that Pr[B] > 0 and A and B are independent.

Solution. B = Ω.

d. Let Ω = {a, b, c, d} be a uniform sample space. Produce three events A,B, and C
that are pairwise independent, but not mutually independent.

Solution. Let A = {a, b}, B = {b, c}, and C = {b, d}.
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3. An edge {u, v} is a chord of the cycle C in an undirected simple graph G = (V,E) if u
and v are vertices in the cycle, but the edge {u, v} ∈ E is not an edge of the cycle.

Prove the following statement: If G = (V,E) is a simple undirected graph with minimum
degree at least 3 then G contains a cycle with a chord.

1 2

3

45

6

Figure 1: An example of a cycle with chord {1, 4}.

Solution. Let P : v1, v2, . . . , vk be a maximal path in G. Since deg(vk) ≥ 3 and since P
is maximal, for some p and q, where p < q < k − 1, there must be vertices vp and vq in P
such that {vk, vp} ∈ E and {vk, vq} ∈ E. Thus, the path vp, vp+1, . . . , vk combined with the
edge {vk, vp} forms a cycle and the edge {vk, vq} forms a chord in the cycle.
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4. Suppose that we flip a fair coin until either it comes up tails twice (not necessarily
consecutively) or we have flipped it six times. What is the expected number of times we
flip the coin? You do not need to simplify your answer.

Solution. Let F be the random variable denoting the number of flips. We want to find
E[F ]. Note that the probability of getting any given series of flips of length x is (12)x

and that we stop on the sixth flip regardless of the outcome. A series which ends after
f = 2, 3, 4, or 5 flips must end in a tails and have exactly one tails in the first f − 1 flips
(so there are f − 1 ways this could happen). A series which ends after f = 6 flips must
have at most one tails in the first five flips (there are 6 ways this can happen: one with
zero tails, one for each spot the one tails could go in). Then, the probability distribution
of F is given by

Pr[F = f ] =

{
(f − 1)

(
1
2

)f
f = 2, 3, 4, 5

6 · 1
25

f = 6

E[F ] =

6∑
f=2

f Pr[F = f ]

= 2 · 1

22
+ 3 · 2

23
+ 4 · 3

24
+ 5 · 4

25
+ 6 · 6

25

=
15

4
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5. For any integer n ≥ 3, let G be a simple undirected graph on n vertices such that for
any two vertices u and v in G, it is true that deg(u) + deg(v) ≥ n. Prove that G has a
Hamiltonian cycle. For this question only, you may not refer to any lemmas from lecture,
recitation or homeworks.

Solution. Assume for contradiction that G does not have a Hamiltonian cycle. Add new
edges to G one-by-one, until we come to a point where adding an edge, say (x, y), creates
a Hamiltonian cycle. Let G′ be the graph in which all vertices have degree such that the
sum of any two degrees is at least n and G′ does not have a Hamiltonian cycle, but adding
(x, y) will make G′ Hamiltonian. Since adding edge (x, y) creates a Hamiltonian cycle in
G′, it must be that G′ has a Hamiltonian path that begins at x and ends at y. Let the path
be x = v1, v2, . . . , vn−1, vn = y. We now apply the pigeon-hole principle as follows. Let the
pigeons be the edges incident on the vertices x and y (at least n in total), and let the holes
be the (n − 1) edges of the form (vi, vi+1), where 1 ≤ i ≤ n − 1. An edge (pigeon) of the
form (x, vi) is assigned to the “hole” (vi−1, vi) and an edge (pigeon) of the form (y, vi) is
assigned to the “hole” (vi, vi+1). Since deg(x) + deg(y) ≥ n and at most one edge incident
on x (or y) is assigned to a hole, by the pigeon-hole principle, there must be i such that
3 ≤ i ≤ n−1 and there is an edge (x, vi) and an edge (y, vi−1) (see figure below). Note that
since the edge (x, y) does not exist in G′, the hole corresponding to (v1, v2) only has one
edge, namely (x, v2). Similarly, the hole (vn−1, vn) will only contain the edge (y, vn−1). But
this would mean that xv2v3 · · · vi−1yvn−1vn−2 · · · vi is a Hamiltonian cycle, a contradiction.

x y

v2 vn−1vi−1 vi
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6. There are n companies and n applicants. Each company has a preference list that ranks
every applicant and each applicant has a preference list that ranks each company. There
are no ties in the preference lists. We say that a company c and an applicant a form a
matching pair if the applicant a is the highest ranked applicant (most preferred applicant)
on c’s list and if the company c is the highest ranked company (most preferred company)
on a’s list. Assuming that the preference lists of every company and every applicant are
independently and uniformly generated over all permutations of n applicants and over all
permutations of n companies, respectively, what is the expected number of matching pairs?

Example. Suppose we have three applicants a1, a2, a3, having the preference lists (from
highest ranked to lowest):

a1: (c1, c2, c3)
a2: (c2, c1, c3)
a3: (c3, c1, c2)

and three companies c1, c2, c3, having the preference lists:

c1: (a1, a3, a2)
c2: (a2, a1, a3)
c3: (a1, a3, a2)

Then, we would get two matching pairs, (a1, c1) and (a2, c2).

Solution. We define the following random variables.

X: random variable that denotes the number of matching pairs.
Xi: indicator random variable that is 1 if and only if applicant i is part of a
matching pair.

Note that applicant i is part of a matching pair if and only if i’s most preferred company also
ranked i first. Additionally, the probability of getting any arrangement of rankings is equal

and so our sample space is uniform. Therefore, Pr[Xi = 1] =
1× (n− 1)!× (n!)2n−1

(n!)2n
=

1

n
.

Thus we have u

X =
n∑

i=1

Xi

E[X] =
n∑

i=1

E[Xi] (Linearity of Expectation)

=

n∑
i=1

Pr[Xi = 1]

=

n∑
i=1

1

n

= 1
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Alternate Solution. We define the following random variables.

X: random variable that denotes the number of matching pairs.
Xi: indicator random variable that is 1 if and only if the ith pair is matching.

Note that the ith pair (a, c) is matching if and only if a and c both ranked each other first.
Additionally, the probability of getting any arrangement of rankings is equal and so our

sample space is uniform. Then Pr[Xi = 1] =
1× (n− 1)!× 1× (n− 1)!× (n!)2n−2

(n!)2n
=

1

n2
.

Thus we have

X =
n2∑
i=1

Xi

E[X] =

n2∑
i=1

E[Xi] (Linearity of Expectation)

=
n2∑
i=1

Pr[Xi = 1]

=

n2∑
i=1

1

n2

= 1
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7. Let T be a tree such that T has at least two vertices and no vertex in T has a degree
which is larger than 3. Let ni be the number of vertices in T of degree exactly i. Prove
that

n1 = n3 + 2

Solution. Let n be the total number of vertices in T . Thus, T has n− 1 edges. We know
that

n1 + n2 + n3 = n and 2(n− 1) = n1 + 2n2 + 3n3 (by Handshaking Lemma)

Combining the two equations, we get

2(n1 + n2 + n3 − 1) = n1 + 2n2 + 3n3

2n1 + 2n2 + 2n3 − 2 = n1 + 2n2 + 3n3

n1 = n3 + 2

Alternate Solution 1. We proceed with a proof by induction on the number of vertices,
n. Let P (n) be defined as:

In any tree with n ≥ 2 vertices in which no vertex has a degree which is larger
than 3, n1 = n3 + 2.

Base Case: n = 2. There is only one such tree. It is a graph with two vertices and an
edge between them. Thus, n1 = 2 and n3 = 0 and the claim holds.

Induction Hypothesis: Assume that P (k) is true for some integer k ≥ 2.
Induction Step: Consider a tree T = (V,E) with k + 1 vertices. Let ` be a leaf in the

tree with a neighbor v. We consider the tree T ′ = (V \ {`}, E) resulting from removing `.
Let ki and k′i be the number of vertices of degree exactly i in T and T ′ respectively. By
induction hypothesis, k′1 = k′3 + 2. Now, we add back in `. There are 3 possible cases:

Case 1: v has degree 3 in T and thus degree 2 in T ′. Then, k1 = k′1 +1 and k3 = k′3 +1.
From here, k′1 + 1 = k′3 + 2 + 1 and so k1 = k3 + 2.

Case 2: v has degree 2 in T and thus degree 1 in T ′. Note that in this case, adding back
` causes v to no longer be a vertex of degree 1, but also adds back a new vertex of degree
1, `. Thus, k2 = k′2 + 1, while k1 = k′1 and k3 = k′3. From here, k1 = k′1 = k′3 + 2 = k3 + 2.

Case 3: v has degree 1 in T and thus degree 0 in T ′. In this case it must be the k+1 = 2
and k = 1 which is not possible since we bounded k as being at least 2.

In all cases, k1 = k3 + 2 and so the claim holds for n = k+ 1, thus concluding the proof.

Alternate Solution 2. As proven in homework 8h, the number of leaves in a tree is
2 +

∑
vi∈V,

deg(vi)≥3
(deg(vi)− 2). Therefore, we have:

n1 = 2 +
∑
vi∈V,

deg(vi)≥3

(deg(vi)− 2))
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Observing that the only nodes in T that have degree at least greater than 3 are the nodes
with degree 3, we have:

n1 = 2 +
∑
vi∈V,

deg(vi)=3

(deg(vi)− 2)

= 2 +
∑
vi∈V,

deg(vi)=3

(3− 2)

= 2 +
∑
vi∈V,

deg(vi)=3

1

= 2 + n3

Alternate Solution 3. Let T ′ be the tree in which each node of degree 2 in T is adjacent
to a new node of degree 1. We notice that each node of degree 2 in T becomes a node of
degree 3 in T ′. We also note that for each node in degree 2, we add one leaf to the graph.
Let n′i be the number of vertices in T ′ with degree exactly i. It follows that n′3 = n3 + n2,
n′2 = 0, and n′1 = n1 + n2. Therefore, T ′ is a three-tree. As proven in homework 9h, if a
three-tree has ` leaves, then it has `− 2 vertices of degree 3. Therefore, it follows:

n′3 = n′1 − 2

n3 + n2 = n1 + n2 − 2

n3 = n1 − 2

n1 = n3 + 2
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8. Show that if G is connected and the degree of each vertex in G is even then for every

vertex v ∈ V , G − v has at most
deg(v)

2 connected components. Note that G − v is the
graph obtained after removing v and all its incident edges from G.

Solution. After deleting v from G let CC1, CC2, . . . , CCk be the k connected components
in the resulting graph G− v. We want to show that k ≤ deg(v)/2. Let N(v) denote the set
of neighbors of v in G. Since deg(v) is even so is |N(v)|. Observe that in G − v the only
odd-degree vertices are the vertices in N(v). Since the number of vertices of odd degree in
any graph is even, we know that each connected component CCi must have at least two
vertices from N(v). Thus we have

k ≤ |N(v)|
2

=
deg(v)

2

Alternate Solution. Since G is connected and the degree of each vertex in G is even,
then we know from lecture that G must have an Eulerian circuit. Let this Eulerian circuit
be represented by a sequence of vertices: v1, v2, . . . vm, v1. WLOG, let v be v1. We use one
edge incident of v when we leave v for the first time and one edge when we enter v for the
last time in the Eulerian circuit. And we use two edges for each other time we visit v, since

we must enter and leave v. Therefore v will appear exactly 2 +
deg(v)− 2

2
=

deg(v)

2
+ 1

times in the Eulerian circuit.

Consider each sequence of vertices in between two consecutive appearances of v in the
Eulerian circuit. They are connected by a walk Wi in G, because they are consecutive in
the Eulerian circuit. We can rewrite the Eulerian circuit as

v →W1 → v →W2 → . . .→ v →Wdeg(v)/2 → v

All Wi still exist in G − v, since v does not appear in any of the Wi. As such, there is a
walk in G − v between any two vertices in the same Wi. Although the vertices of G − v
may appear in multiple Wi, they all appear in at least one. As such, since there are at most
deg(v)/2 distinct Wi in which vertices of G− v could appear, and thus, there are at most
deg(v)/2 distinct CC in G− v.

Note: We can also make this argument by first arguing that the neighbors of v must be
paired into CC and then that every other vertex in G− v must appear on at least one walk
between two neighbors of v, giving the same bound on the CC.


