Solution Set

’ CIS 1210—Data Structures and Algorithms—Spring 2025 ‘

Dijkstra’s—Tuesday, March 25 / Wednesday, March 26

Readings

e |Lecture Notes Chapter 20: Dijkstra’s Algorithm

Review: Dijkstra’s Algorithm

In Recitation 7, we proved that BFS solves the “Single Source Shortest Path” problem for unweighted graphs.
However, for weighted graphs, we need something more robust. Dijkstra’s algorithm finds the shortest path
between two given vertices in a weighted graph, assuming that the graph’s edge weights are non-negative.
The running time of the algorithm is O(|E|log|V| + |V|log|V]) when the graph is implemented using
adjacency lists. The pseudocode for the algorithm can be found here.

Runtime Analysis

The running time of Dijkstra’s algorithm has two terms: |E|log|V| and |V|log|V|. We first consider the
|[V|log|V| term: each EXTRACT-MIN operation takes O(log |V|) time, and this operation is called |V| times
because there are |V| vertices.

The |E|log |V] term has to do with the relaxation step of Dijkstra’s algorithm. Each edge examined may re-
sult in a relaxation of the neighboring node in the heap — a DECREASE-KEY operation that takes O(log |V])
time. The number of vertices examined in the for loop is bounded by the total degree of all vertices, as each
vertex is added and popped exactly once from the min-heap. This value is 2| E| by the Handshaking Lemma,
so in the worst-case we cannot have more than 2|E| decrease-key operations, for a total of O(|E|log |V]).

This analysis works for easily proving our runtime, but we can actually do a better analysis. Each edge
(u,v) can only cause one relaxation, not 2 as the Handshaking Lemma suggests. This is because (u,v) is
explored only when node « is popped from the min-heap. This means that when (u,v) is explored from node
v, we know node u has already been removed, so its key cannot be decreased. Hence, the O(|E|log |V]) term
comes from the O(log |V|) cost of a DECREASE-KEY operation, which is called at most |F| times overall.

Greedy Algorithms

We call an algorithm “greedy” if it makes the locally optimal choice — the best available choice at that
moment—in order to find a globally optimal solution. Greedy algorithms do not always yield optimal
solutions, but for many problems they do. Note that Dijkstra’s algorithm solves the “Single Source Shortest
Path” problem by following this paradigm — it uses a priority queue structure that always yields the node
with the shortest distance from the source node when polled. Consider the set S of vertices in Dijkstra’s whose
final shortest-path weights from the source have already been determined. At each step in the algorithm,
since we ultimately want to find the shortest path from our source, we use our priority queue to make the
locally optimal choice by adding the node with the current shortest distance from the source node to the set

S.

Problems

Problem 1
Find the shortest paths from A:

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=119
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=119

Solution Set

Solution

Running Dijkstra’s algorithm produces the following state:

Node | Distance from A Node | Parent node
A 0 A NULL
B 2 B A
C 1 C A
D 3 D C
E 7 E D

Problem 2: True or False

1. The finishing times of all vertices in a SCC s must be greater than the finishing times of other SCCs
reachable from s during the first DFS.

2. (Adapted from CLRS 22.5) Consider a “simpler” version of Kosaraju’s algorithm, where we use the
original (instead of the transposed) graph in the second DF'S traversal but process vertices in order of
increasing finishing times. Does this algorithm always return the correct result?

Solution

1. False. Consider the counterexample below. On the left, a DFS traversal of G starting at = and
processing the (x, z) edge first yields the starting/finishing times as annotated. On the right in Gscce,
we can see that x and z form one SCC and y forms the other with a (zz,y) edge. Observe that the
finishing time of z is 3, which is not greater than than finishing time of an SCC reachable from it, since
y has a finishing time of 5. However, it is true that at least one vertex must have a larger finishing
time than those of the SCCs reachable from s due to the recursive nature of DFS.

1/6 4/5

P AN

[x } H Y

'\f,__ / N/
[T TN
[] |,/ xz | u./ y)
I'. | .\.-_-/_ \‘H_/
/) G Gsce

N/

2/

2. False. This algorithm will not always be correct. Again, consider the counterexample above from
part 1. If in the first DFS traversal of G, we start at = and process the (z, z) edge first, then in the
second DFS traversal, processing the vertices in order of increasing finishing times in G will start at
the source SCC, zz and also discover the sink SCC, y all at once, outputting both in the same DFS

Solution Set

tree — incorrectly declaring the graph as just one SCC.

At a high-level, the intuition behind why this simpler algorithm fails is because visiting vertices in G
in order of increasing finishing times in the second DFS does not always correspond to visiting the
overall SCCs in order of increasing finishing times — meaning that we cannot guarantee we are visiting
SCCs of G in reverse topologically sorted order, leading to incorrect outputs. More specifically, this
is because the finishing time of a vertex (in the first DFS) being minimum does not imply that the
finishing time of its SCC will be minimum. In contrast, by definition, the finishing time of a vertex (in
the first DFS) being maximum does imply that the finishing time of its SCC will be maximum. This
is why Kosaraju’s works: transposing G and visiting vertices in decreasing order of finishing times (aka
starting from the maximum) in the second DFS guarantees that we are visiting the SCCs of GT in
reverse topologically sorted order.

Problem 3: True or False

1. Provided there are no negative weight cycles, Dijkstra’s algorithm will correctly return shortest path
to all vertices.

2. Dijkstra’s algorithm will not terminate when run on a graph with negative edge weights.
3. If we double the weights of all edges, then Dijkstra’s algorithm produces the same shortest path.

4. If we square the weights of all edges, then Dijkstra’s algorithm produces the same shortest path.

Solution

1. False. Note that the conclusion is clearly false if there are negative weight cycles — the notion of a
shortest path doesn’t even make much sense in this case. But this is not the only case where Dijkstra’s
will not work with negative edge weights. Recall that the proof of correctness for Dijkstra’s algorithm
relies on non-negative edge weights to yield the correct solution because it implies that we can never
decrease a path’s weight by traversing more edges, allowing us to incrementally make locally optimal
decisions to reach a globally optimal solution. However, this assumption breaks when we have negative
edge weights.

For instance, consider the counterexample below. If we run Dijkstra’s algorithm starting at vertex
a, we will update b and c¢’s distances to be 4 and 2, respectively. Then, we will conclude that the
shortest path from a to ¢ is a — ¢, with a weight of 2. However, the actual shortest path from a to ¢
is a = b — ¢, with a weight of 1. The assumption in the proof of correctness breaks here because by
traversing the b — ¢ edge which has a negative weight, we are able to decrease the weight of the path
from a to ¢ that goes through b. Hence, running Dijkstra’s here yields an incorrect solution.

! i
/-,\\‘_ 7 \

— v~ —
TN 1 AN
| a) oo

\ / 2 ,
N ___,/ . /’F

2. False. The algorithm will terminate, since in each iteration of our while loop, we still remove the
vertex at the root of the heap, and the algorithm terminates when the heap is empty. But as we noted
above, when the algorithm terminates, the output could be incorrect.

3. True. Any scaling by a positive factor on the weights does not affect the calculation of shortest paths
give because we maintain relative path weights. Consider a path with total weight a and a path with

Solution Set

total weight b, where WLOG a < b. When we apply this transformation of doubling edge weights,
observe that our first path now has total weight 2a and our second path now has total weight 2b. In
other words, since 2a < 2b still, scaling by a positive factor maintains these relative path weights, so
Dijkstra’s still produces the same shortest path. Alternatively, this is analogous to unit-conversion.
For example, converting edge weights from miles to kilometers will not affect the shortest path.

4. False. In contrast to above, squaring the weights of all edges will not always produce the same shortest
path because it is not a transformation that preserves relative path weights. As a counterexample,
consider the graph below and the shortest path from s to ¢. In this original graph, the shortest path
is just from s — t; however, after squaring the edge weights, the shortest path becomes s -+ a — b —

c—t.

TN N TN

[a Pb—— Mobh e

o1 N) 1 -

_ — N4

\\
.f/ - -‘{\ l l }’_\
Lo 3 ot
N A
Problem 4

(From CLRS 24.3-6) We are given a directed graph G = (V, E) where each edge (u,v) € E has an associated
value r(u,v) € [0, 1] that represents the reliability of a communication channel from u to v. We thus interpret
r(u,v) as the probability that the channel from u to v will not fail, and we assume that these probabilities
are independent. Design an efficient algorithm to find the most reliable path (lowest failure probability)
between a vertex s and any other vertex in the graph.

Solution

Algorithm: We run a modified version of Dijkstra’s: we initialize the distances to —oo instead of co; we
initialize the distance of the source node to be 1 instead of 0; we use a max-heap and call EXTRACT-MAX
instead of using a min-heap and calling EXTRACT-MIN; and in the edge-relaxation step, we switch the
inequality to a < instead of a > and check for products instead of sums. After the algorithm terminates,
we backtrack from v to the source u via parent pointers to output the path with maximum reliability. The
pseudocode is as follows:

Maximum-Reliability (G, s)
for each v € V do
dist[v] = —o0
parent [v] = NIL

dist[s] = 1

S =90

Q max-priority queue on all vertices, keyed by dist value

while Q is not empty do
u = Extract-Max(Q)
S =858 U {u}
for each v € Adj[ul do
if v € Q and dist[v] < dist[u] X w(u, v) then

Solution Set

dist[v] = dist[u]l x w(u, v)
parent [v] = u

Proof of Correctness: Since edge weights represent reliabilities, observe that we want to find the path
from u to v with the maximum weight, where the weight of a path is now the product (instead of sum)
of all weights along the path because reliabilities are independent. At a high-level, our algorithm modifies
Dijkstra’s by ensuring we keep track of maximum instead of minimum length paths. Formally, we can prove
the correctness of our algorithm by modifying the proof of correctness for Dijkstra’s. That is, consider the
set S at any point in the algorithm’s execution. We want to show via induction on |S| that for each u € S,
the path P, is a path s ~» u with maximum reliability.

Base Case: S = {s} and dist[s] =1, so |S| = 1 holds because the maximum reliability of any path is just 1.

Induction Hypothesis: Assume the claim holds when |S| = k for some k£ > 1.

Induction Step: We want to show the claim holds for some S with size k + 1. Consider the k 4 1-th vertex
v. Let (u,v) be the last edge on our s ~ v path P,. By IH, we know P, is a s ~ u path with maximum
reliability. Now, we want to show that any other s ~» v path P has reliability at most the reliability of P,.
Note that in order to reach v, this path P must have left the set S. Let y be the first node on P that is not
in S and let « € S be the node on P just before y such that we have (x,y).

Observe that P cannot have higher reliability than P, because it already has at most the reliability of P,
by the time it has left the set S. This is because in iteration k + 1, our algorithm would have considered
adding y to the set S via this (x,y) edge but rejected it in favor of adding v since we use a max-heap. So,
the reliability of the subpath of P up until y has at most the reliability of P. Since edge weights are between
0 and 1, we know that the reliability of P can only decrease as we traverse more edges since we are dealing
with products. Therefore, we know that P cannot have higher reliability than P, — so P, is a s ~» v path
with maximum reliability, completing our Induction Step and thus our proof.

Runtime Analysis: Note that none of the modifications affect the runtime of Dijkstra’s algorithm, so
running our modified version also takes O((m +n)logn) time. We backtrack no more than O(n) times since
the longest path in a graph has n — 1 edges. Therefore, this algorithm runs in O((m + n)logn) time.

Alternate Solution

Algorithm: Modify G so that the weight of an edge (u,v) is equal to — log(r(u,v)), or the negative log of
its reliability. If r(u, v) = 0, set the weight of edge (u,v) to co. Run Dijkstra’s now on G. Backtrack from
v to the source node w via parent pointers to output the path with the maximum reliability.

Proof of Correctness: Essentially, we want to prove that our algorithm has modified G such that we
transformed this problem into a shortest path problem. Since edge weights represent reliabilities, observe
that we want to find the path from w to v with the maximum weight, where the weight of a path is now
the product (instead of sum) of all weights along the path because reliabilities are independent. Note that
—logr(u,v) = log(1/r(u,v)). By taking the inverse of every r(u,v), we have converted this maximization
problem into a minimization problem, and by then taking the log of these inverses, we have converted the
problem of maximizing a product into minimizing a sum because of log properties. Therefore, the transfor-
mation we applied has converted the problem into a shortest path problem. The newly transformed edge
weights are all non-negative, so we know that Dijkstra’s algorithm will correctly calculate all shortest paths
and thus backtracking will yield the most reliable path.

Runtime Analysis: Modifying G requires iterating through its adjacency list and updating the edge
weights, which takes O(m + n) time. Running Dijkstra’s takes O((m + n)logn) time and we backtrack no

Solution Set

more than O(n) times since the longest path in a graph has n — 1 edges. Therefore, this algorithm runs in
O((m + n)logn) time.

	Readings
	Review: Dijkstra's Algorithm
	Runtime Analysis
	Greedy Algorithms

	Problems
	Problem 1
	Solution

	Problem 2: True or False
	Solution

	Problem 3: True or False
	Solution

	Problem 4
	Solution
	Alternate Solution

