
CIS 1210—Data Structures and Algorithms—Spring 2025

Stacks, Queues, Heaps—Tuesday, February 18 / Wednesday, February 19

Readings

• Lecture Notes Chapter 13: Stacks & Queues

• Lecture Notes Chapter 14: Binary Heaps and Heapsort

Review: Stacks and Queues

An abstract data type (ADT) is an abstraction of a data structure; it specifies the type of data stored
and the operations that can be performed, similar to a Java interface. Recall the Stack and Queue ADTs:

Stack Queue

• LIFO (Last-In-First-Out): the most
recent element added to the stack will
be removed first

• Supported operations:

– push: amortized O(1)

– pop: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

• FIFO (First-In-First-Out): the old-
est/least recent element added to the
queue will be removed first

• Supported operations:

– enqueue: amortized O(1)

– dequeue: amortized O(1)

– peek: O(1)

– isEmpty: O(1)

– size: O(1)

Implementation Details

In this course, we implement stacks and queues using (dynamically resizing) arrays. In other words, we adjust
the size of the array so that it is large enough to store all of its current elements but not large enough that
it wastes space. The rules we will use for increasing or decreasing the size of a stack or queue’s underlying
array are as follows:

1. If the array of size n is full, create a new array of size 2n and copy all elements into the new array.

2. If the array of size n has less than n
4 elements in it, create a new array of size n

2 and copy all elements
into the new array.

Note that we resize “down” when the array has n
4 elements in it (instead of when it has n

2 elements) to
prevent “thrashing.” If we resized “down” when the array has n

2 elements, consider the case where we push
elements onto a stack until it resized “up.” If we were to pop a single element, then we would have to
resize “down,” but then if we were to push another element, we would have to resize “up” again, so in the
worst-case, every push/pop operation would require copying elements and creating new arrays, increasing
our runtimes.
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Amortized Analysis

When calculating the runtimes of operations for stacks and queues, we perform amortized analysis. In amor-
tized analysis, the amortized runtime of a single operation is equal to the time needed to perform a series
of operations divided by the number of operations performed. For example, let T (n) be the amount of time
needed to perform n push operations. Then, the amortized runtime of a single push operation is equal to
T (n)
n . Observe that we often perform amortized analysis in situations where the occasional operation takes

much longer than the rest of the operations. Considering a stack, in the worst-case, a push operation takes
O(n) time because of array resizing, but otherwise most of the push operations take O(1) time since we’re
just setting a value at an index of the array.

Note: Amortized analysis is not the same as average-case analysis, since it does not depend at all on the
probability distribution of inputs. Instead, the total running time of a series of operations is bounded by the
total runtime of the amortized operations.

Review: Heaps

A heap is a tree-like data structure that implements the priority queue abstract data structure (ADT),
which allows us to maintain a set of elements, each with an associated key, and select the element with the
highest/lowest priority. Heaps satisfy the two following properties:

Heap Property: In a max-heap, for each node i, we have A[Parent(i)] ≥ A[i], so the maximum value
is stored at the root. In a min-heap, for each node i, we have A[Parent(i)] ≤ A[i], so the minimum
value is stored at the root.

Shape Property: A heap is an almost complete binary tree, meaning that every level of the tree is
completely filled except for the last, which must be filled from left to right.

Implementation Details

Because a heap is an almost complete binary tree, we are able implement it using an array with 1-indexing
as shown below:
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Index 0 1 2 3 4 5 6 7 8 9 10
Value null 16 14 10 8 7 9 3 2 4 1

Observe that we can populate the array from left to right by doing a level-order traversal of the tree, where
we start from the root and go through each level of the tree from left to right. Additionally, because of the
shape property, if the root is stored at index 1 of the array, given a node at index i, its left child can be
found at index 2i, its right child can be found at index 2i+ 1, and its parent can be found at index ⌊i/2⌋.
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Operations (Max-Heaps)

Max-Heapify maintains the max-heap property at the node called on, so the entire subtree rooted at the
node will now be a max-heap. It assumes the node’s left and right subtrees are both valid max-heaps and then
allows the node to “float-down,” swapping it with its larger child or terminating if the max-heap property
holds. It runs in O(h) time, where h is the height of the node, since in the worst case, the node must “float
down” to the bottom of the tree. Since the height of any node is upper bounded by log n, Max-Heapify
runs in O(log n) time for any node (though this bound may not be tight for some nodes, which is a property
we leverage when analyzing the runtime of Build-Max-Heap).

Build-Max-Heap constructs a max-heap from an unsorted array by repeatedly calling Max-Heapify on
nodes from the “bottom-up”, starting at the nodes right above the leaves (which by definition are max-
heaps!). It runs in O(n) time; the mathematical proof of this upper-bound can be found here.

Extract-Max removes and returns the element with the maximum key. We remove the root, replace it
with the right-most element in the bottom level/last element in the array, and then call Max-Heapify on
the “new” temporary root to maintain the max-heap property. We perform constant work besides calling
Max-Heapify, so it runs in O(log n) time.

Insert adds an element by first adding it to the end of the array/max-heap, and then allowing it to “float-
up” to its correct position by repeatedly swapping it with its parent as necessary to maintain the max-heap
property. It runs in O(log n) time, since the path it takes while it “floats-up” has length O(log n).

Peek returns the maximum element in the heap stored at the root. Since we implement a heap with an
array, this runs in O(1) time because we just index into the array.

Problems

Problem 1

You are given two stacks S1 and S2 of size n. Implement a queue using S1, S2, and a stack’s push, pop,
and/or peek methods. What are the (amortized) running times of your new enqueue and dequeue methods?

Problem 2

You are given a full stack S1 with distinct elements and an empty stack S2, each of size n. Design an
algorithm to sort the n elements in increasing order from the top in S2, using only O(1) additional space
beyond S1 and S2. What is the running time of your sorting algorithm?

Example:
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Hint: Start with a smaller example:
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Problem 3

Given a data stream of n test scores, design an O(n log k) time algorithm to find the k-th highest test score.
Since PEFS provides minimal monetary resources, CIS 1210 Staff has limited access to storage space and
can only afford you O(k) space, where k ≪ n.
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