
CIS 160

Exam 1 Solutions
October 11, 2018

[34] 1.

(a) Eleven TAs, including Katie, Stephanie, and Nishita, line up for movie tickets. If
both Katie and Stephanie are in front of (not necessarily immediately in front of)
Nishita, how many possible ways are there for the eleven TAs to stand in line? No
justification is necessary, but showing your work may help to get partial credit.

Solution. The procedure for constructing an ordering of the TAs in a line is:

Step 1 : Choose 3 spots for Katie, Stephanie, and Nishita, without consid-
ering their order.

Step 2 : Order Katie, Stephanie, and Nishita within their 3 spots.

Step 3 : Arrange the remaining TAs.

Step 1 can be done in
(
11
3

)
ways . There are 2 ways to order Katie, Stephanie, and

Nishita. There are 8! ways for the others to stand in line in any order. So by the
multiplication rule, the total number of ways is given by(

11

3

)
· 2 · 8!

(b) Give a combinatorial proof for the following identity.

n∑
k=0

(
n

k

)
2n−k = 3n

Solution. We will prove the identity by answering the following counting question
in two different ways.

How many n letter strings can be formed using letters from {a, b, c}?

Clearly, there are three choices for each of the n letters and hence there are 3n such
strings, which is the RHS.

Another way to count the number of n letter strings that can be formed using letters
a, b, and c is as follows. Let S be the set of all such strings. S can be partitioned into
S0, S1, S2, . . . , Sn, where Sk is the set of all n letter strings formed using letters a, b,
and c that contain exactly k a’s. Note that a string in Sk can be formed as follows.
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Step 1. Choose the k spots for a.
Step 2. Pick any of b or c for the remaining n− k spots.

Step 1 can be done in
(
n
k

)
ways and step 2 can be done in 2n−k ways. By the

multiplication rule, we have |Sk| =
(
n
k

)
2n−k. S0, S1, . . . , Sn partition the set S, so:

|S| =
n∑

k=0

|Sk| =
n∑

k=0

(
n

k

)
2n−k

This gives us the LHS.

(c) Prove the identity from part (b) using the binomial theorem.

Solution. The binomial theorem states that for any non-negative integer n and real
numbers a ane b,

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk

Plugging a = 2 and b = 1 in the above equation gives us the identity in question.

(d) Find the number of ways in which five different books can be distributed among
students Anne, Mary and Dan, if each student gets at least one book and all books
must be distributed. No justification is necessary, but showing your work may help
in getting partial credit.

Solution. The total number of ways to distribute all books without any constraints
= 35.

The number of ways in which all books go to only one student is
(
3
1

)
· 15 = 3.

The number of ways in which all books go to two students with exactly one student
not getting any book is

(
3
2

)
· (25 − 2) = 90.

Therefore, our answer is 35 − 3− 90 = 150.

[10] 2. Let A,B, and C be any arbitrary sets. Show that

(A×B) ∩ (A× C) ⊆ A× (B ∩ C)

Solution. Let (x, y) be an arbitrary but particular element of the LHS, i.e., (x, y) ∈
(A × B) ∩ (A × C). This means that (x, y) belongs to both A × B and A × C. Since
(x, y) ∈ A × B, we have x ∈ A. Since (x, y) ∈ A × B and (x, y) ∈ A × C, we have y ∈ B
and y ∈ C, that is, y ∈ B ∩ C. Thus (x, y) ∈ A× (B ∩ C).
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[10] 3. For all integers x ≥ 0, let Gx = 22
x

+ 1. Prove by induction that for all integers
n ≥ 1,

n−1∏
i=0

Gi = Gn − 2 (1)

(The symbol
∏

in the above equation stands for product. Thus
∏n−1

i=0 Gi = G0×G1×· · ·×
Gn−1). Show the work to justify your answer.

Solution. We will prove the claim using induction on n.

Induction Hypothesis: Assume that the claim is true for some integer k ≥ 1. In other words,
assume that

k−1∏
i=0

Gi = Gk − 2

Base Case: When n = 1, the left hand side of 1 equals G0 = 22
0

+ 1 = 3. The right hand
side equals G1 − 2 = 22

1
+ 1− 2 = 5− 2 = 3. Thus the claim holds when n = 1.

Induction Step: We want to prove that the claim holds when n = k + 1. That is, we want
to show that

k∏
i=0

Gi = Gk+1 − 2

The left hand side of the above equation is given by

k∏
i=0

Gi =

(
k−1∏
i=0

Gi

)
Gk

= (Gk − 2)Gk (using Induction Hypothesis)

= (22
k

+ 1− 2)(22
k

+ 1)

= (22
k − 1)(22

k
+ 1)

= (22
k
)2 − 1

= 22·2
k

+ 1− 2

= 22
k+1

+ 1− 2

= Gk+1 − 2

[10] 4. Prove that if n ∈ Z+ and a1, a2, . . . , an, an+1 are positive integers (not necessarily
distinct) then there is a pair (ai, aj) such that i 6= j and ai − aj is divisible by n.
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Solution. There are n possible remainders when a positive integer is divided by n, namely,
0, 1, . . . , n − 1. Let the pigeons be the n + 1 numbers, and the holes be the n possible
remainders. By the pigeonhole principle, two of these numbers must have the same remain-
der when divided by n. Let the two numbers be ai and aj , where i 6= j. Thus, for some
r ∈ {0, 1, 2, . . . , n− 1}, we have

ai = nq + r

aj = nq′ + r

Thus we have ai − aj = n(q − q′), so n | ai − aj .

[12] 5. Prove that between any two distinct rational numbers, there exist infinitely many
rational numbers.

Solution. Assume for contradiction that between two rational numbers, say x and y,
where (WLOG) x < y, there exist only finitely many rational numbers; let S denote this
set. In other words, S is the set of rational numbers in the interval (x, y). Let z be the
largest rational number in S. Consider the number r = (z + y)/2. Clearly, r is rational.
Also, z < r < y. Then r must be in S and must have been the largest rational number in
S, a contradiction.

[12] 6. Let p and q be positive integers. Consider the set of all binary strings containing
exactly p 0’s and exactly q 1’s. Show that exactly

(
p−q+2

q

)
of these strings have at least two

0’s between every pair of 1’s. You may assume that p ≥ 2(q − 1). Justify your answer.

Solution. The procedure for constructing an arrangement of p 0’s and q 1’s with the
given constraints is as follows.

Step 1. Arrange all the q 1’s.
Step 2. Let s0, s1, . . . , sq be the q + 1 spots, where si, 1 ≤ i < q, is the spot
between the ith and the (i + 1)th 1 and s0 and sq are spots before the start of
the first 1 and after the last 1 respectively. Let xi be the number of 0’s in spot
i. Find a solution to the equations xi ≥ 2, 1 ≤ i ≤ q − 1, and

∑q
i=0 xi = p.

There is one way to do Step 1. In Step 2, after giving away the two 0’s to each of the q− 1
positions, the remaining p− 2(q− 1) = (p− 2q + 2) 0’s can be distributed among the q + 1
slots using the sticks and crosses method in which the number of sticks equals q and the
number of crosses equal p− 2q + 2. Thus, Step 2 can be done in(

q + p− 2q + 2

q

)
=

(
p− q + 2

q

)
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ways. By the multiplication rule, the total number of strings is

1×
(
p− q + 2

q

)
=

(
p− q + 2

q

)

[12] 7. Let S be the set of all binary strings. Let y · z denote the concatenation of the
strings y and z. Thus if y = 00 and z = 10 then y · z = 0010. Similarly, if y is an empty
string and z = 11 then y · z = 11.

Prove that for all integers n ≥ 0, any string x ∈ S of length n can be written in the form
x = y · z where the number of 0’s in y is the same as the number of 1’s in z. Empty strings
(strings of length 0) are allowed. For example, the string 010010 can be written as 01 ·0010
and the string 11101000 can be written as 1110 · 1000.

Solution. Proof by induction on n. We first define n0(s) to denote the number of 0’s in
a string s, and n1(s) to denote the number of 1’s in a string s. Let P (n) be the property
that any binary string x of length n can be written as a concatenation of strings y and z
such that n0(y) = n1(z); that is, the number of 0’s in y equals the number of 1’s in z.

Induction Hypothesis: Assume that P (k) holds for some integer k ≥ 0.

Base Case (n = 0): x is an empty string and can be written as x = y · z, where y and z are
both empty strings as well. n0(y) = 0 = n1(z), so P (0) holds.

Induction Step: We want to prove that P (k+1) holds. Let x = x1x2 . . . xkxk+1 be a binary
string of length k+1. Consider the substring x′ = x1x2 . . . xk. By the Induction Hypothesis,
x′ can be written as y′ · z′, where n0(y

′) = n1(z
′). Then,

x = x′ · xk+1 = y′ · z′ · xk+1

We now case on the value of xk+1, the last character in x.

Case 1 (xk+1 = 0): We can write x as y · z, where y = y′ and z = z′ · xk+1 and the claim
holds since

n0(y) = n0(y
′) = n1(z

′) = n1(z)

Case 2 (xk+1 = 1): Let z′ = z′1z
′
2 . . . z

′
p. We can write x as y · z, where y = y′ · z′1 and

z = z′2 . . . z
′
p · xk+1. In other words, we shift our original partition of the string x to the

right by 1 character. We can show that n0(y) equals n1(z) by considering the following
subcases on the value of z′1:
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Case a (z′1 = 0): We want to show that n0(y
′ · z′1) = n1(z

′
2 . . . z

′
p · xk+1).

n0(y
′ · z′1) = n0(y

′ · 0)

= n0(y
′) + 1

= n1(z
′) + 1 (by the Induction Hypothesis)

= n1(z
′
2 . . . z

′
p · xk+1)

The last steps hold since z′1 = 0 and xk+1 = 1, so we gain a 0 in y from z′1 and
gain a 1 in z from xk+1.

Case b (z′1 = 1): We want to show that n0(y
′ · z′1) = n1(z

′
2 . . . z

′
p · xk+1).

n0(y
′ · z′1) = n0(y

′ · 1)

= n0(y
′)

= n1(z
′) (by the Induction Hypothesis)

= n1(z
′
2 . . . z

′
p · xk+1)

The last steps hold since z′1 = 1 and xk+1 = 1, so we are essentially losing a 1
and gaining a 1 from z′ to z = z′2 . . . z

′p · xk+1.

We have shown that the claim holds in all possible cases, and this completes the proof of
the induction step.

Alternate: Direct.

Let n0(s) be the number of 0’s in a binary string s and let n1(s) be the number of 1’s in s.

Consider the partition x = y·z where y is the empty string and z = x. Clearly, n0(y) = 0 and
n1(z) ≥ 0. This leaves us with 2 possible cases: either n1(z)−n0(y) = 0 or n1(z)−n0(y) ≥ 1.
In the former case, we are done as we have found a partition such that n0(y) = n1(z). We
now consider the latter case.

Consider an arbitrary partition such that x = y · z where y = y1 . . . yp and z = z1 . . . zk
(y and z are non-empty). When we move the partition one bit to the right, we get a new
partition: x = y′ · z′ where y′ = y1 . . . ypz1 and z′ = z2 . . . zk. There are 2 possible cases to
consider, either z1 = 0 or z1 = 1.

Case 1: z1 = 0. In this case, n0(y
′) = n0(yz1) = n0(y · 0) = n0(y) + 1 and n1(z

′) =
n1(z2 . . . zk) = n1(z) (since z1 = 0). Plugging in gives us, n1(z

′)−n0(y
′) = n1(z)− (n0(y)+

1) = n1(z)− n0(y)− 1.

Case 2: z1 = 1. In this case, n0(y
′) = n0(y1 . . . ypz1) = n0(y1 . . . yp · 1) = n0(y) and

n1(z
′) = n1(z2 . . . zk) = n1(z) − 1 (since z1 = 1). Plugging in gives us, n1(z

′) − n0(y
′) =

n1(z)− 1− n0(y) = n1(z)− n0(y)− 1.

In both cases, we get n1(z
′)−n0(y

′) = n1(z)−n0(y)−1. From here, we can see that moving
the partition one bit to the right will always decrease the difference between the 0’s in y
and the 1’s in z by exactly 1.
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Finally, consider the partition all the way on the right, i.e. x = y · z where x = y and z is
the empty string. Here, n1(z) − n0(y) = 0 − n0(y) = −n0(y). Clearly, n0(y) ≥ 0 and so
−n0(y) ≤ 0.

Thus, we begin with a partition all the way on the left such that n1(z) − n0(y) ≥ 0. We
know that shifting the partition one bit to the right decreases n1(z)− n0(y) by 1 and that
eventually we reach a partition all the way on the right such that n1(z)− n0(y) ≤ 0. From
here, it follows that there must exists a partition in which n1(z)− n0(y) = 0 and the claim
is proven.


