
Solution Set

CIS 1210—Data Structures and Algorithms—Spring 2025

Stacks, Queues, Heaps—Tuesday, February 18 / Wednesday, February 19

Readings

• Lecture Notes Chapter 13: Stacks & Queues

• Lecture Notes Chapter 14: Binary Heaps and Heapsort

Review: Stacks and Queues

An abstract data type (ADT) is an abstraction of a data structure; it specifies the type of data stored
and the operations that can be performed, similar to a Java interface. Recall the Stack and Queue ADTs:

Stack Queue

• LIFO (Last-In-First-Out): the most
recent element added to the stack will
be removed first

• Supported operations:

– push: amortized O(1)

– pop: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

• FIFO (First-In-First-Out): the old-
est/least recent element added to the
queue will be removed first

• Supported operations:

– enqueue: amortized O(1)

– dequeue: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

Implementation Details

In this course, we implement stacks and queues using (dynamically resizing) arrays. In other words, we adjust
the size of the array so that it is large enough to store all of its current elements but not large enough that
it wastes space. The rules we will use for increasing or decreasing the size of a stack or queue’s underlying
array are as follows:

1. If the array of size n is full, create a new array of size 2n and copy all elements into the new array.

2. If the array of size n has less than n
4 elements in it, create a new array of size n

2 and copy all elements
into the new array.

Note that we resize “down” when the array has n
4 elements in it (instead of when it has n

2 elements) to
prevent “thrashing.” If we resized “down” when the array has n

2 elements, consider the case where we push
elements onto a stack until it resized “up.” If we were to pop a single element, then we would have to
resize “down,” but then if we were to push another element, we would have to resize “up” again, so in the
worst-case, every push/pop operation would require copying elements and creating new arrays, increasing
our runtimes.

1

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=73
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=77


Solution Set

Amortized Analysis

When calculating the runtimes of operations for stacks and queues, we perform amortized analysis. In amor-
tized analysis, the amortized runtime of a single operation is equal to the time needed to perform a series
of operations divided by the number of operations performed. For example, let T (n) be the amount of time
needed to perform n push operations. Then, the amortized runtime of a single push operation is equal to
T (n)
n . Observe that we often perform amortized analysis in situations where the occasional operation takes

much longer than the rest of the operations. Considering a stack, in the worst-case, a push operation takes
O(n) time because of array resizing, but otherwise most of the push operations take O(1) time since we’re
just setting a value at an index of the array.

Note: Amortized analysis is not the same as average-case analysis, since it does not depend at all on the
probability distribution of inputs. Instead, the total running time of a series of operations is bounded by the
total runtime of the amortized operations.

Review: Heaps

A heap is a tree-like data structure that implements the priority queue abstract data structure (ADT),
which allows us to maintain a set of elements, each with an associated key, and select the element with the
highest/lowest priority. Heaps satisfy the two following properties:

Heap Property: In a max-heap, for each node i, we have A[Parent(i)] ≥ A[i], so the maximum value
is stored at the root. In a min-heap, for each node i, we have A[Parent(i)] ≤ A[i], so the minimum
value is stored at the root.

Shape Property: A heap is an almost complete binary tree, meaning that every level of the tree is
completely filled except for the last, which must be filled from left to right.

Implementation Details

Because a heap is an almost complete binary tree, we are able implement it using an array with 1-indexing
as shown below:

16

1

14

2

8

4

2

8

4

9

7

5

1

10

10

3

9

6

3

7

Index 0 1 2 3 4 5 6 7 8 9 10
Value null 16 14 10 8 7 9 3 2 4 1

Observe that we can populate the array from left to right by doing a level-order traversal of the tree, where
we start from the root and go through each level of the tree from left to right. Additionally, because of the
shape property, if the root is stored at index 1 of the array, given a node at index i, its left child can be
found at index 2i, its right child can be found at index 2i+ 1, and its parent can be found at index ⌊i/2⌋.

2



Solution Set

Operations (Max-Heaps)

Max-Heapify maintains the max-heap property at the node called on, so the entire subtree rooted at the
node will now be a max-heap. It assumes the node’s left and right subtrees are both valid max-heaps and then
allows the node to “float-down,” swapping it with its larger child or terminating if the max-heap property
holds. It runs in O(h) time, where h is the height of the node, since in the worst case, the node must “float
down” to the bottom of the tree. Since the height of any node is upper bounded by log n, Max-Heapify
runs in O(log n) time for any node (though this bound may not be tight for some nodes, which is a property
we leverage when analyzing the runtime of Build-Max-Heap).

Build-Max-Heap constructs a max-heap from an unsorted array by repeatedly calling Max-Heapify on
nodes from the “bottom-up”, starting at the nodes right above the leaves (which by definition are max-
heaps!). It runs in O(n) time; the mathematical proof of this upper-bound can be found here.

Extract-Max removes and returns the element with the maximum key. We remove the root, replace it
with the right-most element in the bottom level/last element in the array, and then call Max-Heapify on
the “new” temporary root to maintain the max-heap property. We perform constant work besides calling
Max-Heapify, so it runs in O(log n) time.

Insert adds an element by first adding it to the end of the array/max-heap, and then allowing it to “float-
up” to its correct position by repeatedly swapping it with its parent as necessary to maintain the max-heap
property. It runs in O(log n) time, since the path it takes while it “floats-up” has length O(log n).

Peek returns the maximum element in the heap stored at the root. Since we implement a heap with an
array, this runs in O(1) time because we just index into the array.

Problems

Problem 1

You are given two stacks S1 and S2 of size n. Implement a queue using S1, S2, and a stack’s push, pop,
and/or peek methods. What are the (amortized) running times of your new enqueue and dequeue methods?

Solution

enqueue(x):

1. push x into S1.

dequeue:

1. If S2 is empty, pop all elements from S1 and push them into S2. If S2 is still empty, return Nil.

2. Otherwise, pop an element from S2 and return it.

Proof of Correctness: We want to show that our enqueue and dequeue methods maintain a queue’s FIFO
invariant. Since we enqueue an element by push’ing it onto S1, to properly dequeue, we need to access the
elements in S1 in “reverse” order, from the bottom to the top of the stack. We maintain and ensure this by
pop’ing elements from S1 and push’ing them onto S2 when necessary, so we can just pop from S2 to dequeue.
Since a stack is LIFO, any elements that are pushed into S2 must be in reverse order relative to how they were
pushed into S1, so popping off S2 guarantees that the correct element in the queue is retrieved at any time. In
the edge case where both S1 and S2 are empty, there are no elements in the queue, so we correctly return Nil.

Runtime Analysis: The amortized running time of enqueue is O(1), same as a regular stack push opera-
tion. For the amortized running time of dequeue, observe that for each element we dequeue, we push exactly
once (into S2) and pop exactly twice (once from S1 and once from S2). Hence, since we have n elements, we

3

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=80


Solution Set

still have an O(n) running time over all dequeue operations (as push and pop are amortized O(1)). When
we average this over n operations, we see that dequeue still runs in O(1) amortized time. At a high-level,
when we dequeue, note that we only move elements to S2 if S2 is empty, and when we move elements onto
S2, we move many elements at once. So, the dequeue operation when S2 is empty pays the “cost,” making
the following dequeue operations faster, since in the future we can pop from the now non-empty S2.

Space Analysis: Beyond the given stacks, we use O(1) additional space to maintain a variable to hold
values between the pop and push operation in dequeue.

Problem 2

You are given a full stack S1 with distinct elements and an empty stack S2, each of size n. Design an
algorithm to sort the n elements in increasing order from the top in S2, using only O(1) additional space
beyond S1 and S2. What is the running time of your sorting algorithm?

Example:

4
3
1
5
2

→

1
2
3
4
5

Hint: Start with a smaller example:

3
2
1

→
1
2
3

Solution

We use the two given stacks, S1 and S2, and two extra variables max and size in our algorithm.

Algorithm: Initialize max to −∞ and size to 0. Repeat these steps until size = n:

1. pop all elements from S1 and push them onto S2. While pop’ing, keep track of the maximum element
we have seen so far in max.

2. pop elements from S2 (until only size elements remain in S2) and push all of these elements, except
the maximum element stored in max, back into S1.

3. push the maximum element (stored in max) into S2.

4. Increment size by 1, so we can keep track of the number of sorted elements in S2 and not pop them.

Proof of Correctness: The correctness of our algorithm follows from a stack’s LIFO invariant. S1 starts
with all (unsorted) elements, and we maintain this invariant that S1 only contains elements that have not
yet been sorted because in Step 2, we pop from S2 into S1 so only the bottom size elements (the number
of elements sorted) remain in S2. While we pop from S1, we correctly update max to be the max element
that is currently unsorted and then “sort” this element by push’ing max into S2 in Step 3. Our algorithm
terminates when size = n (when S1 is empty), so all elements have been sorted. Because a stack is LIFO
and we “sort” an element each iteration by push’ing the maximum unsorted element found into S2, when
our algorithm terminates, S2 contains all elements sorted in non-decreasing order.

Runtime Analysis: Each iteration of our “loop” (Steps 1 to 4) sorts exactly 1 element. n push/pop

operations take O(n) time, and for each of the n elements we sort, we push and pop at most n elements.
Therefore, our sorting algorithm runs in O(n2) time.

Space Analysis: Beyond the given stacks, we use two variables max and size for O(1) additional space.

4



Solution Set

Problem 3

Given a data stream of n test scores, design an O(n log k) time algorithm to find the k-th highest test score.
Since PEFS provides minimal monetary resources, CIS 1210 Staff has limited access to storage space and
can only afford you O(k) space, where k ≪ n.

Solution

Algorithm: Construct a min-heap from the first k tests, where tests are ordered by their score, by calling
Build-Min-Heap. For each remaining test in the data stream: if its score is greater than the score at the
root of the heap, remove the root by calling Extract-Min and then Insert the current test; otherwise,
the score of the current test is less than or equal to the score at the root, so do nothing. After processing all
tests in the data stream, return the score at the root of the heap by calling Peek.

Proof of Correctness: We will prove the algorithm’s correctness by loop invariant. Namely, we will show
that we maintain the invariant that the heap always contains the highest k scores we have seen thus far.
Initialization: By calling BuildHeap on the first k, the heap contains the only and thus highest k that have
been seen in the stream.
Maintenance: Consider iteration i where we have an element e in the stream. Suppose that the heap contains
the highest k until iteration i− 1. Let m be the result of Peek (the minimum of the heap). There are two
cases:

Case 1: e is in the highest k seen up to iteration i. Thus the minimum of the heap (m) is not
in the highest k and can be removed. Because of the loop invariant being held up to this point
(highest k until iteration i − 1), we know that the heap will contain the other k − 1 highest
elements. Thus, the algorithm removing m and inserting e will maintain the loop invariant.

Case 2: e is not in the highest k seen up to iteration i. e < m because e is not in the highest k.
The algorithm will not remove element m, which maintains the loop invariant.

Note that in both cases we also maintain the property that the heap holds exactly k scores.
Termination: After the algorithm processes all other n − k elements in the stream, the heap will contain k
elements which hold the above invariant.

At the end of the iteration, the heap will contain the k highest scores, the minimum of which will be the
k-th highest. This is exactly the score desired.

Runtime Analysis: Constructing a min-heap from the first k tests by calling Build-Min-Heap takes
O(k) time. For each remaining test, we either do nothing, or we maintain the heap at size k by calling
Extract-Min and then Insert on the current score, which takes O(log k) time. Each test is inserted into
the heap at most once, and since the data stream has n scores, our overall running time is O(k + n log k).
Since k ≪ n, our final running time is O(n log k).

Space Analysis: As a “pre-processing” step, we first construct a min-heap with the first k tests. We
maintain the heap at size k because for each remaining test that we insert, we remove the root. Therefore,
the space complexity of our algorithm is O(k).

5


	Readings
	Review: Stacks and Queues
	Implementation Details
	Amortized Analysis


	Review: Heaps
	Implementation Details
	Operations (Max-Heaps)


	Problems
	Problem 1
	Solution

	Problem 2
	Solution

	Problem 3
	Solution



